JP2628741B2 - Flexible printed wiring board - Google Patents

Flexible printed wiring board

Info

Publication number
JP2628741B2
JP2628741B2 JP3909289A JP3909289A JP2628741B2 JP 2628741 B2 JP2628741 B2 JP 2628741B2 JP 3909289 A JP3909289 A JP 3909289A JP 3909289 A JP3909289 A JP 3909289A JP 2628741 B2 JP2628741 B2 JP 2628741B2
Authority
JP
Japan
Prior art keywords
printed wiring
flexible printed
wiring board
conductor circuit
reinforcing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3909289A
Other languages
Japanese (ja)
Other versions
JPH02218194A (en
Inventor
亨 柏木
浩二 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3909289A priority Critical patent/JP2628741B2/en
Publication of JPH02218194A publication Critical patent/JPH02218194A/en
Application granted granted Critical
Publication of JP2628741B2 publication Critical patent/JP2628741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、合成樹脂内に埋め込んで使用するフレキシ
ブルプリント配線板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a flexible printed wiring board used by being embedded in a synthetic resin.

<従来の技術と発明が解決しようとする課題> 通常のケーブル類に代わって、近時、可撓性を有する
絶縁基板と、金属箔等の導体薄膜からなる導体回路とを
積層したフレキシブルプリント配線板(flat flexible
printed circuit:FPC)が、配線材として使用されるこ
とが多くなってきた。フレキシブルプリント配線板は、
その名の通り可撓性を有するので、従来のケーブルと同
様に種々の配線形状に対応できる上、多数の回路を少な
いスペースで同時に配線できるという、従来のケーブル
にない利点を有している。
<Problems to be Solved by the Related Art and the Invention> In recent years, instead of ordinary cables, flexible printed wiring in which a flexible insulating substrate and a conductive circuit formed of a conductive thin film such as a metal foil are laminated. Board (flat flexible
printed circuit (FPC) has been increasingly used as a wiring material. Flexible printed wiring boards
As the name suggests, it has flexibility, so that it can be used in various wiring shapes as in the case of a conventional cable, and can simultaneously wire a large number of circuits in a small space.

しかし、フレキシブルプリント配線板は振動に弱く、
導体回路が断線しやすいという問題があった。そこで、
このフレキシブルプリント配線板を合成樹脂中に埋め込
むことにより、耐振動性を向上する試みがなされてい
る。
However, flexible printed wiring boards are vulnerable to vibration,
There is a problem that the conductor circuit is easily disconnected. Therefore,
Attempts have been made to improve the vibration resistance by embedding this flexible printed wiring board in a synthetic resin.

ところが、合成樹脂中に埋め込まれたフレキシブルプ
リント配線板は、特に合成樹脂が発泡樹脂である場合、
温度変化の激しい条件下での使用時に、導体回路が断線
し易いという新たな問題を有することが判った。発明者
らの検討によれば、上記断線の原因は、フレキシブルプ
リント配線板を構成する素材と、発泡樹脂材料との熱膨
張係数の差が大きく、冷熱衝撃時に、導体回路に熱応力
が加えられて断線疲労を生じるためであることが判明し
た。
However, flexible printed wiring boards embedded in synthetic resin, especially when the synthetic resin is a foamed resin,
It has been found that there is a new problem that the conductor circuit is liable to be disconnected when used under conditions where temperature changes are severe. According to the studies by the inventors, the cause of the disconnection is a large difference in the coefficient of thermal expansion between the material forming the flexible printed wiring board and the foamed resin material, and thermal stress is applied to the conductor circuit during a thermal shock. It was found that this was due to disconnection fatigue.

本発明は、以上の事情に鑑みてなされたものであっ
て、熱応力に強く、容易に断線しないフレキシブルプリ
ント配線板を提供することを目的としている。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a flexible printed wiring board that is resistant to thermal stress and does not easily break.

<課題を解決するための手段および作用> 上記課題を解決するために、本発明のフレキシブルプ
リント配線板は、サーモトロピック液晶性を示すポリマ
ー(以下「液晶性ポリマー」という)からなる補強材を
有することを特徴としている。
<Means and Actions for Solving the Problems> In order to solve the above problems, the flexible printed wiring board of the present invention has a reinforcing material made of a polymer exhibiting thermotropic liquid crystallinity (hereinafter referred to as “liquid crystalline polymer”). It is characterized by:

上記構成からなる本発明のフレキシブルプリント配線
板においては、補強材を形成する液晶性ポリマーの線膨
脹係数が導体回路を形成する金属材料に近く、且つ、引
張弾性率が通常の樹脂材料に吸収し、導体回路に加えら
れる応力の一部を吸収し、導体回路に加えられる応力を
軽減して、導体回路を保護することができ、導体回路の
断線が防止される。
In the flexible printed wiring board of the present invention having the above configuration, the linear expansion coefficient of the liquid crystalline polymer forming the reinforcing material is close to that of the metal material forming the conductive circuit, and the tensile modulus is absorbed by the ordinary resin material. In addition, a part of the stress applied to the conductor circuit is absorbed, the stress applied to the conductor circuit is reduced, the conductor circuit can be protected, and the disconnection of the conductor circuit is prevented.

また、上記液晶性ポリマーは、加熱により液晶状態と
なる。いわゆるサーモトロピック液晶性を示し、真の溶
融温度よりも低い温度で流動し得るので、高い耐熱性を
有するにも拘らず、成形加工性に優れており、フィルム
状等の適宜の形状への成形が容易であるという利点をも
有している。
Further, the above liquid crystalline polymer is brought into a liquid crystal state by heating. It exhibits so-called thermotropic liquid crystallinity and can flow at a temperature lower than the true melting temperature, so despite having high heat resistance, it has excellent moldability, and is formed into an appropriate shape such as a film. Is also easy.

補強材を形成する液晶性ポリマーとしては、主鎖中に
剛直な芳香族環を有するものが好ましく用いられ、特
に、下記一般式〔I〕〜〔IV〕の各式で表わされる化合
物よりなる群から選ばれた少なくとも1種のものがより
好ましく用いられる。
As the liquid crystalline polymer forming the reinforcing material, those having a rigid aromatic ring in the main chain are preferably used, and in particular, a group consisting of compounds represented by the following general formulas [I] to [IV] At least one member selected from the following is more preferably used.

(式中、Rは2価の脂肪族基または芳香族基を表わし、
l,m,nはそれぞれ1以上の整数であって、式〔I〕〔I
I〕においてはm+n≧100、式〔III〕〔IV〕において
はl+m+n≧100である必要がある) 上記式中のRに相当する2価の脂肪族基または芳香族
基としては、例えば、メチレン、エチレン、プロピレ
ン、テトラメチレン、1,2−ブチレン、1,3−ブチレン、
2,3−ブチレン、ペンタメチレン、α−アミレン、β−
アミレン、α,δ−アミレン、プロペニレン、2−ブテ
ニレン、o−フェニレン、m−フェニレン、p−フェニ
レン、および、下記式で表わされる化合物が好ましいも
のとして挙げられ、特に、エチレン基およびフェニレン
基が、より好ましく用いられる。
(Wherein, R represents a divalent aliphatic group or an aromatic group,
l, m, and n are each an integer of 1 or more, and are represented by the formula [I] [I
In the formula [I], m + n ≧ 100, and in the formulas [III] and [IV], it is necessary to satisfy l + m + n ≧ 100.) Examples of the divalent aliphatic group or aromatic group corresponding to R in the above formula include methylene , Ethylene, propylene, tetramethylene, 1,2-butylene, 1,3-butylene,
2,3-butylene, pentamethylene, α-amylene, β-
Amylene, α, δ-amylene, propenylene, 2-butenylene, o-phenylene, m-phenylene, p-phenylene, and compounds represented by the following formulas are preferred. Particularly, an ethylene group and a phenylene group are preferred. More preferably used.

(式中、X,Yはハロゲンまたはアルキル基、Zは水素原
子、ハロゲンまたはアルキル基を表わす) 現在入手可能な液晶性ポリマーとしては、住友化学社
製の商品名「エコノール」、DARTCO MFG社製の商品名
「Xydar」、Celanese社製の商品名「Vectra」、ユニチ
カ社製の商品名「LC−2000」等が挙げられる。
(In the formula, X and Y represent a halogen or an alkyl group, and Z represents a hydrogen atom, a halogen or an alkyl group.) As currently available liquid crystal polymers, "Econol" (trade name, manufactured by Sumitomo Chemical Co., Ltd., DARTCO MFG, Inc.) "Xydar", a product name "Vectra" manufactured by Celanese, and a product name "LC-2000" manufactured by Unitika.

上記液晶性ポリマーからなる補強材は、フィルム状、
ワイヤ状、網状等、フレキシブルプリント配線板の形状
や層構成に応じた、適宜の形状とすることができる。
The reinforcing material comprising the liquid crystalline polymer is in the form of a film,
An appropriate shape such as a wire shape or a net shape depending on the shape or layer configuration of the flexible printed wiring board can be used.

本発明のフレキシブルプリント配線板は、上記液晶性
ポリマーからなる補強材と、導体回路とを備えること以
外の構成は特に限定されず、従来のものと同様の部材に
より、従来の配線板と同様に構成することができる。
The flexible printed wiring board of the present invention is not particularly limited in the configuration other than including the reinforcing material made of the liquid crystalline polymer and the conductive circuit, and is made of the same member as the conventional one, similarly to the conventional wiring board. Can be configured.

補強材および導体回路と共に、フレキシブルプリント
配線板を構成する部材としては、導体回路を支持する、
可撓性を有する絶縁基板や、この絶縁基板、補強材、導
体回路等を相互に接着するための接着剤層等が例示され
る。また、本発明のフレキシブルプリント配線板におい
ては、上記絶縁基板自体を液晶性ポリマーで形成して、
絶縁基板と補強剤とを兼用させたり、絶縁基板中に液晶
性ポリマーからなるワイヤ状等の形状の補強剤を埋め込
んで両者を一体化したりすることもできる。
Along with the reinforcing material and the conductor circuit, the members constituting the flexible printed wiring board support the conductor circuit,
Examples include a flexible insulating substrate, an adhesive layer for bonding the insulating substrate, the reinforcing material, the conductor circuit, and the like to each other. Further, in the flexible printed wiring board of the present invention, the insulating substrate itself is formed of a liquid crystalline polymer,
It is also possible to use both the insulating substrate and the reinforcing agent, or to embed a reinforcing agent such as a wire made of a liquid crystalline polymer into the insulating substrate to integrate them.

上記各材料からなる、本発明のフレキシブルプリント
配線板においては、適宜の層構成を採用することができ
る。例えば、前記のように、絶縁基板自体が補強剤を兼
ねる場合や、絶縁基板と補強剤とが一体化された場合に
は、1層の絶縁基板の片面に導体回路が積層された片面
型、1層の絶縁基板の両面に導体回路が積層された両面
型、複数の絶縁基板と複数の導体回路とが交互に積層さ
れた多層型、2層の絶縁基板の間に導体回路が介装され
たフラットケーブル型等の通常の層構成とすることがで
きる。また、液晶性ポリマーからなる補強材が、絶縁基
板と別体である場合には、上記各構成の最外層や各層間
の任意の位置に補強材を配置することで、フレキシブル
プリント配線板が構成される。
In the flexible printed wiring board of the present invention composed of each of the above materials, an appropriate layer configuration can be adopted. For example, as described above, when the insulating substrate itself also serves as a reinforcing agent, or when the insulating substrate and the reinforcing agent are integrated, a single-sided type in which a conductor circuit is laminated on one surface of a single-layer insulating substrate, A double-sided type in which conductive circuits are stacked on both sides of a single-layer insulating substrate, a multilayer type in which a plurality of insulating substrates and a plurality of conductive circuits are alternately stacked, and a conductive circuit interposed between two-layered insulating substrates It can have a normal layer structure such as a flat cable type. Further, when the reinforcing material made of a liquid crystalline polymer is separate from the insulating substrate, the reinforcing material is arranged at an arbitrary position between the outermost layer and each layer of each of the above-described structures, so that the flexible printed wiring board is formed. Is done.

導体回路を形成する金属材料としては、銅、錫、銀、
ニッケル、アルミニウム、またはこれら金属の合金等が
挙げられる。導体回路の形成法としては、絶縁基板の表
面に積層された上記金属材料からなる薄膜の不要部分を
エッチング除去する、いわゆるサブストラクティブ法、
絶縁基板表面の、導体回路として必要な部分にのみ金属
材料を堆積させるアディティブ法、サブストラクティブ
法とアディティブ法とを組み合わせたセミアディティブ
法等の、従来公知の導体回路の製造法を適用することが
できる。導体回路の厚みは、導体回路の材質、製造方法
等の条件に応じて、最適の範囲を選択することができる
が、通常、18〜70μm程度であることが好ましい。
Copper, tin, silver,
Nickel, aluminum, and alloys of these metals are exemplified. As a method of forming a conductor circuit, a so-called subtractive method in which an unnecessary portion of a thin film made of the above metal material laminated on the surface of an insulating substrate is removed by etching,
It is possible to apply a conventionally known method of manufacturing a conductor circuit, such as an additive method of depositing a metal material only on a portion required as a conductor circuit on an insulating substrate surface, a semi-additive method combining a subtractive method and an additive method, or the like. it can. The thickness of the conductor circuit can be selected in an optimal range depending on the conditions such as the material of the conductor circuit and the manufacturing method, but it is usually preferably about 18 to 70 μm.

絶縁基板としては、ポリエステル系、ポリイミド系、
ガラスエポキシ系、ガラステフロン系、ポリアミドイミ
ド系、ポリ塩化ビニル系、ポリエチレン系等の、可撓性
を有する、従来公知のフレキシブル配線板用絶縁フィル
ムが、何れも使用可能である。また、前記のように、液
晶性ポリマーによって、補強材を兼ねた絶縁基板を形成
することもできる。絶縁基板の厚みは、従来と同程度
か、或いは補強材が積層される分、従来よりも薄くする
ことができるが、通常、25〜125μmの範囲内であるこ
とが好ましい。
As the insulating substrate, polyester, polyimide,
Conventionally known flexible insulating films for flexible wiring boards such as glass epoxy type, glass Teflon type, polyamide imide type, polyvinyl chloride type and polyethylene type can be used. Further, as described above, an insulating substrate also serving as a reinforcing material can be formed of a liquid crystalline polymer. The thickness of the insulating substrate can be the same as that of the conventional one, or can be made thinner than that of the conventional one because of the lamination of the reinforcing material, but is usually preferably in the range of 25 to 125 μm.

接着剤層を形成する接着剤としては、耐熱性に優れ、
フレキシブルプリント配線板の可撓性を防げず、且つ、
熱応力に強い、ウレタン系、ポリエステル系、エポキシ
系等の接着剤が使用される。
As an adhesive that forms the adhesive layer, it has excellent heat resistance,
Not prevent the flexibility of the flexible printed wiring board, and
An urethane-based, polyester-based, or epoxy-based adhesive that is resistant to thermal stress is used.

<実施例> 以下、実施例に基づき、本発明を説明する。<Example> Hereinafter, the present invention will be described based on examples.

(実施例1) 厚み50μm、幅2cm、長さ18cmの長尺帯状のポリエチ
レンテレフタレート(PET)フィルムの表面に、厚み70
μmの電解銅箔をウレタン系接着剤(武田薬品工業社
製、商品名A−540)を介して積層、接着した後、この
銅箔をエッチングして、帯材の長手方向に平行に、線幅
0.5mmの導体回路2本と線幅0.1mmの導体回路1本とを形
成した。次に、この導体回路の上に、上記と同じPETフ
ィルムを、同じウレタン系接着剤を用いて積層、接着し
て、通常のフラットケーブル型プリント配線板に相当す
る積層体を得た。積層体のトータルの厚みは195μmで
あった。そして、この積層体の両面、すなわち2層のPE
Tフィルムの外側に、押出成形により形成された液晶性
ポリマー(Celanese社製の商品名Vectra)からなる、厚
み約200μmの補強材フィルムを、それぞれ、上記ウレ
タン系接着剤からなる厚み30μmの接着剤層を介して積
層、接着して、第1図に示す層構成のフレキシブルプリ
ント配線板(A)を作製した。なお、図において、
(1)は導体回路、(2)(2)はPETフィルム、
(3)(3)は補強材フィルム、(4)…はウレタン系
接着剤からなる接着剤層を示している。
(Example 1) A long strip-shaped polyethylene terephthalate (PET) film having a thickness of 50 µm, a width of 2 cm, and a length of 18 cm
After laminating and bonding an electrolytic copper foil having a thickness of μm via a urethane-based adhesive (trade name: A-540, manufactured by Takeda Pharmaceutical Co., Ltd.), the copper foil is etched to form a wire parallel to the longitudinal direction of the strip. width
Two 0.5 mm conductor circuits and one 0.1 mm line width conductor circuit were formed. Next, the same PET film as described above was laminated and bonded on this conductive circuit using the same urethane-based adhesive to obtain a laminate corresponding to a normal flat cable type printed wiring board. The total thickness of the laminate was 195 μm. Then, both sides of this laminate, that is, two layers of PE
On the outside of the T film, a reinforcing material film having a thickness of about 200 μm made of a liquid crystalline polymer (trade name: Vectra manufactured by Celanese) formed by extrusion molding, and a 30 μm thick adhesive made of the urethane-based adhesive, respectively. By laminating and bonding through the layers, a flexible printed wiring board (A) having a layer configuration shown in FIG. 1 was produced. In the figure,
(1) is a conductor circuit, (2) and (2) are PET films,
(3) (3) indicates a reinforcing material film, and (4)... Indicate an adhesive layer made of a urethane-based adhesive.

(実施例2) 電解銅箔に代えて、厚み70μmの圧延銅箔を用いたこ
と以外は、上記実施例1と同様にしてフレキシブルプリ
ント配線板を作製した。
(Example 2) A flexible printed wiring board was produced in the same manner as in Example 1 except that a rolled copper foil having a thickness of 70 µm was used instead of the electrolytic copper foil.

(比較例1) 実施例1において、両面に液晶性ポリマーからなる補
強材フィルムを積層する前の段階の積層体を、そのまま
フレキシブルプリント配線板として用いた。
(Comparative Example 1) In Example 1, the laminated body at the stage before laminating a reinforcing material film made of a liquid crystalline polymer on both surfaces was used as it was as a flexible printed wiring board.

(比較例2) 電解銅箔に代えて、厚み70μmの圧延銅箔を用いたこ
と以外は、上記比較例1と同様にしてフレキシブルプリ
ント配線板を作製した。
Comparative Example 2 A flexible printed wiring board was produced in the same manner as in Comparative Example 1 except that a rolled copper foil having a thickness of 70 μm was used instead of the electrolytic copper foil.

(耐冷熱衝撃試験) 上記実施例1,2、並びに比較例1,2のフレキシブルプリ
ント配線板を、それぞれ金型内に装填してポリウレタン
の発泡成形を行い、各フレキシブルプリント配線板の周
囲に肉厚20mmの発泡ウレタン層を有する、フレキシブル
プリント配線板埋め込み成形品を作製した。そして、各
成形品に対し、−40℃×2時間および+90℃×2時間を
1サイクルとする冷熱衝撃を加えて、導体回路の断線を
観察したところ、比較例1のフレキシブルプリント配線
板を埋め込んだ成形品では198サイクル、比較例2のフ
レキシブルプリント配線板を埋め込んだ成形品では411
サイクルで、それぞれ導体回路が断線した。
(Cold and thermal shock resistance test) Each of the flexible printed wiring boards of Examples 1 and 2 and Comparative Examples 1 and 2 was loaded into a mold and subjected to polyurethane foam molding. A flexible printed wiring board embedded molded product having a urethane foam layer having a thickness of 20 mm was produced. Then, each molded product was subjected to a thermal shock of one cycle of −40 ° C. × 2 hours and + 90 ° C. × 2 hours, and the disconnection of the conductor circuit was observed. The flexible printed wiring board of Comparative Example 1 was embedded. 198 cycles for molded products, and 411 for molded products in which the flexible printed wiring board of Comparative Example 2 is embedded.
In each cycle, the conductor circuit was broken.

これに対し、実施例1,2のフレキシブルプリント配線
板を埋め込んだ成形品は、何れも、1000サイクル以上の
冷熱衝撃でも導体回路が断線せず、このことから、液晶
性ポリマーからなる補強材が冷熱衝撃時の熱応力の一部
を吸収して、導体回路に加えられる応力を低減すること
が判明した。
On the other hand, in each of the molded products in which the flexible printed wiring boards of Examples 1 and 2 were embedded, the conductor circuit was not broken even by a thermal shock of 1000 cycles or more. It has been found that a part of the thermal stress during the thermal shock is absorbed to reduce the stress applied to the conductor circuit.

<発明の効果> 本発明のフレキシブルプリント配線板は、冷熱衝撃時
に発生する熱応力の一部を、液晶性ポリマーからなる補
強材が吸収して、導体回路を熱応力から保護するため、
導体回路が容易に断線することがなく、高寿命、高信頼
性で、且つ温度変化の激しい環境下での使用に適したも
のとなる。
<Effect of the Invention> In the flexible printed wiring board of the present invention, a part of the thermal stress generated at the time of a thermal shock is absorbed by a reinforcing material made of a liquid crystalline polymer to protect the conductor circuit from the thermal stress.
The conductor circuit is not easily broken, has a long life, has high reliability, and is suitable for use in an environment where temperature changes are drastic.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、実施例のフレキシブルプリント配線板の層構
成を示す断面図である。 (A)……フレキシブルプリント配線板、 (1)……導体回路、(2)(2)……PETフィルム、 (3)(3)……補強材フィルム、(4)……接着剤
層。
FIG. 1 is a sectional view showing a layer configuration of a flexible printed wiring board according to an embodiment. (A) ... flexible printed wiring board (1) ... conductor circuit, (2) (2) ... PET film, (3) (3) ... reinforcement film, (4) ... adhesive layer.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】合成樹脂中に埋め込まれて使用されるフレ
キシブルプリント配線板であって、サーモトロピック液
晶性を示すポリマーからなる補強材を有することを特徴
とするフレキシブルプリント配線板。
1. A flexible printed wiring board used by being embedded in a synthetic resin, comprising a reinforcing material made of a polymer exhibiting thermotropic liquid crystallinity.
【請求項2】前記ポリマーは、主鎖中に芳香族環を備え
たものである請求項1記載のフレキシブルプリント配線
板。
2. The flexible printed wiring board according to claim 1, wherein the polymer has an aromatic ring in a main chain.
【請求項3】前記ポリマーは、下記一般式〔I〕〜〔I
V〕の各式で表わされる化合物よりなる群から選ばれた
少なくとも1種である請求項2記載のフレキシブルプリ
ント配線板。 (式中、Rは2価の脂肪族基または芳香族基を表わし、
l,m,nはそれぞれ1以上の整数であって、式〔I〕〔I
I〕においてはm+n≧100、式〔III〕〔IV〕において
はl+m+n≧100である必要がある)
3. The polymer of the following general formulas [I] to [I]
3. The flexible printed wiring board according to claim 2, wherein the flexible printed wiring board is at least one selected from the group consisting of compounds represented by the following formulas: (Wherein, R represents a divalent aliphatic group or an aromatic group,
l, m, and n are each an integer of 1 or more, and are represented by the formula [I] [I
M + n ≧ 100 in I] and l + m + n ≧ 100 in formulas [III] and [IV])
JP3909289A 1989-02-17 1989-02-17 Flexible printed wiring board Expired - Fee Related JP2628741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3909289A JP2628741B2 (en) 1989-02-17 1989-02-17 Flexible printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3909289A JP2628741B2 (en) 1989-02-17 1989-02-17 Flexible printed wiring board

Publications (2)

Publication Number Publication Date
JPH02218194A JPH02218194A (en) 1990-08-30
JP2628741B2 true JP2628741B2 (en) 1997-07-09

Family

ID=12543436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3909289A Expired - Fee Related JP2628741B2 (en) 1989-02-17 1989-02-17 Flexible printed wiring board

Country Status (1)

Country Link
JP (1) JP2628741B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326245A (en) * 1992-06-26 1994-07-05 International Business Machines Corporation Apparatus for extruding materials that exhibit anisotropic properties due to molecular or fibril orientation as a result of the extrusion process
JP2768188B2 (en) * 1992-12-03 1998-06-25 ソニーケミカル株式会社 Flexible printed wiring board
EP0675673A3 (en) * 1994-03-30 1997-03-05 Nitto Denko Corp Reinforcement for flexible printed circuit board and reinforced flexible circuit board.
JP2606177B2 (en) * 1995-04-26 1997-04-30 日本電気株式会社 Printed wiring board
TWI681516B (en) 2017-09-28 2020-01-01 頎邦科技股份有限公司 Chip package having flexible substrate

Also Published As

Publication number Publication date
JPH02218194A (en) 1990-08-30

Similar Documents

Publication Publication Date Title
US6268070B1 (en) Laminate for multi-layer printed circuit
WO2008056500A1 (en) Multilayer-wired substrate
JP2628741B2 (en) Flexible printed wiring board
US5583320A (en) Reinforcement for flexible printed circuit board and reinforced flexible printed circuit board
KR101151473B1 (en) Flexible Printed Circuits Board and Manufacturing method of the same
US20020114107A1 (en) Liquid crystal polymer disk drive suspension assembly and method of manufacture thereof
CN102378501B (en) Circuit board manufacturing method
US20090176080A1 (en) Stiffener and strengthened flexible printed circuit board having the same
JPH11309803A (en) Multi-layered laminated sheet, its manufacture, and multilayered mounting circuit board
US7992290B2 (en) Method of making a flexible printed circuit board
JP2007129153A (en) Rigid-flex multilayer printed wiring board
US6356414B1 (en) Liquid crystal polymer disk drive suspension assembly
KR101012919B1 (en) flexible metal clad laminate without adhesion and method of manufacturing flexible metal clad laminate without adhesion
JP6709254B2 (en) Rigid flex multilayer wiring board
JP2718014B2 (en) Flexible printed wiring board
JP4228405B2 (en) Metal thin film laminate film and flexible printed wiring board using the film
JPH06314862A (en) Flexible circuit board
KR20110060327A (en) Flexible printed circuits board and manufacturing method of the same
JP3964073B2 (en) Flexible printed circuit board and manufacturing method thereof
JP2001284744A (en) Hybrid circuit board and manufacturing method therefor
JP2004311740A (en) Flexible printed wiring board
JP2006041044A (en) Multilayer flexible wiring circuit board
US5872337A (en) Chip carrier and cable assembly reinforced at edges
US10470297B2 (en) Printed circuit board and electronic component
JP2005302879A (en) Printed wiring board and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees