JP2624498B2 - Smelting reduction refining method of Cr oxide - Google Patents
Smelting reduction refining method of Cr oxideInfo
- Publication number
- JP2624498B2 JP2624498B2 JP63040601A JP4060188A JP2624498B2 JP 2624498 B2 JP2624498 B2 JP 2624498B2 JP 63040601 A JP63040601 A JP 63040601A JP 4060188 A JP4060188 A JP 4060188A JP 2624498 B2 JP2624498 B2 JP 2624498B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- slag
- smelting reduction
- dust
- converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) この発明は、鉄浴を用いた上底吹き転炉によるCr鉱石
の如きCr酸化物の溶融還元精錬法に関し、とくに該Cr酸
化物の溶融還元精錬時において発生が避けられずCr歩留
りの低下原因となるダストの有利な低減を図ろうとする
ものである。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a smelting reduction smelting method for Cr oxides such as Cr ore by an upper-bottom blow converter using an iron bath, and more particularly, to a method for melting the Cr oxides. It is intended to advantageously reduce dust which is inevitable during reduction refining and causes a decrease in Cr yield.
(従来の技術) 上底吹き転炉に収容した溶銑等の鉄浴中にCr鉱石等の
Cr酸化物を、熱源および還元剤として役立つ炭素源とと
もに添加し、酸素ジエットの上底吹きによりCを燃焼さ
せその鉄を利用してCr酸化物を溶融還元する手法は、例
えば特開昭54−158320号公報に開示された技術が知られ
ている。(Prior art) Cr ore or the like is placed in an iron bath such as hot metal housed in a top and bottom blown converter.
A method in which a Cr oxide is added together with a heat source and a carbon source serving as a reducing agent, and C is burned by blowing the oxygen jet from the bottom to the top to melt and reduce the Cr oxide using the iron is disclosed in, for example, The technique disclosed in 158320 is known.
(発明が解決しようとする課題) ところで、上記のような手法に従う溶融還元精錬で
は、精錬中転炉から多量のダストが発生し、これによる
溶鉄中のCr歩留りの低下は避けられなかった。表−1に
半還元クロムペレットを用いた溶融還元精錬における一
般的なCrバランスを示すが、Crロスのうち約31.9%はダ
ストとして系外に逃げている。(Problems to be Solved by the Invention) Incidentally, in the smelting reduction smelting according to the above-described method, a large amount of dust is generated from the converter during the smelting, and a reduction in the Cr yield in the molten iron due to this is inevitable. Table 1 shows the general Cr balance in smelting reduction using semi-reduced chromium pellets, but about 31.9% of the Cr loss escapes out of the system as dust.
従って溶融還元精錬時にダストを低減することはCr歩
留りの向上につながり、経済的に重要な意義があるが、
今までのところその対策に苦慮していたのが現状であっ
た。 Therefore, reducing dust at the time of smelting reduction refining leads to improvement of Cr yield and has economic significance.
Until now, it was difficult to deal with the problem.
上述した従来の問題を解消ししかも溶鉄中のCr歩留り
の向上を図ることができる新規な手法を与えることがこ
の発明の目的である。It is an object of the present invention to provide a new method capable of solving the conventional problems described above and improving the Cr yield in molten iron.
(課題を解決するための手段) 発明者らは、Cr酸化物の溶融還元精錬に当り、ダスト
の発生を極力抑制すべく種々実験と検討を重ねた結果、
転炉に予め所定量のスラグを収容しておくことが極めて
有効であることを突止めた。(Means for Solving the Problems) The inventors have conducted various experiments and studies in order to minimize the generation of dust in the smelting reduction smelting of Cr oxide, and as a result,
It has been found that storing a predetermined amount of slag in the converter in advance is extremely effective.
この発明は上記の知見に立脚するものである。 The present invention is based on the above findings.
すなわちこの発明は鉄浴を収容した上底吹き転炉内に
Cr酸化物を供給し該Cr酸化物を溶融還元精錬することに
よって含Cr溶鉄を製造するに当り、上記Cr酸化物の溶融
還元に先立ち、転炉内に少なくとも50kg/tのスラグを収
容しておくことを特徴とするCr酸化物の溶融還元精錬法
である。That is, the present invention is applied to a top-blowing converter containing an iron bath.
In producing Cr-containing molten iron by supplying Cr oxide and subjecting the Cr oxide to smelting reduction smelting, prior to the smelting reduction of the Cr oxide, a slag of at least 50 kg / t is accommodated in a converter. This is a smelting reduction refining method for Cr oxide, which is characterized in that:
(作 用) Cr酸化物の溶融還元に当り、まず85t上底吹き転炉を
用い、溶融還元法により10〜20%の含Cr溶鉄を精錬した
際のダスト発生量およびその時の炉内スラグの生成量の
関係について調査した。吹錬時間とダスト発生速度の関
係を示す第1図より、ダストの発生速度はCr鉱石を添加
し始めるに従い急激に上昇するが、しばらくするとダス
ト発生速度が低下する。また吹錬時間と生成スラグ量の
関係を示す第2図より、生成スラグ量は吹錬時間の経過
とともに増大することが分かった。(Operation) In the smelting reduction of Cr oxide, first, using an 85-ton top-bottom blow converter, the amount of dust generated when smelting 10 to 20% Cr-containing molten iron by the smelting reduction method and the slag in the furnace at that time were refined. The relationship between the generation amounts was investigated. From FIG. 1 showing the relationship between the blowing time and the dust generation speed, the dust generation speed sharply increases as the Cr ore starts to be added, but after a while, the dust generation speed decreases. From FIG. 2 showing the relationship between the blowing time and the amount of generated slag, it was found that the generated slag amount increased with the elapse of the blowing time.
とくにダストの発生メカニズムはヒュームに起因する
ものやバブルバーストに起因するもの、あるいは添加物
の直接吸引等があるが、主要因は上記のヒュームおよび
バブルバーストであり、これらは共に転炉内の鉄浴上の
上吹き酸素による火点を起点とし、炉内の上昇気流とと
もに排ガスダクト内に吸引されていくものである。In particular, the mechanism of dust generation is caused by fumes, bubble bursts, or direct suction of additives.The main factors are the fumes and bubble bursts described above, both of which are caused by iron in the converter. Starting from the fire point of the oxygen blown up on the bath, it is sucked into the exhaust gas duct together with the rising airflow in the furnace.
ここに上吹き酸素は添加炭材の燃焼、昇熱、あるいは
投入鉱石の溶融、撹拌、滓化促進の面から極めて重要で
ある。Here, the top-blown oxygen is extremely important from the viewpoint of combustion of the added carbonaceous material, heat-up, or melting, stirring and slagging of the input ore.
そこで、ヒュームやバブルバーストの起点となる上吹
き酸素による火点を、上記の機能を損なうことなしに覆
いかくすべく、鉄浴上に予めスラグを存在させた転炉に
おいてCr酸化物の溶融還元精錬を行った。その結果炉内
スラグ量とダスト発生速度には第3図に示すような関係
があることが見い出された。Therefore, in order to cover the ignition point caused by the upwardly blown oxygen, which is the starting point of fumes and bubble bursts, without impairing the above functions, smelting reduction of Cr oxide in a converter with slag pre-existing on an iron bath Was done. As a result, it was found that the amount of slag in the furnace and the rate of dust generation had a relationship as shown in FIG.
上記の調査結果からCr酸化物の溶融還元精錬に先立
ち、転炉内に少なくとも50kg/tのスラグを収容しておく
と、ダスト発生速度の最も高い時と比較し約30%まで減
少していることがわかる。According to the above findings, if at least 50 kg / t of slag is stored in the converter prior to the smelting reduction of Cr oxide, it is reduced to about 30% compared to when the dust generation rate is highest. You can see that.
この発明を実施するに当たっては、具体的に所定のプ
ロセスでCr鉱石の溶融還元精錬を行い、含Cr溶湯を出湯
した後、炉内のスラグのうち少なくとも50kg/tを残存さ
せたままで次の熔銑を装入し、再び所定のプロセスでCr
鉱石の溶融還元を行えば転炉内の浴上には常に50kg/t以
上のスラグを残存させておくことができ、その結果ダス
トの発生量は大幅に抑制されることになる。In practicing the present invention, the smelting reduction refining of the Cr ore is performed by a specific process, and after the molten Cr-containing molten metal is discharged, at least 50 kg / t of the slag in the furnace is left and the next molten metal is melted. Iron is charged and Cr is again
If smelting reduction of ore is performed, slag of 50 kg / t or more can always be left on the bath in the converter, and as a result, the amount of generated dust is significantly suppressed.
なお転炉内に残存もしくは装入しておくスラグの量が
多すぎると、炉体形状にもよるが、精錬中にスロッピン
グが発生し易くなり却ってCr歩留りが低下する。このた
めその上限は200kg/t以下とするのが好ましい。If the amount of slag remaining or charged in the converter is too large, depending on the shape of the furnace, slopping is likely to occur during refining, and on the contrary, the Cr yield decreases. Therefore, the upper limit is preferably set to 200 kg / t or less.
(実施例) 転炉内に予めスラグを残存させない従来法(A)およ
びこの発明に従う手法(B)のそれぞれについて85トン
上底吹き転炉を使用してCr鉱石の融溶還元精錬を行い、
含Cr溶鉄を製造し、精錬中のダスト発生量、Cr歩留り等
について調査した。(Example) For each of the conventional method (A) in which no slag is left in the converter in advance and the method (B) according to the present invention, the molten ore reduction smelting of Cr ore was performed by using an 85-ton top-bottom blow converter,
Cr-containing molten iron was manufactured, and the amount of dust generated during refining and the Cr yield were investigated.
まず最初は、(A)法に従い、温度1190℃になる溶銑
(C:4.20wt%、Si:tr、Mn:0.02wt%、P:0.009wt%、S:
0.021wt%、Cr:tr)58.8トンを用いた精錬を行った。First, according to the method (A), hot metal (C: 4.20 wt%, Si: tr, Mn: 0.02 wt%, P: 0.009 wt%, S:
Refining was performed using 58.8 tons of 0.021 wt% (Cr: tr).
その結果を以下に記す。 The results are described below.
1.イントップ銘柄・量 溶銑 :58.8トン コークス :25.58トン 軽焼ドロマイト:2.4トン 半還元クロムペレット(T.Cr:32.18%、T.Fe:22.23%、
Al2O3:17.28%、MgO:10.29%、還元率69.89)%:33.01
トン 焼石灰 :5.70トン 吹錬酸素 :19045Nm3(底吹き羽口:4.001Nm3) プロパン :301Nm3 吹錬時間 :66.7分 2.アウトプット銘柄・量 出湯クロム粗溶鋼:71.0トン 3.溶鋼温度(℃)、成分組成(wt%) 4.出鋼時のスラグ組成(%) 5.ダスト発生量:80kg/トン 6.出鋼歩留りおよびCr歩留り 次に、上記(A)法による吹錬に引き続き、(B)法
に従い、温度1200℃になる溶銑(C:4.20wt%、Si:tr、M
n:0.03wt%、P:0.012wt%、S:0.021wt%、Cr:tr)65.2
トンを用いた精錬を行った。その結果を以下に記す。な
お、(B)法では、(A)法にて得られた溶鋼を出鋼し
たのち、排滓を行う際に、転炉の排滓側の傾動角度を10
5゜(炉直立0゜)とし転炉内に53kg/tのスラグを残存
させた。1. In-top brand / quantity Hot metal: 58.8 tons Coke: 25.58 tons Lightly fired dolomite: 2.4 tons Semi-reduced chromium pellets (T.Cr: 32.18%, T.Fe: 22.23%,
Al 2 O 3 : 17.28%, MgO: 10.29%, reduction ratio 69.89)%: 33.01
Tons Calcined lime: 5.70 tons Blowing oxygen: 19045Nm 3 (Bottom tuyere: 4.001Nm 3 ) Propane: 301Nm 3 Blowing time: 66.7 minutes 2. Output brand / quantity Crude molten chrome steel: 71.0 tons 3. Steel temperature (° C), component composition (wt%) 4. Slag composition at tapping (%) 5.Dust generation: 80kg / ton 6.Steel yield and Cr yield Next, following the blowing by the above method (A), the hot metal (C: 4.20 wt%, Si: tr, M
n: 0.03 wt%, P: 0.012 wt%, S: 0.021 wt%, Cr: tr) 65.2
Refining using tons was performed. The results are described below. In the method (B), after the molten steel obtained by the method (A) is tapped, when the waste is discharged, the tilt angle of the discharge side of the converter is set to 10 degrees.
5 kg (furnace upright 0 kg) was used and 53 kg / t of slag was left in the converter.
1.インプット銘柄・量 溶銑 :65.2トン コークス :25.55トン 軽焼ドロマイト:2.31トン 半還元クロムペレット:31.38トン 焼石灰 :5.70トン 吹錬酸素 :18667Nm3(底吹き羽口:4152Nm3) プロパン :311Nm3 吹錬時間 :69.5分 2.アウトプット銘柄・量 出湯クロム溶鋼:77.8トン 3.溶鋼温度(℃)、成分組成(wt%) 4.出鋼時のスラグ組成(%) 5.ダスト発生量:55kg/トン 6.出鋼歩留りおよびCr歩留り 出鋼歩留り :94.99% Cr歩留り :92.99% この例では、Cr鉱石として予め部分的に予備還元を行
った半還元クロムペレットを用いたが、上記の結果から
溶融還元精錬において、炉内の浴上に予めスラグを残存
させておく(B)法ではスラグ残しがない(A)法に比
べ、とくに吹錬初期に裸湯にジエットが作用することに
よる初期ダスト発生量が約36%程度低下し、トータルダ
スト発生量は約20kg/トン減少することが、そしてCr歩
留りは約1.0%上昇することが確かめられた。1. Input brand / quantity Hot metal: 65.2 tons Coke: 25.55 tons Lightly burnt dolomite: 2.31 tons Semi-reduced chromium pellets: 31.38 tons Burnt lime: 5.70 tons Blowing oxygen: 18667Nm 3 (Bottom blowing tuyere: 4152Nm 3 ) Propane: 311Nm 3 Blowing time: 69.5 minutes 2. Output brand / quantity Molten chrome molten steel: 77.8 tons 3. Molten steel temperature (℃), component composition (wt%) 4. Slag composition at tapping (%) 5. Dust generation: 55kg / ton 6. Tapping yield and Cr yield Tapping yield: 94.99% Cr yield: 92.99% In this example, semi-reduced chromium pellets that were partially preliminarily reduced as Cr ore were used. However, from the above results, in the smelting reduction refining, in the method (B) in which slag is left in the bath in the furnace in advance, compared with the method (A) in which no slag remains (J), jet water is added to the bare water particularly at the beginning of blowing. It was confirmed that the amount of initial dust generated by the action of decreased by about 36%, the amount of total dust generated decreased by about 20 kg / ton, and the Cr yield increased by about 1.0%.
第4図に吹錬時間とダスト発生速度の比較図を、第5
図に吹錬時間トータルとダスト発生量トータルの関係
を、また第6図にCrペレット投入量とCr歩留りの関係を
それぞれ示す。FIG. 4 is a comparison diagram of the blowing time and the dust generation speed, and FIG.
Fig. 6 shows the relationship between the total blowing time and the total amount of dust generated, and Fig. 6 shows the relationship between the Cr pellet input amount and the Cr yield.
(発明の効果) この発明によれば、Cr酸化物の溶融還元精錬におい
て、含Cr溶鉄を製造する際、Cr歩留りの低下原因となる
ダストの発生を極力抑制することができるし、これに起
因したOGフード内のダスト詰まりやOG集塵水処理設備に
おけるトラブル等の操業上のトラブルも解消ないしは減
少できた。(Effects of the Invention) According to the present invention, in the production of molten iron containing Cr in the smelting reduction smelting of Cr oxide, the generation of dust that causes a decrease in Cr yield can be suppressed as much as possible. Operational troubles such as dust clogging in the OG hood and troubles in the OG dust collection water treatment facility were eliminated or reduced.
第1図は、ダスト発生速度と吹錬時間の関係グラフ、 第2図は炉内生成スラグ量と吹錬時間の関係グラフ、 第3図は、ダスト発生速度と炉内生成スラグ量の関係グ
ラフ、 第4図はダスト発生速度と吹錬時間の関係グラフ、 第5図はトータルダスト量と吹錬時間トータルの関係グ
ラフ、 第6図はCr歩留りとCrペレット投入量の関係グラフであ
る。Fig. 1 is a graph showing the relationship between the dust generation speed and the blowing time, Fig. 2 is a graph showing the relationship between the slag generated in the furnace and the blowing time, and Fig. 3 is a graph showing the relationship between the dust generation speed and the slag generated in the furnace. Fig. 4 is a graph showing the relationship between the dust generation speed and the blowing time, Fig. 5 is a graph showing the relationship between the total dust amount and the blowing time, and Fig. 6 is a graph showing the relationship between the Cr yield and the amount of Cr pellet charged.
フロントページの続き (72)発明者 田岡 啓造 千葉県千葉市川崎町1番地 川崎製鉄株 式会社千葉製鉄所内 (72)発明者 馬田 一 千葉県千葉市川崎町1番地 川崎製鉄株 式会社千葉製鉄所内 (56)参考文献 特開 昭63−28812(JP,A)Continuing from the front page (72) Inventor Keizo Taoka 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Corporation Chiba Works (72) Inventor Ichiichi Mada 1 Kawasaki-cho, Chiba-shi Chiba Prefecture Kawasaki Steel Corporation Chiba Works (56) References JP-A-63-28812 (JP, A)
Claims (1)
を供給し該Cr酸化物を溶融還元精錬することによって含
Cr溶鉄を製造するに当り、 上記Cr酸化物の溶融還元に先立ち、転炉内に少なくとも
50kg/tのスラグを収容しておくことを特徴とするCr酸化
物の溶融還元精錬法。1. A Cr oxide is supplied into an upper-bottom blow converter containing an iron bath, and the Cr oxide is melted and refined to contain the Cr oxide.
In producing Cr molten iron, at least the converter must be
A smelting reduction refining method for Cr oxide, characterized by containing 50 kg / t of slag.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63040601A JP2624498B2 (en) | 1988-02-25 | 1988-02-25 | Smelting reduction refining method of Cr oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63040601A JP2624498B2 (en) | 1988-02-25 | 1988-02-25 | Smelting reduction refining method of Cr oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01215949A JPH01215949A (en) | 1989-08-29 |
JP2624498B2 true JP2624498B2 (en) | 1997-06-25 |
Family
ID=12585033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63040601A Expired - Fee Related JP2624498B2 (en) | 1988-02-25 | 1988-02-25 | Smelting reduction refining method of Cr oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2624498B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH079019B2 (en) * | 1986-07-21 | 1995-02-01 | 日本鋼管株式会社 | Melt reduction method |
-
1988
- 1988-02-25 JP JP63040601A patent/JP2624498B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01215949A (en) | 1989-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4736466B2 (en) | Method for producing high chromium molten steel | |
JP2004190101A (en) | Method for pre-treating molten iron | |
JP3607767B2 (en) | Molten steel desulfurization and dehydrogenation method with small refractory melting loss | |
JP2624498B2 (en) | Smelting reduction refining method of Cr oxide | |
JP3854482B2 (en) | Hot metal pretreatment method and refining method | |
JP2947063B2 (en) | Stainless steel manufacturing method | |
JP2912963B2 (en) | Slag reforming method as desulfurization pretreatment | |
JP2002020816A (en) | Method for producing low nitrogen-containing chromium steel | |
JPH01316409A (en) | Method for dephosphorizing molten iron accompanied with scrap melting | |
JP3158912B2 (en) | Stainless steel refining method | |
JP3486886B2 (en) | Steelmaking method using two or more converters | |
JP3771634B2 (en) | Effective utilization of chromium oxide-containing dust | |
JP3063537B2 (en) | Stainless steel manufacturing method | |
JP5506515B2 (en) | Dephosphorization method | |
JPH0435529B2 (en) | ||
JP3603969B2 (en) | Method for producing hot metal containing chromium and / or nickel | |
JP2587286B2 (en) | Steelmaking method | |
JPH0959708A (en) | Method for efficently decarburization-blowing stainless steel | |
JPS61153209A (en) | Low-s operation method in blast furnace | |
JP2882236B2 (en) | Stainless steel manufacturing method | |
JP4084527B2 (en) | Converter blowing method | |
JPS6154081B2 (en) | ||
JP3560637B2 (en) | Converter furnace blowing method for stainless steel | |
JPS5937324B2 (en) | Method for promoting dephosphorization in bottom-blown converter refining | |
JP3294466B2 (en) | Operation method of high blown Mn in converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |