JP2623775B2 - Sealed rectangular nickel-cadmium storage battery - Google Patents

Sealed rectangular nickel-cadmium storage battery

Info

Publication number
JP2623775B2
JP2623775B2 JP63247133A JP24713388A JP2623775B2 JP 2623775 B2 JP2623775 B2 JP 2623775B2 JP 63247133 A JP63247133 A JP 63247133A JP 24713388 A JP24713388 A JP 24713388A JP 2623775 B2 JP2623775 B2 JP 2623775B2
Authority
JP
Japan
Prior art keywords
battery
cathode plate
paste
type
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63247133A
Other languages
Japanese (ja)
Other versions
JPH0294372A (en
Inventor
孝夫 小倉
健一 渡辺
厚樹 船田
真 小西
満 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP63247133A priority Critical patent/JP2623775B2/en
Publication of JPH0294372A publication Critical patent/JPH0294372A/en
Application granted granted Critical
Publication of JP2623775B2 publication Critical patent/JP2623775B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/801Sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • H01M10/526Removing gases inside the secondary cell, e.g. by absorption by gas recombination on the electrode surface or by structuring the electrode surface to improve gas recombination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉式ニッケル・カドミウム蓄電池に関し、
角形電池における陰極板構成の改良により、電池の容量
密度を向上させることにある。
The present invention relates to a sealed nickel-cadmium storage battery,
An object of the present invention is to improve the capacity density of a battery by improving the configuration of a cathode plate in a prismatic battery.

従来の技術 従来、密閉式ニッケル.カドミウム蓄電池の形状はご
く一部の例外を除き円筒形が大部分であった。この電池
は陽極板であるニッケル極と陰極板であるカドミウム極
をセパレータを介して捲回し、捲回群を電池缶に挿入す
るという手法をとっている。ところが、この捲回群の中
央部には生産工程上さけられない空間が生じてしまうと
いう問題点があった。そこで最近、このようなむだな空
間を少なくできる角形のニッケルカドミウム蓄電池が開
発されている。
Conventional technology Conventionally, closed nickel. Most of the cadmium storage batteries were cylindrical, with a few exceptions. This battery employs a technique in which a nickel electrode serving as an anode plate and a cadmium electrode serving as a cathode plate are wound through a separator, and the wound group is inserted into a battery can. However, there is a problem that a space that cannot be avoided in the production process is generated in the center of the winding group. Therefore, recently, a rectangular nickel cadmium storage battery capable of reducing such wasted space has been developed.

また、角形のニッケル・カドミウム蓄電池はこれらの
電池を組み合わせた場合でも、電池間のすきまをなくす
ことができる等、容量密度が高く、用途の拡大が期待さ
れている。ところが、角形電池の金属ケースの強度は円
筒形に比べて弱く、この結果、5〜10kg/cm2という比較
的低い圧力でも変形が起こるという問題がある。
In addition, even when these batteries are combined, the rectangular nickel-cadmium storage batteries have a high capacity density, such as a clearance between the batteries can be eliminated, and are expected to be used in a wider range of applications. However, the strength of the metal case of the prismatic battery is weaker than that of the cylindrical shape, and as a result, there is a problem that deformation occurs even at a relatively low pressure of 5 to 10 kg / cm 2 .

このため、安全弁作動圧を約5kg/cm2として、充電時
に起こりやすい電池ケースの変形を防止しているのが現
状である。このように安全弁作動圧を約5kg/cm2に設定
すれば、酸素ガス吸収性能の悪い陰極板を用いた場合で
も電池ケースの変形は起こらないが、酸素ガスが密閉系
外に出てしまうため、陽極と陰極の容量バランスがくず
れ、急激に容量が劣化してしまう。このため、上記の酸
素ガス吸収性能を満足する陰極板として、焼結式が用い
られているというのが現状である。
For this reason, at present, the safety valve operating pressure is set to about 5 kg / cm 2 to prevent deformation of the battery case, which tends to occur during charging. If the safety valve operating pressure is set to about 5 kg / cm 2 in this way, the battery case will not be deformed even if a cathode plate with poor oxygen gas absorption performance is used, but the oxygen gas will go out of the closed system. Then, the capacity balance between the anode and the cathode is lost, and the capacity is rapidly deteriorated. For this reason, at present, a sintering type is used as a cathode plate satisfying the above oxygen gas absorption performance.

ところが、焼結式陰極板はNi粉末を焼結してNi多孔体
を作り、その細孔の中に電気化学的あるいは化学的に活
性質である金属カドミウムあるいは水酸化カドミウムを
保持させたものであり、細孔中に充填される割合は空孔
の50〜60%である。このように、焼結式陰極中には多量
のNi集電ネットワークと細孔があり、充電容量密度は90
0〜1000msh/cm3が限度であり、これに対し、主に円筒形
ニッケル・カドミウム蓄電池に用いられている陰極板で
あるペースト式、すなわち、酸化カドミウムあるいは水
酸化カドミウム粉末等を主成分とする粉末を有機バイン
ダで混練したペーストを集電体に塗着、乾燥させた陰極
板の充填容量密度1400〜1500msh/cm3に比べ著しく低
い。このようにペースト式を用いると、容量密度を向上
させることができるが、ペースト式は焼結式に比べて酸
素ガス吸収性能が劣り、急速充電ができない。
However, the sintered cathode plate is made by sintering Ni powder to form a porous Ni body, in which metal cadmium or cadmium hydroxide, which is electrochemically or chemically active, is held in the pores. Yes, the proportion filled in the pores is 50-60% of the pores. Thus, the sintered cathode has a large amount of Ni current collection network and pores, and the charge capacity density is 90%.
The limit is from 0 to 1000 msh / cm 3 , whereas the paste type, which is a cathode plate mainly used for cylindrical nickel-cadmium storage batteries, that is, mainly containing cadmium oxide or cadmium hydroxide powder The paste capacity in which the powder is kneaded with an organic binder is applied to the current collector, and the filling capacity density of the dried cathode plate is significantly lower than the filling capacity density of 1400 to 1500 msh / cm 3 . When the paste method is used, the capacity density can be improved, but the paste method is inferior in oxygen gas absorption performance as compared with the sintered method, and cannot be rapidly charged.

酸素ガス吸収反応は陽極から発生する酸素ガスを陰極
で消費する反応であり、酸素を(1)式の化学的反応や
(2)式の電気化学的反応により陰極で消費するもので
ある。
The oxygen gas absorption reaction is a reaction in which oxygen gas generated from the anode is consumed at the cathode, and oxygen is consumed at the cathode by a chemical reaction of formula (1) or an electrochemical reaction of formula (2).

cd+1/2O2+H2O→cd(OH) ……(1) 1/2O2+H2O+2e-→2OH-………(2) 焼結式陰極板ではこれらの反応が容易に進行するた
め、1cmA充電時における週充電状態でも電池内圧を約3k
g/cm2に抑えることができる。このため、前述したよう
に電池の安全弁作動圧を5kg/cm2としても何ら問題がな
いわけである。ところが、ペースト式陰極板を用いた円
筒形密閉式ニッケルカドミウム蓄電池では1cmA充電時に
おける過充電状態の電池内圧が約15kg/cm2である。円筒
形蓄電池の金属ケース強度は大きいので安全弁作動圧を
20kg/cm2としており、15kg/cm2であれば安全弁は作動し
ないが、焼結式に比べると非常に高い。
cd + 1 / 2O 2 + H 2 O → cd (OH) 2 ...... (1) 1 / 2O 2 + H 2 O + 2e - → 2OH - ......... (2) is a sintered cathode plate for these reaction proceeds readily , The internal pressure of the battery is about 3k even in the weekly charging state at 1cmA charging
g / cm 2 . Therefore, as described above, there is no problem even if the operating pressure of the safety valve of the battery is set to 5 kg / cm 2 . However, in a cylindrical sealed nickel cadmium storage battery using a paste-type cathode plate, the battery internal pressure in the overcharged state at the time of charging 1 cmA is about 15 kg / cm 2 . Since the strength of the metal case of the cylindrical storage battery is large, the operating pressure of the safety valve
And a 20 kg / cm 2, but the safety valve does not operate if the 15 kg / cm 2, a very high compared with the sintered type.

ペースト式陰極板の酸素ガス吸収性能が劣る理由とし
て次の2つが考えられる。すなわちペースト式では活物
質が、集電体近傍から充電されるため、酸素ガスが、充
電により生成した金属カドミウムまで拡散しにくいた
め、すなわち(1)式の反応が低下すること、および、
触媒作用のあるニッケルが表面にないため、すなわち
(2)式の反応が低下することである。円筒形電池に用
いられているペースト式陰極板の酸素ガス吸収を改良す
る方法は、特に(1)式による酸素ガス吸収性能を改良
する手段として、導電材を陰極板表面へ塗布することに
より表面での金属カドミウムの生成を容易にする方法、
また(2)式による酸素ガス吸収性能を改良する手段と
して、カーボンの塗布、(1)式および(2)式の反応
を助ける因子と考えられる撥水性の付与が考えられてい
る。これらの方式によれば確かに過充電時の内圧は従来
のペースト式陰極板を用いた電池の15kg/cm2に比べ、5
〜10kg/cm2まで低下させることができ、効果がある。円
筒形電池の場合には前述したように安全弁作動圧が高
く、このレベルの酸素ガス吸収性能で実用上全く問題な
い。ところが、角形電池では前述したように金属ケース
の耐圧が小さいので、安全弁作動圧を5kg/cm2にしなけ
ればならない。現状の作動圧であると、従来のペースト
式あるいは前述のような改良されたペースト式陰極板を
用いても、角形電池の陰極板として作用することは非常
に困難であるといわざるを得ない。この問題点を解決す
る手段としては金属ケースの耐圧性を上げると同時に安
全弁作動圧を上げることが考えられる。具体的には、金
属ケースの肉厚を厚くすること、金属ケースにリブを付
けること等であるが、これらの手段では入缶できる極板
容積が減少するため焼結式陰極板と大差ないというのが
現状であった。
The following two are considered as reasons why the oxygen gas absorption performance of the paste type cathode plate is inferior. That is, in the paste method, the active material is charged from the vicinity of the current collector, so that the oxygen gas is difficult to diffuse to the metal cadmium generated by charging, that is, the reaction of the formula (1) decreases, and
This is because there is no catalytic nickel on the surface, that is, the reaction of the formula (2) decreases. The method of improving the oxygen gas absorption of the paste-type cathode plate used in the cylindrical battery is, in particular, as a means of improving the oxygen gas absorption performance according to the formula (1), by applying a conductive material to the surface of the cathode plate. How to facilitate the production of metal cadmium in the
As means for improving the oxygen gas absorption performance according to the formula (2), application of carbon and provision of water repellency, which is considered to be a factor assisting the reactions of the formulas (1) and (2), are considered. According to these methods, the internal pressure at the time of overcharging is indeed 5 times less than that of a conventional paste-type cathode plate battery of 15 kg / cm 2.
Can be reduced to to 10 kg / cm 2, it is effective. In the case of a cylindrical battery, the operating pressure of the safety valve is high as described above, and there is no problem in practical use at this level of oxygen gas absorption performance. However, in the case of a prismatic battery, as described above, the pressure resistance of the metal case is small, so the safety valve operating pressure must be 5 kg / cm 2 . With the current operating pressure, it must be said that it is very difficult to act as a cathode plate of a prismatic battery even if a conventional paste-type or an improved paste-type cathode plate as described above is used. . To solve this problem, it is conceivable to increase the pressure resistance of the metal case and at the same time increase the operating pressure of the safety valve. Specifically, thickening the thickness of the metal case, attaching ribs to the metal case, etc., are not much different from the sintered type cathode plate because these methods reduce the volume of the electrode plate that can be contained. That was the current situation.

発明が解決しようとする課題 角形電池の高容量化にあたり、焼結式陰極板では活物
質の充填容量密度の面から、また、ペースト式陰極板で
は酸素ガス吸収性能の面から電池の高容量化が不可能で
あった。
Problems to be Solved by the Invention In order to increase the capacity of a prismatic battery, the capacity of the sintered cathode plate is increased from the aspect of the active material filling capacity density, and that of the paste type cathode plate is increased from the aspect of oxygen gas absorption performance. Was impossible.

課題を解決するための手段 上記問題点を本質的に解決するためには、ペースト式
陰極板の酸素ガス吸収性能を向上させなければならな
い。しかし、ペースト式陰極板を焼結式と同等な酸素ガ
ス吸収性能を持たせることは本質的な問題であり、ほと
んど不可能といってよい。そこで、陰極板に焼結式とペ
ースト式を用いるものである。
Means for Solving the Problems In order to essentially solve the above problems, it is necessary to improve the oxygen gas absorbing performance of the paste type cathode plate. However, providing a paste type cathode plate with oxygen gas absorption performance equivalent to that of a sintered type is an essential problem, and it can be said that it is almost impossible. Therefore, a sintered type and a paste type are used for the cathode plate.

作用 これによりペースト式陰極板の酸素ガス吸収能力が改
良され、角形電池の容量密度を向上させることができ
る。
The effect of this is that the oxygen gas absorption capacity of the paste type cathode plate is improved, and the capacity density of the prismatic battery can be improved.

実施例 実施例1 電池の極板構成が陽極板2枚、陰極板3枚から成る密
閉式角形ニッケル・カドミウム蓄電池を作成した。陽極
板は焼結式で通常の方法により作製したものである。厚
さは0.6mmで、容量は300mAhである。焼結式陰極板も通
常の方法により作製したものである。厚さは0.5mmと1.0
mmであり、放電の理論容量はそれぞれ420mAh、800mAhと
した極板である。また、ペースト式陰極の活性質は酸化
カドミウム粉末100重量部、カーボン粉末1重量部、金
属カドミウム粉末20重量部、ポリテトラフルオロエチレ
ン3重量部から成り、集電体としてはニッケルメッキを
施こした鉄のパンチングメタルを用いている。このペー
スト式陰極板の論理容量を焼結式と同じにすると厚さは
0.37mmと0.7mmとなった。なお、放電の利用率はペース
ト式、焼結式とも同等であった。セパレータは厚さ0.20
mm(但し、極板群構成後は加圧により厚さ0.15mm)のナ
イロン製不織布を使用した。陰極板に焼結式のみを用い
て極板群を構成した場合、(「電池A」と呼ぶ)その厚
さは3.8mmとなった。また陰極板にペースト式のみを用
いた場合、(「電池B」と呼ぶ)0の厚さは3.24mm、ペ
ースト式を中央部に、焼結式を外側に配置した場合、
(「電池C」と呼ぶ)その厚さは3.5mmとなった。これ
らの極板群を角形金属ケースの内側の幅4.0mmの金属ケ
ースに入れた。極板群は金属ケースに比べて厚さが薄い
ので、群挿入時にスペーサーとして、 0.05mm、0.1mm、および0.2mmのニッケル板を組み合わせ
て用いた。このようにして、金属ケースの中に極板群を
配置させ、これを通常の方法により、陽極、陰極端子と
電気的に接触させ、密閉化し、電池とした。第1図にこ
れらの電池の1cmA充電時のすなわち600mA充電時の電池
内圧曲線を示す。電池Bでは充電開始後70分目で安全弁
作動圧5kg・f/cm2に達した。これに対し、電池A、電池
Cでは90分目でも3〜3.5kg・f/cm2であった。このよう
に、陰極板に焼結式とペースト式を用いることにより酸
素ガス吸収性能が改良された。第2図は1cmAで放電した
時の放電電圧曲線である。電池Bはペースト式のみ、電
池Aは焼結式のみ、電池Cは中央部がペースト式、外側
が焼結式の場合を示す。電池Bは電池A、Bに比べて1c
mA放電持続時間が短かいが、これは陽極活性質が完全に
充電される前に安全弁が作動したため、充電を中止した
ためであると思われる。陽極板容量は同じであるので電
池Aと電池Bは容量、電圧特性ともほぼ同様であった。
この様に、陰極板として中央部にペースト式、外側に焼
結式を用いても充電および放電特性に何ら問題はない。
ところで、この電池は前述したように余分な空間にはニ
ッケル板のスペーサを入れている。実際の極板群厚さ寸
法は焼結式の場合3.80mm、焼結式とスペース式を用いた
場合3.50mm、ペースト式の場合3.24mmであり、ペースト
式を中央部に採用することにより、焼結式のみの場合に
比べ約9%極板群厚さを薄くでき、前述のように両者に
おいて充放電特性に差がない。金属ケースの手法に合わ
せて、陽極板、陰極板の厚さを最適化すればエネルギー
密度を9%向上させることが可能である。
EXAMPLES Example 1 A sealed rectangular nickel-cadmium storage battery having a battery having two electrode plates and three cathode plates was prepared. The anode plate is a sintered type produced by a usual method. The thickness is 0.6mm and the capacity is 300mAh. The sintered cathode plate was also prepared by a usual method. 0.5mm and 1.0 thickness
mm, and the theoretical capacity of discharge was 420 mAh and 800 mAh, respectively. The active material of the paste-type cathode was composed of 100 parts by weight of cadmium oxide powder, 1 part by weight of carbon powder, 20 parts by weight of metal cadmium powder, and 3 parts by weight of polytetrafluoroethylene. The current collector was nickel-plated. Uses iron punching metal. If the logic capacity of this paste type cathode plate is the same as that of the sintered type, the thickness will be
0.37mm and 0.7mm. The discharge utilization rate was the same for both the paste type and the sintered type. Separator 0.20 thick
A nylon nonwoven fabric having a thickness of 0.15 mm (when the electrode plate group was formed, but with a pressure of 0.15 mm) was used. When the electrode group was formed using only the sintering method for the cathode plate, the thickness was 3.8 mm (referred to as “battery A”). When only the paste type is used for the cathode plate, the thickness of 0 (referred to as “battery B”) is 3.24 mm, and when the paste type is disposed at the center and the sintered type is disposed outside,
The thickness was 3.5 mm (referred to as “battery C”). These electrode plates were placed in a 4.0 mm wide metal case inside a rectangular metal case. Since the electrode plate group was thinner than the metal case, a combination of 0.05 mm, 0.1 mm, and 0.2 mm nickel plates was used as a spacer when inserting the group. In this way, the electrode group was placed in the metal case, and this was brought into electrical contact with the anode and cathode terminals by a usual method, and sealed to obtain a battery. FIG. 1 shows a battery internal pressure curve at the time of charging 1 cmA of these batteries, that is, at the time of charging 600 mA. In battery B, the safety valve operating pressure reached 5 kg · f / cm 2 70 minutes after the start of charging. On the other hand, the values for the batteries A and C were 3 to 3.5 kg · f / cm 2 even after 90 minutes. As described above, the oxygen gas absorption performance was improved by using the sintering method and the paste method for the cathode plate. FIG. 2 is a discharge voltage curve when discharging at 1 cmA. Battery B shows a paste type only, battery A shows a sintered type only, and battery C shows a paste type at the center and a sintered type at the outside. Battery B is 1c better than batteries A and B
The mA discharge duration was short, presumably because charging was stopped because the safety valve was activated before the anode active was fully charged. Since the anode plate capacity was the same, Battery A and Battery B were almost the same in both capacity and voltage characteristics.
As described above, there is no problem in charge and discharge characteristics even when the paste type is used in the center and the sintered type is used in the outside as the cathode plate.
By the way, this battery has a nickel plate spacer in an extra space as described above. The actual thickness of the electrode plate group is 3.80 mm for the sintered type, 3.50 mm for the sintered type and the space type, and 3.24 mm for the paste type.By adopting the paste type at the center, The thickness of the electrode group can be reduced by about 9% as compared with the case of using only the sintering method, and there is no difference in charge / discharge characteristics between the two as described above. By optimizing the thickness of the anode plate and the cathode plate according to the method of the metal case, it is possible to increase the energy density by 9%.

実施例2 電池の極板構成が陽極板2枚、陰極板3枚から成る密
閉式角形ニッケル・カドミウム蓄電池を作成した。陽極
板は実施例1と同一品を用いた。焼結式陰極板は実施例
1で用いた厚さ1.0mmのものであり、ペースト式陰極板
は厚さ0.37mmのものである。陰極板の配置は実施例1の
電池Cとは異なり、焼結式を中央部に、ペースト式を両
側に配置した。(「電池D」と呼ぶ)この極板群の厚さ
は3.45mmであり、実施例1で用いた金属ケースに挿入
し、スペーサを入れた。これを通常の方法により密閉化
し、電池とした。この電池は、抵抗の大きいペーストが
金属ケース全面に接触しており、かつ中央部の陰極板は
焼結式であるので、内部抵抗は、焼結式のみの場合とほ
とんど変わらない。このため、放電時の電圧特性は焼結
式と変わらない。容量は実施例1の電池Cと比べ1cmA以
下の放電電流では変わらなかったが、3cmAの放電電流で
は電池Dの方が放電時間が第3図に示すように2分程長
かった。これは前述したような内部抵抗の効果であると
思われる。この電池Dは電池Cに比べて、極板群厚みが
厚いので、0.2cmA、1cmA放電電流では単位体積あたりの
放電容量は電池Cの方が大きいことになる。したがっ
て、電池Cと電池Dは使用目的により使い分けることで
より一層効果的になる。なお、充電時の電池内圧は電池
C、Dともに変わらなかった。
Example 2 A sealed rectangular nickel-cadmium storage battery having a battery with two electrode plates and three cathode plates was prepared. The same anode plate as in Example 1 was used. The sintered cathode plate has a thickness of 1.0 mm used in Example 1, and the paste cathode plate has a thickness of 0.37 mm. The arrangement of the cathode plate is different from that of the battery C of Example 1, and the sintering type was disposed at the center and the paste type was disposed on both sides. This electrode group was referred to as “battery D”. The thickness of the electrode group was 3.45 mm, and the electrode group was inserted into the metal case used in Example 1 and a spacer was inserted. This was sealed by an ordinary method to obtain a battery. In this battery, the paste having a large resistance is in contact with the entire surface of the metal case, and the cathode plate at the center is of a sintered type, so that the internal resistance is almost the same as that of the sintered type alone. For this reason, the voltage characteristics at the time of discharge are not different from the sintering type. The capacity did not change with the discharge current of 1 cmA or less as compared with the battery C of Example 1, but with the discharge current of 3 cmA, the discharge time of the battery D was longer by about 2 minutes as shown in FIG. This is considered to be the effect of the internal resistance as described above. Since the battery D has a larger electrode group thickness than the battery C, the battery C has a larger discharge capacity per unit volume at a discharge current of 0.2 cmA and 1 cmA. Therefore, the battery C and the battery D become more effective when used properly according to the purpose of use. The internal pressure of the batteries during charging was unchanged for both batteries C and D.

実施例3 電池の極板構成が陽極板5枚、陰極板6枚から成る密
閉式角形ニッケル・カドミウム蓄電池を作成した。陽極
板は実施例1と同一品を用いた。電池は陰極板を第4図
のようにペースト式と焼結式を交互に配置した場合
(「電池E」と呼ぶ)と、第5図のように3枚づつまと
めてペースト式と焼結式を配置した(「電池F」と呼
ぶ)2通りである。これらの電池を1cmA(3A)で90分充
電した場合の電池内圧曲線を第6図に示す。電池Eは充
電終了時で電池内圧が3.5kg・f/cm2であった。これに対
し、電池Fは80分後に5kg・f/cm2をこえ90分後には10kg
・f/cm2に達してしまった。充電後金属ケースの厚さを
測定すると0.1mm増加し、変形がみられた。このような
電池は実際に使用することは不可能である。0.2cmA放電
時の容量は、電池E、電池F、および陰極板に焼結式を
用いた場合(電池G)とも同じであった。極板群の厚み
はそれぞれ8.77mm、8.77mm、9.50mmであるので、単位体
積あたりの放電容量は、ペースト式と焼結式を用いた方
が約80%容量が向上した。
Example 3 A sealed rectangular nickel-cadmium storage battery having a battery having five anode plates and six cathode plates was prepared. The same anode plate as in Example 1 was used. As for the batteries, when the paste type and the sintering type are alternately arranged as shown in FIG. 4 (referred to as “battery E”), as shown in FIG. (Referred to as “battery F”). FIG. 6 shows battery internal pressure curves when these batteries were charged at 1 cmA (3 A) for 90 minutes. Battery E had a battery internal pressure of 3.5 kg · f / cm 2 at the end of charging. On the other hand, the battery F exceeds 5 kg · f / cm 2 after 80 minutes and 10 kg after 90 minutes.
・ It has reached f / cm 2 . When the thickness of the metal case was measured after charging, the thickness increased by 0.1 mm and deformation was observed. Such batteries cannot be used in practice. The capacity at the time of discharge of 0.2 cmA was the same as in the case of the battery E, the battery F and the case where the sintering method was used for the cathode plate (battery G). Since the thicknesses of the electrode groups were 8.77 mm, 8.77 mm, and 9.50 mm, respectively, the discharge capacity per unit volume was improved by about 80% when using the paste type and the sintered type.

実施例4 陽極板1枚、陰極板1枚からなる薄形のニッケル・カ
ドミウム蓄電池を作成した。金属ケースは実施例1のも
のを用い、すきまにはスペーサを挿入した。陰極板は第
7図に示すように表面積全体の60%を焼結式、40%をペ
ースト式とした。この焼結板の活性質充填密度は焼結式
のみに比べて20%アップした。この電池を「電池H」を
呼ぶことにする。この薄形電池の極板群の単位当たりの
容量は10%アップした。充電時の電池内圧は焼結式のみ
の場合と電池Hで全く同一であり、本発明品が全く問題
ないことがわかった。
Example 4 A thin nickel-cadmium storage battery comprising one anode plate and one cathode plate was prepared. The metal case used in Example 1 was used, and a spacer was inserted in the gap. As shown in FIG. 7, the cathode plate was made of a sintered type for 60% of the total surface area and a paste type for 40% of the total surface area. The active substance packing density of this sintered plate was increased by 20% as compared with the sintering method alone. This battery is referred to as “battery H”. The capacity per unit of the electrode group of this thin battery was increased by 10%. The internal pressure of the battery at the time of charging was completely the same as that of the battery H in the case of only the sintering type, and it was found that the present invention product had no problem.

発明の効果 このように、密閉式角形ニッケル.カドミウム蓄電池
の極板板に焼結式とペースト式を用いることにより、焼
結式のみの場合の酸素ガス吸収性能と全く同じにするこ
とができる。ペースト式と焼結式を用いれば酸素ガス吸
収性能のよい焼結式陰極板上で反応が主に進むが、単に
これだけでは実施例1〜実施例4に示すように酸素ガス
吸収能力が全く同一になるとは考えられない。これは焼
結式とペースト式が存在することにより、極板間の電解
液保持量が微妙に変化し、ペースト式陰極板上での酸素
ガス吸収性能も向上させているためと考えられる。この
ようにして、角形電池においても密閉化が可能となった
ものと推定される。陰極板には焼結式よりも活性質充填
密度の高いペースト式を同時に用いているので、極板構
成によって若干異なるが約10%の高容量化が可能とな
り、電池の薄形化がより一層可能となった。
As described above, the sealed square nickel. By using the sintering method and the paste method for the electrode plate of the cadmium storage battery, the oxygen gas absorption performance in the case of only the sintering method can be made exactly the same. When the paste method and the sintering method are used, the reaction mainly proceeds on the sintered type cathode plate having good oxygen gas absorption performance, but the oxygen gas absorption capacity is completely the same as shown in Examples 1 to 4 simply by this alone. It is not expected to be. This is probably because the presence of the sintering method and the paste method slightly changed the amount of electrolyte retained between the electrode plates, and also improved the oxygen gas absorption performance on the paste-type cathode plate. It is presumed that sealing can be achieved in the prismatic battery in this way. Since the paste type, which has a higher active substance packing density than the sintered type, is used at the same time for the cathode plate, it is possible to increase the capacity by about 10%, although it varies slightly depending on the electrode plate configuration, and to further reduce the battery thickness. It has become possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、1cmAで充電した場合の電池内圧曲線図、第2
図は1cmAでの放電電池電圧曲線図、第3図は3cmAでの放
電持続時間曲線図、第4図は陽極板5枚、陰極板6枚の
極板群構成の電池で、陰極板がペースト式と焼結式がそ
れぞれ交互にある場合の説明図、第5図は陽極板5枚、
陰極板6枚の極板群の電池で、陰極板がペースト式と焼
結式が3枚ずつある場合の説明図、第6図は1cmAで充電
した場合の電池内圧曲線図、第7図は、陰極板の面積の
60%が焼結式、40%がペースト式の場合の説明図であ
る。電池Cは陽極板2枚、陰極板3枚構成で、中央部の
陰極板がペースト式、両側の陰極板が焼結式からなる場
合の電池、電池Dは陽極板2枚、陰極板3枚からなる構
成で、中央部の陰極板が焼結式、両側の陰極板がペース
ト式からなる場合の電池、電池Eは第4図の極板構成を
有する場合の電池、電池Fは第5図の極板構成を有する
場合の電池
FIG. 1 is a diagram showing a battery internal pressure curve when charged at 1 cmA, and FIG.
The figure shows a discharge battery voltage curve at 1 cmA, FIG. 3 shows a discharge duration curve at 3 cmA, and FIG. 4 shows a battery having an electrode group consisting of five anode plates and six cathode plates, in which the cathode plate is a paste. FIG. 5 is an explanatory view in the case where the formula and the sintering formula are alternately provided.
FIG. 7 is an explanatory view of a battery of a group of six cathode plates, in which there are three paste plates and three sintering cathode plates, FIG. 6 is a battery internal pressure curve diagram when charged at 1 cmA, and FIG. , The area of the cathode plate
It is an explanatory view in the case where 60% is a sintering type and 40% is a paste type. Battery C is composed of two anode plates and three cathode plates, a battery in which the central cathode plate is of a paste type and both cathode plates are of a sintered type, and battery D is two anode plates and three cathode plates. A battery in which the cathode plate at the center is of a sintered type and a cathode plate on both sides is of a paste type, a battery E is a battery having the electrode plate configuration of FIG. 4, and a battery F is a battery of FIG. Battery having the electrode plate configuration of

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小関 満 東京都新宿区西新宿2丁目1番1号 新 神戸電機株式会社内 審査官 酒井 美知子 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Mitsuru Koseki Examiner, Shin Kobe Electric Co., Ltd. Michiko Sakai 2-1-1 Nishi Shinjuku, Shinjuku-ku, Tokyo

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】セパレータを介して陽極版と陰極板で構成
され、その陰極板が焼結式陰極板とペースト式陰極板か
ら成ることを特徴とする密閉式角形ニツケル・カドミウ
ム蓄電池。
1. A sealed rectangular nickel-cadmium storage battery comprising an anode plate and a cathode plate via a separator, wherein the cathode plate comprises a sintered cathode plate and a paste cathode plate.
【請求項2】極板積層時に陰極板が3枚以上であって、
両端をペースト式陰極板とし、内部を焼結式陰極板とす
ることを特徴とする第1項記載の密閉式角形ニッケル・
カドミウム蓄電池。
2. The method according to claim 2, wherein the number of the cathode plates is three or more at the time of stacking the electrode plates,
2. A sealed square nickel alloy according to claim 1, wherein both ends are made of a paste type cathode plate and the inside is made of a sintered type cathode plate.
Cadmium storage battery.
【請求項3】極版積層時に陰極板が3枚以上であって、
両端を焼結式陰極板とし、内部をペースト式陰極板とす
ることを特徴とする第1項記載の密閉式角形ニッケル・
カドミウム蓄電池。
3. The method according to claim 1, wherein the number of the cathode plates is three or more at the time of laminating the plates.
2. A sealed square nickel alloy according to claim 1, wherein both ends are sintered cathode plates and the inside is a paste cathode plate.
Cadmium storage battery.
【請求項4】極板積層時に焼結式陰極板とペースト式陰
極板が交互に配置されたことを特徴とする第1項記載の
密閉式角形ニッケル・カドミウム蓄電池。
4. The sealed rectangular nickel-cadmium storage battery according to claim 1, wherein sintered cathode plates and paste cathode plates are alternately arranged when the electrode plates are laminated.
【請求項5】ペースト式陰極板のバインダがポリテトラ
フルオロエチレンであることを特徴とする第1〜4項か
ら選ばれる1つの項に記載の密閉式角形ニッケル・カド
ミウム蓄電池。
5. The sealed rectangular nickel-cadmium storage battery according to claim 1, wherein the binder of the paste-type cathode plate is polytetrafluoroethylene.
【請求項6】ペースト式陰極板にカーボンを塗着するこ
とを特徴とする第1〜5項から選ばれる1つの項に記載
の密閉式角形ニッケル・カドミウム蓄電池。
6. A sealed rectangular nickel-cadmium storage battery according to claim 1, wherein carbon is applied to the paste-type cathode plate.
【請求項7】1枚の陰極板において、ペースト式陰極板
の部分と焼結式陰極板の部分を有することを特徴とする
陰極板を用いた第1項記載の密閉式角形ニッケル・カド
ミウム蓄電池。
7. A sealed rectangular nickel-cadmium storage battery according to claim 1, wherein the cathode plate has a paste-type cathode plate portion and a sintered-type cathode plate portion. .
【請求項8】ペースト式陰極板の部分のバインダがポリ
テトラフルオロエチレンであることを特徴とする第7項
記載の密閉式角形ニッケル・カドミウム蓄電池。
8. The sealed rectangular nickel-cadmium storage battery according to claim 7, wherein the binder of the paste type cathode plate is made of polytetrafluoroethylene.
【請求項9】ペースト式陰極板の部分にカーボンを塗着
することを特徴とする第7項又は第8項記載の密閉式角
形ニッケル・カドミウム蓄電池。
9. The sealed rectangular nickel-cadmium storage battery according to claim 7, wherein carbon is applied to a portion of the paste type cathode plate.
JP63247133A 1988-09-30 1988-09-30 Sealed rectangular nickel-cadmium storage battery Expired - Lifetime JP2623775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63247133A JP2623775B2 (en) 1988-09-30 1988-09-30 Sealed rectangular nickel-cadmium storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63247133A JP2623775B2 (en) 1988-09-30 1988-09-30 Sealed rectangular nickel-cadmium storage battery

Publications (2)

Publication Number Publication Date
JPH0294372A JPH0294372A (en) 1990-04-05
JP2623775B2 true JP2623775B2 (en) 1997-06-25

Family

ID=17158925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63247133A Expired - Lifetime JP2623775B2 (en) 1988-09-30 1988-09-30 Sealed rectangular nickel-cadmium storage battery

Country Status (1)

Country Link
JP (1) JP2623775B2 (en)

Also Published As

Publication number Publication date
JPH0294372A (en) 1990-04-05

Similar Documents

Publication Publication Date Title
JP3056054B2 (en) Zinc secondary battery and zinc electrode
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
JP2512019B2 (en) Electrochemical battery
JP2005011699A (en) Lithium secondary battery
JPH0677451B2 (en) Manufacturing method of hydrogen storage electrode
JP2623775B2 (en) Sealed rectangular nickel-cadmium storage battery
JPS62291871A (en) Enclosed type nickel-cadmium storage battery
JP5213312B2 (en) Alkaline storage battery
JPS63155552A (en) Enclosed type nickel-cadmium storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3418721B2 (en) Sealed nickel / metal hydride storage battery
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JPH0714578A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP2979624B2 (en) Sealed alkaline secondary battery
JP2808679B2 (en) Formation method of sealed alkaline storage battery using hydrogen storage alloy negative electrode
JP3071026B2 (en) Metal hydride storage battery
JPS63131472A (en) Metal-hydrogen alkaline storage battery
JP2988974B2 (en) Prismatic nickel-metal hydride storage battery
JP2689598B2 (en) Cylindrical sealed nickel-cadmium storage battery and its manufacturing method
JP3568316B2 (en) Prismatic alkaline storage battery
JP2856855B2 (en) Method for manufacturing prismatic nickel-metal hydride storage battery
JP3004241B2 (en) Hydrogen battery
JP2002075434A (en) Secondary cell
JP2020061223A (en) Method of manufacturing nickel metal hydride storage battery