JP2623085B2 - Excimer laser - Google Patents

Excimer laser

Info

Publication number
JP2623085B2
JP2623085B2 JP61039455A JP3945586A JP2623085B2 JP 2623085 B2 JP2623085 B2 JP 2623085B2 JP 61039455 A JP61039455 A JP 61039455A JP 3945586 A JP3945586 A JP 3945586A JP 2623085 B2 JP2623085 B2 JP 2623085B2
Authority
JP
Japan
Prior art keywords
laser
excimer laser
mirror
output
reflectivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61039455A
Other languages
Japanese (ja)
Other versions
JPS62198182A (en
Inventor
康博 野末
康一 梶山
馨 斉藤
理 若林
雅彦 小若
康夫 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12553514&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2623085(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP61039455A priority Critical patent/JP2623085B2/en
Priority to EP87100681A priority patent/EP0230302A3/en
Priority to US07/005,226 priority patent/US4856018A/en
Priority to CA000527873A priority patent/CA1294352C/en
Publication of JPS62198182A publication Critical patent/JPS62198182A/en
Application granted granted Critical
Publication of JP2623085B2 publication Critical patent/JP2623085B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/08022Longitudinal modes
    • H01S3/08031Single-mode emission
    • H01S3/08036Single-mode emission using intracavity dispersive, polarising or birefringent elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • H01S3/2256KrF, i.e. krypton fluoride is comprised for lasing around 248 nm

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はエキシマレーザに係り、特に高分解能投影露
光用の光源として用いるエキシマレーザに関する。
Description: TECHNICAL FIELD The present invention relates to an excimer laser, and more particularly to an excimer laser used as a light source for high-resolution projection exposure.

〔従来の技術〕[Conventional technology]

従来のエキシマレーザについて、ラムダ・フィジック
ス社の商品を例にとって説明する。第8図に示すように
このインジェクションロック方式のレーザは、全反射ミ
ラー11と出射ミラー12からなる共振器、この共振器内に
配設された分散プリズム13、アパーチャ14,15および電
極16から構成されるオッシレーダ部10と、ミラー17,18
を介して光学的に接続され、ミラー21,22および電極23
から構成されるアンプ部20とを有している。
A conventional excimer laser will be described using a product of Lambda Physics as an example. As shown in FIG. 8, this injection-lock type laser is composed of a resonator composed of a total reflection mirror 11 and an emission mirror 12, a dispersion prism 13, apertures 14, 15 and electrodes 16 provided in the resonator. Oscillator unit 10 and mirrors 17, 18
Optically connected through mirrors 21 and 22 and electrodes 23
And an amplifier section 20 composed of

このレーザにおいてオッシレーダ部10は、分散プリズ
ム13で波長を分け、アパーチャ14,15でビームを絞る作
用をなし、これによって、スペクトル線幅が狭く、かつ
コヒーレントなビーム特性をもつレーザシグナルが得ら
れる。そしてこのシグナルは不安定共振器を構成するア
ンプ部20に注入同期されて、キャビティモードで強制発
振される。
In this laser, the oscillating unit 10 divides the wavelength by the dispersion prism 13 and narrows the beam by the apertures 14 and 15, thereby obtaining a laser signal having a narrow spectral line width and coherent beam characteristics. This signal is injection-locked to the amplifier section 20 constituting the unstable resonator, and is forcibly oscillated in the cavity mode.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記のような構成をもつエキシマレーザは、スペクト
ル線幅の狭いレーザ光を得ることができるが、同時に単
一モード(コヒーレント性が高くなる)になるため、こ
れを縮小投影光源として使用した場合、スペックル
(縞)が発生して高い解像度を得ることができないとい
う問題点があった。
An excimer laser having the above configuration can obtain laser light with a narrow spectral line width, but at the same time becomes single mode (high coherence). Therefore, when this is used as a reduced projection light source, There is a problem that high resolution cannot be obtained due to generation of speckles (stripes).

また、アパーチャ14,15を使用することから、レーザ
出力が著しく低下するという欠点も有していた。
In addition, the use of the apertures 14 and 15 has a disadvantage that the laser output is significantly reduced.

本発明は上記実情に鑑みてなされたもので、縮小投影
に適したレーザ光を効率よく発振することができるエキ
シマレーザを提供することを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide an excimer laser capable of efficiently oscillating laser light suitable for reduction projection.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明によれば、キャビティ内に波長選択素子を備え
たエキシマレーザにおいて、その出射ミラーの反射率を
1%以上49%以下の範囲としたことを特徴としている。
また、エキシマレーザのレーザ出力パワーを効率よく取
り出す場合のみに限れば、出射ミラーの反射率を2%以
上43%以下の範囲とする。
According to the present invention, in an excimer laser having a wavelength selection element in a cavity, the reflectance of an exit mirror is set to a range of 1% or more and 49% or less.
In addition, only in the case where the laser output power of the excimer laser is efficiently extracted, the reflectivity of the output mirror is set to a range of 2% to 43%.

〔実施例〕〔Example〕

以下、本発明を添付図面を参照して詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図は、全反射ミラー1と出射ミラー2とからなる
共振器を備えたエキシマレーザのキャビティ内にエアギ
ャップエタロン3を1個配置した例を示す。このエキシ
マレーザは、波長選択素子の1つである上記エアギャッ
プエタロン3をキャビティ内に配置したため、横モード
の数を減少させずに、エタロン3の透過特性によりスペ
クトル線幅の狭い縮小投影露光に好適なレーザ光を発振
する。
FIG. 1 shows an example in which one air gap etalon 3 is arranged in a cavity of an excimer laser provided with a resonator composed of a total reflection mirror 1 and an emission mirror 2. In this excimer laser, the air gap etalon 3, which is one of the wavelength selection elements, is arranged in the cavity. It emits a suitable laser beam.

なお、5,5′はウインドであり、これらのウインドに
よって密閉されたチャンバ4内には、例えばアルゴンと
フッ素の混合ガス、クリプトンとフッ素の混合ガスなど
が充填されており、エキシマと呼ばれる励起状態の原子
と基底状態の原子が結合してできる分子を用いたこのエ
キシマレーザは、波長が短く(ArFで193nm、KrFで248nm
の紫外)、また本質的に非コヒーレント性を有する。ま
た、レーザ光の強度に関しては、エタロン3の入射断面
積をレーザ光の断面積に対して十分大きく取れば、損失
は反射及び拡散によるものだけであるから、強度の減少
は少ない。
Reference numerals 5, 5 'denote windows. The chamber 4 sealed by these windows is filled with, for example, a mixed gas of argon and fluorine, a mixed gas of krypton and fluorine, etc., and has an excited state called excimer. This excimer laser, which uses molecules formed by combining atoms in the ground state with atoms in the ground state, has a short wavelength (193 nm for ArF and 248 nm for KrF).
Ultraviolet), and has essentially non-coherence. Further, regarding the intensity of the laser light, if the incident cross-sectional area of the etalon 3 is set to be sufficiently large with respect to the cross-sectional area of the laser light, the loss is only due to reflection and diffusion, so that the intensity decreases little.

さて、出射ミラーの反射率を高くすると、キャビティ
内の光のターン数が多くなり、光強度の高い波長でパワ
ーが集中するため、エタロンの設計値よりも線幅が狭く
なる。ところが、出射ミラーの反射率を高くすると、レ
ーザパワーが減少する。逆に、出射ミラーの反射率を低
くしすぎると、レーザのモードが悪くなり、レーザの出
力パワーが小さくなる。
When the reflectivity of the output mirror is increased, the number of turns of light in the cavity increases, and power is concentrated at a wavelength where the light intensity is high, so that the line width becomes narrower than the designed value of the etalon. However, when the reflectivity of the exit mirror is increased, the laser power decreases. Conversely, if the reflectivity of the exit mirror is too low, the mode of the laser becomes worse, and the output power of the laser decreases.

そこで、まず、エキシマレーザのレーザ出力パワーを
効率よく取り出すための出射ミラーの反射率の最適化に
ついて考察する。
Therefore, first, optimization of the reflectance of the output mirror for efficiently extracting the laser output power of the excimer laser will be considered.

第1図に示すエキシマレーザのエアギャプエタロン3
としてフリースペクトルレンジ42cm-1、フィネス7、有
効径30φのものを使用し、出射ミラーの反射率とKrFの
エキシマレーザの出力パワーとの関係を調べるべく実験
を行なった。
Air gap etalon 3 of excimer laser shown in FIG.
A free spectral range of 42 cm −1 , a finesse of 7 and an effective diameter of 30φ was used, and an experiment was conducted to examine the relationship between the reflectance of the exit mirror and the output power of a KrF excimer laser.

この実験の結果、第2図に示すような出射ミラーの反
射率とエキシマレーザの出力パワーとの関係を示すグラ
フを得ることができた。すなわち、出射ミラーの反射率
が約8%のときに最大出力(180mJ)を取り出すことが
できる。ここで、最大出力の半値(90mJ)をエキシマレ
ーザの効率の良否を判断するための閾値T1とすると、第
2図のグラフからも明らかなように出射ミラーの反射率
が2%以上43%以下のとき出力を効率よく取り出すこと
ができる。
As a result of this experiment, a graph showing the relationship between the reflectivity of the exit mirror and the output power of the excimer laser as shown in FIG. 2 could be obtained. That is, the maximum output (180 mJ) can be obtained when the reflectivity of the exit mirror is about 8%. Here, the maximum output of half the (90 mJ) and thresholds T 1 for determining the quality of the efficiency of the excimer laser, the reflectivity of the exit mirror as apparent from the graph of FIG. 2 is 2% or more 43% Output can be efficiently taken out in the following cases.

一方、前述したように出射ミラーの反射率を高くする
と線幅が狭くなる。この関係を調べるための実験から第
3図に示すような出射ミラーの反射率と線幅との関係を
示すグラフを得ることができた。
On the other hand, as described above, when the reflectance of the output mirror is increased, the line width is reduced. From an experiment for examining this relationship, a graph showing the relationship between the reflectance of the exit mirror and the line width as shown in FIG. 3 could be obtained.

したがって、適当な線幅を確保することができ、かつ
効率のよいレーザ出力を得るための出ミラーの反射率の
適当な範囲が存在する。
Therefore, there is an appropriate range of the reflectivity of the output mirror for ensuring an appropriate line width and obtaining an efficient laser output.

第4図のグラフは、第2図におけるレーザ出力を第3
図における線幅によって除算することによって得たもの
で、出射ミラー反射率と単位線幅当りのレーザ出力との
関係を示す。
The graph of FIG. 4 shows that the laser output in FIG.
The relationship between the output mirror reflectivity and the laser output per unit line width is obtained by dividing by the line width in the figure.

第4図のグラフより、出射ミラーの反射率が約20%の
ときに最大の単位線幅当りのレーザ出力(8.6mJ/cm-1
を取り出すことができる。ここで、上記最大の単位線幅
当りのレーザ出力の半値幅(4.3mJ/cm-1)を単位線幅当
りのレーザ出力の効率の良否を判断するための閾値T2
すると、第4図のグラフからも明らかなように出射ミラ
ーの反射率が1%以上49%以下のとき単位線幅当りのレ
ーザ出力を効率よく取り出すことができる。
From the graph in Fig. 4, the maximum laser output per unit line width (8.6 mJ / cm -1 ) when the reflectivity of the output mirror is about 20%
Can be taken out. Here, assuming that the maximum half width (4.3 mJ / cm −1 ) of the laser output per unit line width is a threshold T 2 for judging the efficiency of the laser output per unit line width, FIG. As is clear from the graph, when the reflectance of the output mirror is 1% or more and 49% or less, the laser output per unit line width can be efficiently extracted.

なお、以上の実験によって得たレーザ光は、幅の狭い
スリットを通過してもスペックルが発生せず、十分な数
の横モードが存在することが判明した。
Note that it was found that the laser light obtained by the above experiment did not cause speckle even when passing through a narrow slit, and that a sufficient number of transverse modes existed.

また、第5図乃至第7図はそれぞれエアギャップエタ
ロンの他の配置例を示すもので、第5図は全反射ミラー
1とウインド5′との間に2個のエアギャップエタロン
3を配置した場合を示し、第6図は全反射ミラー1とウ
インド5′との間に1個のエアギャップエタロン3を配
置するとともに、キャビティ外に1個のエアギャップエ
タロン3を配置した場合を示し、第7図は全反射ミラー
1とウインド5′との間に2個のエアギャップエタロン
3を配置するとともに、キャビティ外に2個のエアギャ
ップエタロン3を配置した場合を示す。
5 to 7 show other arrangement examples of the air gap etalon. FIG. 5 shows two air gap etalons 3 arranged between the total reflection mirror 1 and the window 5 '. FIG. 6 shows a case in which one air gap etalon 3 is arranged between the total reflection mirror 1 and the window 5 ', and one air gap etalon 3 is arranged outside the cavity. FIG. 7 shows a case where two air gap etalons 3 are arranged between the total reflection mirror 1 and the window 5 ', and two air gap etalons 3 are arranged outside the cavity.

これらの場合についてそれぞれ実験を行なったとこ
ろ、第1図の場合と同様な結果が得られた。なお、実施
例では、波長選択素子としてエタロンを用いた例を示し
たが、波長選択素子の種類は任意であり、例えばグレー
ティング、エタロンおよびグレーティングの組み合わせ
を使用するようにしてもよい。
Experiments were performed for each of these cases, and the same results as in the case of FIG. 1 were obtained. In the embodiment, an example in which an etalon is used as the wavelength selection element has been described. However, the type of the wavelength selection element is arbitrary, and for example, a combination of a grating, an etalon, and a grating may be used.

また、実施例では、フロントミラーの反射率を変化さ
せて出力結合のフィードバック比を変化させるようにし
たが、他の方法を用いてもよい。たとえば不安定共振器
等により出力結合のフィードバック比を調整するように
してもよい。
In the embodiment, the feedback ratio of the output coupling is changed by changing the reflectance of the front mirror, but another method may be used. For example, the feedback ratio of output coupling may be adjusted by an unstable resonator or the like.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、エキシマレーザ
の出射ミラーの反射率を2%以上43%以下にすることに
より、レーザ出力を効率よく取り出すことができる。
As described above, according to the present invention, the laser output can be efficiently extracted by setting the reflectivity of the exit mirror of the excimer laser to 2% or more and 43% or less.

また、キャビティ内にエタロンを備えたエキシマレー
ザの出射ミラーの反射率を1%以上49%以下にすること
により、レーザ出力を大幅に減少させることなく線幅が
狭く、かつ横モードの多いレーザ光を得ることができ
る。
In addition, by setting the reflectivity of an exit mirror of an excimer laser having an etalon in a cavity to be 1% or more and 49% or less, a laser beam having a narrow line width and a large number of transverse modes without greatly reducing laser output. Can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図および第5図乃至第7図はそれぞれエアギャップ
エタロンを備えたエキシマレーザを示す概略構成図、第
2図は出射ミラーの反射率とレーザ出力との関係を示す
グラフ、第3図は出射ミラーの反射率と線幅との関係を
示すグラフ、第4図は出射ミラーの反射率と単位線幅当
りのレーザ出力との関係を示すグラフ、第8図は従来の
エキシマレーザの構成例を示した概念図である。 1……全反射ミラー、2……出射ミラー、3……エアギ
ャップエタロン、4……チャンバ、5,5′……ウイン
ド。
1 and 5 to 7 are schematic diagrams showing an excimer laser provided with an air gap etalon, FIG. 2 is a graph showing the relationship between the reflectivity of the exit mirror and laser output, and FIG. FIG. 4 is a graph showing the relationship between the reflectance of the emission mirror and the line width, FIG. 4 is a graph showing the relationship between the reflectance of the emission mirror and the laser output per unit line width, and FIG. 8 is a configuration example of a conventional excimer laser. FIG. 1 ... total reflection mirror, 2 ... emission mirror, 3 ... air gap etalon, 4 ... chamber, 5,5 '... window.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 板倉 康夫 平塚市万田18 (56)参考文献 特開 昭56−89703(JP,A) 特公 昭49−8474(JP,B1) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yasuo Itakura 18 Manda, Hiratsuka-shi (56) References JP-A-56-89703 (JP, A) JP 49-8474 (JP, B1)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】キャビティ内に波長選択素子を備えたエキ
シマレーザにおいて、その出射側光学系により前記キャ
ビティ内に戻す光量の比率を1%以上49%以下の範囲と
したことを特徴とするエキシマレーザ。
1. An excimer laser having a wavelength selection element in a cavity, wherein the ratio of the amount of light returned to the cavity by the emission side optical system is in the range of 1% or more and 49% or less. .
【請求項2】前記出射側光学系の反射率を1%以上49%
以下の範囲としたことを特徴とする特許請求の範囲第
(1)項記載のエキシマレーザ。
2. The reflectivity of the output side optical system is 1% or more and 49% or more.
The excimer laser according to claim 1, wherein the excimer laser has the following range.
【請求項3】前記波長選択素子は、エタロンまたはグレ
ーティングまたはエタロンとグレーティングとの組合せ
である特許請求の範囲第(1)項または第(2)項記載
のエキシマレーザ。
3. The excimer laser according to claim 1, wherein said wavelength selection element is an etalon, a grating, or a combination of an etalon and a grating.
JP61039455A 1986-01-22 1986-02-25 Excimer laser Expired - Lifetime JP2623085B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61039455A JP2623085B2 (en) 1986-02-25 1986-02-25 Excimer laser
EP87100681A EP0230302A3 (en) 1986-01-22 1987-01-20 Light source for reduced projection
US07/005,226 US4856018A (en) 1986-01-22 1987-01-20 Light source for reduced projection
CA000527873A CA1294352C (en) 1986-01-22 1987-05-25 Light source for reduced projection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61039455A JP2623085B2 (en) 1986-02-25 1986-02-25 Excimer laser

Publications (2)

Publication Number Publication Date
JPS62198182A JPS62198182A (en) 1987-09-01
JP2623085B2 true JP2623085B2 (en) 1997-06-25

Family

ID=12553514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61039455A Expired - Lifetime JP2623085B2 (en) 1986-01-22 1986-02-25 Excimer laser

Country Status (1)

Country Link
JP (1) JP2623085B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4308507A (en) * 1979-12-11 1981-12-29 The United States Of America As Represented By The United States Department Of Energy Electron beam switched discharge for rapidly pulsed lasers
JPS5689703A (en) * 1979-12-24 1981-07-21 Agency Of Ind Science & Technol Manufacture of reflecting mirror for high output laser

Also Published As

Publication number Publication date
JPS62198182A (en) 1987-09-01

Similar Documents

Publication Publication Date Title
US5917849A (en) Line narrowing device with double duty grating
US4856018A (en) Light source for reduced projection
US5852627A (en) Laser with line narrowing output coupler
US3978429A (en) Mode-locked laser
US4791644A (en) Laser system incorporating broad band optical phase conjugation cell using stimulated brillouin scattering
JP2623085B2 (en) Excimer laser
US6771683B2 (en) Intra-cavity beam homogenizer resonator
JPH05211362A (en) Cavity mirror for suppression of high-gain laser wavelength
US6173000B1 (en) Oscillator and amplifier for dual discharge tube excimer laser
JP2002084026A (en) F2 laser
US20020018506A1 (en) Line selection of molecular fluorine laser emission
US5559815A (en) Pulsed laser
JP3176682B2 (en) Tunable laser device
US20020001330A1 (en) Excimer or molecular fluorine laser having lengthened electrodes
JPH0834327B2 (en) Multi-mode narrow band oscillation excimer laser
US5960015A (en) Two mode amplitude-stable intracavity-doubled laser and method
JP2016500482A (en) Excimer laser composite cavity
JP2662963B2 (en) Narrow band laser device
JPH0212980A (en) Narrow band laser oscillator
JP3104251B2 (en) Narrow band excimer laser device
JPH03173486A (en) Narrow bandwidth laser
JP2776412B2 (en) Narrow band ArF excimer laser device
JP2003503860A (en) Molecular fluorine laser having a spectral line width of less than 1 pm
JP3260915B2 (en) Short pulse laser light source
JPH01302888A (en) Laser output apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term