JP2622684B2 - Manufacturing method of compound screw rotor for compressor - Google Patents

Manufacturing method of compound screw rotor for compressor

Info

Publication number
JP2622684B2
JP2622684B2 JP62106023A JP10602387A JP2622684B2 JP 2622684 B2 JP2622684 B2 JP 2622684B2 JP 62106023 A JP62106023 A JP 62106023A JP 10602387 A JP10602387 A JP 10602387A JP 2622684 B2 JP2622684 B2 JP 2622684B2
Authority
JP
Japan
Prior art keywords
water
shaft portion
cooled
rotor
screw rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62106023A
Other languages
Japanese (ja)
Other versions
JPS63272986A (en
Inventor
保夫 近藤
庄吾 森本
高昭 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62106023A priority Critical patent/JP2622684B2/en
Publication of JPS63272986A publication Critical patent/JPS63272986A/en
Application granted granted Critical
Publication of JP2622684B2 publication Critical patent/JP2622684B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/082Details specially related to intermeshing engagement type machines or engines
    • F01C1/084Toothed wheels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧縮機用複合スクリューロータの製造法に
係り、特に油を含まない圧縮気体を供給してなるオイル
フリースクリュー圧縮機用スクリューロータに関する。
Description: FIELD OF THE INVENTION The present invention relates to a method for manufacturing a composite screw rotor for a compressor, and more particularly to a screw rotor for an oil-free screw compressor which supplies a compressed gas containing no oil. About.

〔従来の技術〕[Conventional technology]

従来のオイルフリースクリュー圧縮機用スクリューロ
ータでは、第2図(A)の平面図、(B)の縦断面図に
示すように、オス1とメス2の一対のネジ形状のロータ
が用いられ、これらを高速回転させることにより空気等
の気体を圧縮排気するようになっている。このロータは
横断面図を示す第3図で表されるように歯形部3と軸部
4と接合境界5よりなる。
In a conventional screw rotor for an oil-free screw compressor, a pair of screw-shaped rotors of a male 1 and a female 2 are used as shown in a plan view of FIG. By rotating these at high speed, gas such as air is compressed and exhausted. The rotor comprises a tooth 3, a shaft 4 and a joint boundary 5, as shown in FIG.

この圧縮機では、空気等のガスに油分を含まず圧縮排
気させるため、圧縮室内に潤滑又は冷却のための油の供
給が行なわれない。このためオス・メス一対のロータは
一定のギャップを保ってかみ合い、非接触状態で回転
し、空気等のガスを圧縮する構造になっている。スクリ
ューロータは空気等のガスが圧縮された時に発生する熱
により加熱され、定常運転時には100℃〜250℃程度まで
加熱される。その結果、スクリューロータは熱膨張して
ロータ間ギャップが減少し、最終的にオス・メスのロー
タが接触し、焼付きロック事故を招く。そこで、定常運
転の圧縮時におけるロータ間ギャップを適正に保つため
には、室温で組立てる際にロータ間のギャップを熱膨張
分だけ広く設定する必要がある。しかし、実際の定常運
転時のロータ内部温度分布は一様でなく、また正確には
把握されていない。
In this compressor, gas such as air is compressed and exhausted without containing oil, so that oil for lubrication or cooling is not supplied into the compression chamber. For this reason, a pair of male and female rotors engage with a certain gap, rotate in a non-contact state, and compress gas such as air. The screw rotor is heated by heat generated when a gas such as air is compressed, and is heated to about 100 ° C. to 250 ° C. during a steady operation. As a result, the screw rotor thermally expands to reduce the gap between the rotors, and finally the male and female rotors come into contact with each other, resulting in a seizure lock accident. Therefore, in order to properly maintain the gap between the rotors during the compression in the steady operation, it is necessary to set the gap between the rotors wider by the amount of the thermal expansion when assembling at room temperature. However, the temperature distribution inside the rotor during the actual steady operation is not uniform and is not accurately grasped.

従来のスクリューロータ材料は炭素鋼やクロムモリブ
デン鋼等が使用されているが、これらの材料の熱膨張率
は20℃〜250℃で約12×10-6/℃と高いため室温の組立て
時にロータ間のギャップを大きく取る必要があり、かつ
温度分布が明確でないためにさらに多くのロータ間ギャ
ップを考慮している。しかし、勢いこのように大きなギ
ャップを設定すると運転時の圧縮効率が大きく低下する
欠点があった。他方、ギャップを小さくすると、焼付ロ
ック事故のおそれがある。
Conventional screw rotor materials such as carbon steel and chromium molybdenum steel are used.However, since these materials have a high coefficient of thermal expansion of about 12 × 10 −6 / ° C. at 20 ° C. to 250 ° C., the rotor is required for assembly at room temperature. The gap between the rotors must be large, and more rotor gaps are considered because the temperature distribution is not clear. However, setting such a large gap has the disadvantage that the compression efficiency during operation is greatly reduced. On the other hand, if the gap is reduced, there is a risk of a seizure lock accident.

以上のような問題に対して、ロータ歯形部が低熱膨張
高Niダクタイル鋳鉄、軸部が鋼よりなる複合スクリュー
ロータとして圧縮効率を向上させた従来例が存在する
(特開昭61−169689号公報)。
In order to solve the above problems, there is a conventional example in which the compression efficiency is improved as a composite screw rotor in which the rotor tooth profile has low thermal expansion and high Ni ductile cast iron and the shaft portion is steel (Japanese Patent Laid-Open No. 61-169689). ).

この従来例では、歯形部材質として例えばFe−39%Ni
−2.4%C−2%Si−1%Mnダクタイル鋳鉄を用い、そ
の円筒鋳塊の内部空所に軸部を形成するS45C鋼よりなる
消耗電極を挿入し、エレクトロスラグ再溶解によって充
填して複合スクリューロータを製造している。
In this conventional example, for example, Fe-39% Ni
Using a 2.4% C-2% Si-1% Mn ductile cast iron, insert a consumable electrode made of S45C steel forming a shaft into the hollow space of the cylindrical ingot and fill by electroslag remelting to form a composite. Manufactures screw rotors.

エレクトロスラグ再溶解法によって複合スクリューロ
ータを製造する装置を第4図に示し、さらに詳説する。
An apparatus for manufacturing a composite screw rotor by the electroslag remelting method is shown in FIG. 4 and will be described in further detail.

水冷定盤6上に軸部用水冷鋳型7及び歯形部を形成す
るシェル8を配置し、空間に消耗電極9を挿入する。定
盤6は回転できるようになっており、周囲には集電ブラ
シ10が複数込取付けられている。集電ブラシ10にはケー
ブル11の一端が接続され、ケーブル11の他端は電源12へ
接続される。
A water-cooling mold 7 for a shaft portion and a shell 8 forming a tooth portion are arranged on a water-cooling platen 6, and a consumable electrode 9 is inserted into the space. The surface plate 6 is rotatable, and a plurality of current collecting brushes 10 are mounted around the surface. One end of a cable 11 is connected to the current collecting brush 10, and the other end of the cable 11 is connected to a power supply 12.

このような装置でエレクトロスラグ再溶解をスタート
させる。消耗電極9は一端をスラグ浴13中に浸漬し、他
端をケーブル14を介して電源12へ接続する。消順電極9
はジュール熱によって溶解して溶融金属となり、凝固し
て軸部5を形成する。
Electroslag remelting is started with such an apparatus. The consumable electrode 9 has one end immersed in a slag bath 13 and the other end connected to a power supply 12 via a cable 14. Negative electrode 9
Is melted by Joule heat to form a molten metal, and solidifies to form the shaft portion 5.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、上記従来のスクリーロータでは、第5図に示
すように、歯形部のダクタイル鋳鉄の熱影響部に高温割
れが発生しやすいという問題があった。第5図(A)
は、歯形部3と軸部4との接合境界5付近の組織を示す
顕微鏡写真、第5図(B)は、境界付近に高温割れ6が
生じた状態の組織を拡大した顕微鏡写真である。
However, in the above-mentioned conventional screen rotor, there is a problem that a hot crack is easily generated in the heat-affected zone of the ductile cast iron of the tooth profile as shown in FIG. Fig. 5 (A)
Is a micrograph showing the structure near the joint boundary 5 between the tooth profile portion 3 and the shaft portion 4, and FIG. 5 (B) is an enlarged micrograph of the structure in which a hot crack 6 has occurred near the boundary.

このような高温割れが生ずると、強度がなくなりロー
タとしての有用性がなくなる。
When such hot cracking occurs, the strength is lost and the usefulness as a rotor is lost.

また、オイルフリースクリュー圧縮機のロータは、ロ
ータを支えている軸受部から圧縮室内への油の浸入を防
ぐために、この間にカーボンリング等を挿入し、無給油
で回転面接触させて油を止めているが、軸部が鋼の場合
には使用環境により腐食が起きる問題があった。この部
分が腐食すると、ロータの動作不良や油の圧縮室内への
浸入等の障害を招くことになる。
To prevent oil from entering the compression chamber from the bearing that supports the rotor, insert a carbon ring, etc., between the rotors of the oil-free screw compressor, and contact the rotating surface without lubrication to stop the oil. However, when the shaft is made of steel, there is a problem that corrosion occurs depending on the use environment. If this portion is corroded, troubles such as malfunction of the rotor and penetration of oil into the compression chamber will be caused.

本発明はかかる問題点を解決するために、高温割れ及
び腐食がない圧縮機用複合スクリューロータの製造法を
提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method of manufacturing a composite screw rotor for a compressor free from hot cracking and corrosion in order to solve such problems.

〔問題点を解決するための手段〕[Means for solving the problem]

問題点を解決するための手段について述べる前に、本
発明を完成するに至った経違について説明する。
Before describing the means for solving the problems, a description will be given of the mistakes that led to the completion of the present invention.

本発明者らは、上記目的を達成すべくFe−Ni−C−Si
−Mn系からなる高Ni鋳鉄の溶接性について種々検討し
た。その結果、熱影響部に発生する高温割れは結晶粒界
の液化に起因した割れであり、割れ感受性はSiの増加と
共に大きくなることがわかった。すなわち、オーステナ
イト粒界に富化したSiが低融点のNiSi−NiSi2,NiSi−Ni
3Si2等の析出相が、エレクトロスラグ再溶融中に加熱さ
れた領域、すなわち熱影響部で溶解し、そこに熱応力が
作用して割れが生じることがわかった。
The present inventors have proposed Fe-Ni-C-Si to achieve the above object.
Various studies were conducted on the weldability of high-Ni cast iron composed of -Mn system. As a result, it was found that the hot cracks generated in the heat-affected zone were cracks caused by liquefaction of the grain boundaries, and the crack susceptibility increased with the increase of Si. That, NiSi-NiSi 2 of Si enriched in austenite grain boundaries low melting, NiSi-Ni
3 Si 2 such precipitation phases of the region which is heated in the electro-slag remelting, i.e. dissolved in the heat-affected zone, the thermal stress is found that the crack acts occurring there.

一方、高Ni鋳鉄はロータ歯形部がホブにより切削加工
されるために切削性に優れていることが要求され、基地
中に黒鉛が晶出したものとなっている。しかし、熱影響
部においては、黒鉛が溶融し強度低下を招くので、黒鉛
量はホブ加工性に問題をきたさない程度まで少なくする
ことが割れ抑制に有効であることがわかった。
On the other hand, high Ni cast iron is required to have excellent machinability because the rotor tooth profile is cut by a hob, and graphite is crystallized in the matrix. However, in the heat-affected zone, graphite melts and causes a decrease in strength, so it has been found that reducing the amount of graphite to a level that does not cause a problem in hob workability is effective in suppressing cracking.

本発明は、このような知見になされたものである。す
なわち、本発明は、圧縮機に用いられ、歯形部と、この
歯形部の軸心部を形成しさらに両端から突出する軸部と
よりなる圧縮機用複合スクリューロータの製造法におい
て、前記歯形部は、重量比でC;0.5〜1.2%,Si;0.3%以
下、Mn;0.5〜2.0%,Ni;36〜42%,残部Fe及び不可避不
純物からなり、かつ、当該組成範囲において、下記Kが
下記式を満足するように決定されてなる20〜250℃の平
均熱膨張係数が6×10-6/℃以下の低熱膨張高Ni鋳鉄か
ら構成し、 K=6.447+0.914C%+1.254Si%+0.828Mn% −0.108Ni%(旦し、K6) 前記軸部は、重量比でC;0.25%以下、Ci;10〜30%,Ni
6〜15%残部Fe及び不可避的不純物からなる耐食性に優
れたステンレス系合金鋼から構成するように、水冷定盤
上に、軸部の一端側の素材を鋳込む第1水冷鋳形、高Ni
鋳鉄からなる歯形部の円筒状素材、および軸部の他端側
の素材を鋳込む第2水冷鋳型を、それぞれ軸心を合わせ
て順次積んで配置し、そして第1水冷鋳型、歯形部の素
材及び第2水冷鋳型それぞれの軸心部空間を通して、上
記ステンレス系合金鋼となる消耗電極を配置し、さらに
第1水冷鋳型に溶剤を入れた後、消耗電極の上端部から
第1水冷鋳型間に通電して溶剤を溶融して溶融スラグを
生成し、水冷定盤を回転させながら消耗電極をエレクト
ロスラグ再溶解して、軸部の一端側の素材から歯形部の
芯部を経て軸部の他端側の素材を形成することを特徴と
する製造法である。
The present invention has been made based on such findings. That is, the present invention relates to a method for manufacturing a composite screw rotor for a compressor, which is used for a compressor and comprises a tooth portion and a shaft portion forming an axis of the tooth portion and projecting from both ends. Is composed of, by weight ratio, C; 0.5 to 1.2%, Si; 0.3% or less, Mn; 0.5 to 2.0%, Ni; 36 to 42%, the balance being Fe and unavoidable impurities. It is composed of low thermal expansion high Ni cast iron having an average thermal expansion coefficient of 20 to 250 ° C., determined to satisfy the following equation and not more than 6 × 10 −6 / ° C., K = 6.447 + 0.914C% + 1.254Si% + 0.828Mn% -0.108Ni% (Temperature, K6) The weight of the shaft portion is C: 0.25% or less, Ci: 10 to 30%, Ni
The first water-cooled cast type, in which the material at one end of the shaft is cast on a water-cooled surface plate, made of stainless steel alloy with excellent corrosion resistance consisting of 6-15% balance Fe and unavoidable impurities, high Ni
A cylindrical material of a tooth profile portion made of cast iron and a second water-cooled mold for casting a material at the other end of the shaft portion are sequentially stacked with their axes aligned, and the first water-cooled mold and the material of the tooth profile portion are arranged. And placing the consumable electrode of the stainless steel alloy through the axial space of each of the second water-cooled molds, further adding a solvent to the first water-cooled mold, and then between the upper end of the consumable electrode and the first water-cooled mold. Electricity is applied to melt the solvent to produce a molten slag, and the consumable electrode is electroslag redissolved while rotating the water-cooled platen. A manufacturing method characterized by forming a material on the end side.

〔作用〕[Action]

上記本発明において、歯形部における組成の限定理由
について説明する。
In the present invention, the reason for limiting the composition in the tooth profile will be described.

Cは基地中に黒鉛を晶出させ、切削性を付与させるた
めに添加されるが、0.5%未満では黒鉛量が少なく、ホ
ブ加工性を劣化させ、1.2%を超えると黒鉛量が多くな
り高温割れを助長すると共に熱膨張係数を増加させるた
め好ましくない。Siは脱酸剤及び黒鉛球状化剤として添
加されるが、0.3%を超えると高温割れを生じる。Mnは
脱酸剤として作用するが、0.5%未満では溶湯の脱酸が
不十分なために鋳造欠陥(ふかれ)を招きやすく、2%
を超えると熱膨張係数を増加させると共に切削性を悪化
させるために好ましくない。Ni量は、20℃〜250℃にお
ける平均熱膨張係数を6×10-6/℃以下にするためには3
6〜42%にすることが必要である。
C is added in order to crystallize graphite in the matrix and impart machinability, but if it is less than 0.5%, the amount of graphite is small, and hob workability is deteriorated. It is not preferable because it promotes cracking and increases the coefficient of thermal expansion. Si is added as a deoxidizing agent and a graphite spheroidizing agent, but if it exceeds 0.3%, hot cracking occurs. Mn acts as a deoxidizing agent, but if it is less than 0.5%, the molten metal is insufficiently deoxidized, which tends to cause casting defects (bleaching).
Exceeding this is not preferred because it increases the coefficient of thermal expansion and worsens the machinability. Ni content is 3 to make the average coefficient of thermal expansion at 20 ° C to 250 ° C less than 6 × 10 -6 / ° C.
It needs to be 6-42%.

さらに、この組成は、上記組成範囲において下記Kが
次式(1)を満足するように決定されることが必要であ
る。
Further, this composition needs to be determined so that the following K satisfies the following formula (1) in the above composition range.

K=6.447+0.914C%+1.254Si%+0.828Mn%−0.108Ni
% ……(1) 旦し、K6 Kが上記範囲内にないと、20〜250℃における平均熱
膨張係数が6×1.0-6/℃より大きくなるおそれがある。
20〜250℃における平均熱内膨張係数が6×10-6/℃より
大きくなると歯形部における焼付ロックをおこすおそれ
がある。なお、上記(1)式は、各元素の組成と平均熱
膨張係数との関係について調べた結果得られた実験式で
ある。
K = 6.447 + 0.914C% + 1.254Si% + 0.828Mn% -0.108Ni
% (1) If K6K is not within the above range, the average coefficient of thermal expansion at 20 to 250 ° C. may be larger than 6 × 1.0 −6 / ° C.
If the average coefficient of thermal expansion at 20 to 250 ° C. is more than 6 × 10 −6 / ° C., there is a possibility that seizure lock may occur in the tooth profile. The above equation (1) is an empirical equation obtained as a result of examining the relationship between the composition of each element and the average coefficient of thermal expansion.

次に、軸部における組成の限定理由について説明す
る。
Next, the reason for limiting the composition of the shaft portion will be described.

Cが0.25%を越えると、エレクトロスラグ再溶解の際
に軸部の硬さが増加し、加工性が悪くなる。Crが10%未
満では加工性が悪くなり、30%を越えると耐食性が低下
する。Niが6%未満では耐食性が低下し、15%を越える
と加工性が悪なり、強度も低下する。軸部は、このよう
な組成からなるステンレス系合金鋼からなり、軸部の腐
食を防止できる。
If C exceeds 0.25%, the hardness of the shaft increases during electroslag remelting, resulting in poor workability. If the Cr content is less than 10%, the workability deteriorates, and if it exceeds 30%, the corrosion resistance decreases. If the Ni content is less than 6%, the corrosion resistance decreases, and if the Ni content exceeds 15%, the workability deteriorates and the strength decreases. The shaft portion is made of a stainless steel alloy having such a composition, and corrosion of the shaft portion can be prevented.

一方、軸部を鋼から形成した場合は、歯形部材と軸部
材の溶融混合部分は、歯形部材からのNiの移行によりマ
ルテンサイト組織となるためにロータ軸心に設けられる
冷却孔の加工が困難であったが、本発明の場合には炭素
量が少ないため、オーステナイト組織となる。したがっ
て、加工性も良好となる。
On the other hand, when the shaft portion is formed of steel, the melt-mixed portion of the tooth member and the shaft member has a martensitic structure due to the transfer of Ni from the tooth member, so that it is difficult to process cooling holes provided in the rotor shaft center. However, in the case of the present invention, since the amount of carbon is small, an austenite structure is formed. Therefore, workability is also improved.

〔実施例〕〔Example〕

次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.

Fe−0.7%C−0.25%Si−1.8%Mn−39%Niよりなり20
〜250℃間の平均熱膨張係数が4.56×10-6/℃である内径
26φ,外径68φ,高さ120mmのシェルの空所に、SUS303
よりなる直径11φの消耗電極を挿入して、前記第4図に
示す装置を用いエレクトロスラグ再溶解を行った。CaF2
−Cao−Al2O3−SiO2−MnOよりなるスラグを用いた。電
圧は30V、電流は300Aとし再溶解のスタートはコールド
スタート法で行った、 このようにして製造された鋳塊を縦断して接合状態を
調査した。その結果、第1図に示すように熱影響部にお
いて割れは発生しておらず、接合が良好であることがわ
かった。
It consists of Fe-0.7% C-0.25% Si-1.8% Mn-39% Ni20
Inner diameter with an average thermal expansion coefficient of 4.56 × 10 -6 / ° C between ~ 250 ° C
26φ, outer diameter 68φ, height of 120mm shell, SUS303
A consumable electrode having a diameter of 11φ was inserted, and electroslag was redissolved using the apparatus shown in FIG. CaF 2
A slag composed of —Cao—Al 2 O 3 —SiO 2 —MnO was used. The remelting was started by a cold start method with a voltage of 30 V and a current of 300 A. The ingot produced in this manner was longitudinally examined to check the bonding state. As a result, as shown in FIG. 1, no crack occurred in the heat-affected zone, and it was found that the joint was good.

第1図において、(A)図は接合部付近の顕微鏡写真
であり、(B)図は、(A)図を拡大した顕微鏡写真で
ある。
In FIG. 1, (A) is a micrograph near the joint, and (B) is an enlarged micrograph of (A).

次に組成を変えてえエレクトロスラグ再溶解を行い、
平均熱膨張率、高温割れの有無を調べた。第1表に、各
試料の組成を示す。第2表に、各試料の平均熱膨張の
値、高温割れの有無を示す。
Next, change the composition and redissolve the electroslag,
The average coefficient of thermal expansion and the presence or absence of hot cracks were examined. Table 1 shows the composition of each sample. Table 2 shows the value of the average thermal expansion of each sample and the presence or absence of a hot crack.

第2表からわかるように、試料No.4〜6,10,No13,14で
はSiが0.3%を越えることにより高温割れをおこしてい
ることがわかる。一方、これ以外の試料では、高温割れ
を行さず、しかも、前記(1)式を具備、すなわちK
6となっているために、20〜250℃の平均熱膨張係数が
6×10-6/℃以下となっている。したがってスクリュー
ロータの歯形部材料として有効なことがわかる。
As can be seen from Table 2, in samples Nos. 4 to 6, 10, and Nos. 13 and 14, high-temperature cracking occurs when the Si content exceeds 0.3%. On the other hand, the other samples did not undergo hot cracking, and had the above-mentioned formula (1).
Since it is 6, the average thermal expansion coefficient at 20 to 250 ° C. is 6 × 10 −6 / ° C. or less. Therefore, it is understood that the material is effective as a material for the tooth profile of the screw rotor.

次に、前記Fe−0.7%C−0.25%Si−1.8%Mn−39%Mi
から得られた鋳塊をホブ加工してロータを製作した。ロ
ータの仕様は、オスロータ歯数5枚、外径63mm、メスロ
ータ歯数6枚、外径53mm、ロータ長さ97.5mmである。こ
のロータと同仕様の従来のS45C一体スクリューロータ及
び歯形部がFe−2.4%C−2%Si−1%Mn−39%Niダク
タイル鋳鉄、軸部がS45Cよりなる複合の性能比較試験を
行った。オスロータとメスロータ間のギャップは、実施
例にかかるロータでは50μ、従来の一体ロータでは100
μである。
Next, the Fe-0.7% C-0.25% Si-1.8% Mn-39% Mi
The ingot obtained from the above was hobbed to produce a rotor. The specifications of the rotor are 5 male rotor teeth, 63 mm outer diameter, 6 female rotor teeth, 53 mm outer diameter, and 97.5 mm rotor length. A performance comparison test was conducted of a conventional S45C integrated screw rotor having the same specifications as this rotor, and a composite consisting of Fe-2.4% C-2% Si-1% Mn-39% Ni ductile cast iron with a tooth profile and S45C with a shaft. . The gap between the male rotor and the female rotor is 50 μ in the rotor according to the embodiment, and 100 μ in the conventional integrated rotor.
μ.

比較の結果、吐出圧力7kg f/cm2、吸込流量1000m3/h
における圧縮効率は一体スクリューロータは65%である
のに対し、本実施例にかかるスクリューロータでは68%
と向上した。一方、塩水噴霧試験法(5%塩水96時間噴
霧)で行った軸部耐食試験の結果、従来の一体及び複合
スクリューロータは著しい発錆、腐食を示したのに対
し、本発明の複合スクリューロータはほとんど発錆、腐
食は認められず、歯形部においても従来の複合スクリュ
ーロータに比べて、軽微であった。
As a result of comparison, discharge pressure 7 kg f / cm 2 , suction flow 1000 m 3 / h
The compression efficiency of the screw rotor according to the present embodiment is 65% while the compression efficiency of the integrated screw rotor is 65%.
And improved. On the other hand, as a result of the shaft corrosion resistance test performed by the salt spray test method (spraying of 5% salt water for 96 hours), the conventional integral and composite screw rotors showed remarkable rust and corrosion, whereas the composite screw rotor of the present invention Rust and corrosion were hardly observed, and the tooth profile was slightly smaller than that of the conventional composite screw rotor.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、エレクトロ再溶
解法によってスクリューロータ歯形部を貫通する軸部を
形成する際に、スクリューロータ歯形部を高温割れを生
せず、かつ20℃〜250℃の平均熱膨張係数が6×10-6/℃
以下の低熱膨張高Ni鋳鉄で構成し、軸部を耐食性に優れ
たステンレス系合金で構成した複合スクリューロータと
することにより、歯形部の熱影響部に発生する割れが防
止され、圧縮効率及び軸部の耐食性が向上し、製品の信
頼性向上を図ることができる。歯形部の高温割れ及び軸
部の腐食が生じない結果、圧縮気体に油が混入すること
を防止でき、清浄な圧縮気体を常時供給できるという効
果を奏する。
As described above, according to the present invention, when forming a shaft portion that penetrates the screw rotor tooth portion by the electro-remelting method, the screw rotor tooth portion does not generate hot cracks, and has a temperature of 20 ° C to 250 ° C. Average thermal expansion coefficient is 6 × 10 -6 / ℃
Composed of the following low-thermal-expansion high-Ni cast iron, and by using a composite screw rotor composed of a stainless steel alloy with excellent corrosion resistance, cracks that occur in the heat-affected zone of the tooth profile are prevented. The corrosion resistance of the part is improved, and the reliability of the product can be improved. As a result of preventing high temperature cracking of the tooth profile portion and corrosion of the shaft portion, it is possible to prevent oil from being mixed into the compressed gas, and it is possible to always supply a clean compressed gas.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明にかかる複合スクリューロータ素材の
縦断面の金属組織を示す顕微鏡写真、第2図(A)は、
スクリュー圧縮機のスクリュー部の構造を示す平面図、
第2図(B)はその縦断面図、第3図は複合スクリュー
ロータの横断面図、第4図は、エレクトロスラグ再溶解
法を行うための装置構成図、第5図は、従来のスクリュ
ーロータ素材の縦断面の金属組織を示す顕微鏡写真であ
る。 1……オスのスクリューロータ、 2……メスのスクリューロータ、 3……歯形部、4……軸部、5……接合境界、 6……水冷定盤、7……軸部用水冷鋳型、 8……シェル、9……消耗電極、12……電源。
FIG. 1 is a micrograph showing the metal structure of a longitudinal section of the composite screw rotor material according to the present invention, and FIG.
Plan view showing the structure of the screw portion of the screw compressor,
FIG. 2 (B) is a longitudinal sectional view, FIG. 3 is a transverse sectional view of a composite screw rotor, FIG. 4 is a configuration diagram of an apparatus for performing an electroslag remelting method, and FIG. It is a microscope picture which shows the metal structure of the longitudinal section of a rotor material. 1 ... male screw rotor, 2 ... female screw rotor, 3 ... tooth profile, 4 ... shaft, 5 ... joining boundary, 6 ... water-cooled surface plate, 7 ... water-cooled mold for shaft, 8 Shell, 9 Consumable electrode, 12 Power supply.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機に用いられ、歯形部と、該歯形部の
軸心部を形成しさらに両端から突出する軸部とよりなる
圧縮機用複合スクリューロータの製造法において、 前記歯形部は、重量比でC;0.5〜1.2%,Si;0.3%以下、M
n;0.5〜2.0%,Ni;36〜42%,残部Fe及び不可避不純物か
らなり、かつ当該組成範囲において、下記Kが不記式を
満足するように決定されてなる20〜250℃の平均熱膨張
係数が6×10-6/℃以下の低熱膨張高Ni鋳鉄から構成
し、 K=6.447+0.914C%+1.254Si%+0.828MN%−0.108Ni
%(旦し、K≦6) 前記軸部は、重量比でC;0.25%以下、Cr;10〜30%,Ni;6
〜15%,残部Fe及び不可避的不純物からなる耐食性に優
れたステンレス系合金鋼から構成するように、 水冷定盤上に、前記軸部の一端側の素材を鋳込む第1水
冷鋳型、前記高Ni鋳鉄からなる歯形部の円筒状素材、お
よび前記軸部の他端側の素材を鋳込む第2水冷鋳形を、
それぞれ軸心を合わせて順次積んで配置し、 前記第1水冷鋳型、前記歯形部の素材及び前記第2水冷
鋳型それぞれの軸心部空間を通して、前記ステンレス系
合金鋼となる消耗電極を配置し、 前記第1水冷鋳型に溶剤を入れた後、前記消耗電極の上
端部から第1水冷鋳型間に通電して溶剤を溶融して溶融
スラグを生成し、前記水冷定盤を回転させながら前記消
耗電極をエレクトロスラグ再溶解することによって、前
記軸部の一端側の素材、前記歯形部の芯部および前記軸
部の他端側の素材を形成することを特徴とする圧縮機用
複合スクリューロータの製造法。
1. A method for manufacturing a compound screw rotor for a compressor, comprising: a tooth portion and a shaft portion that forms an axis of the tooth portion and protrudes from both ends. , By weight, C; 0.5-1.2%, Si; 0.3% or less, M
n; 0.5 to 2.0%, Ni; 36 to 42%, the balance being Fe and unavoidable impurities, and in the composition range, the following K is determined so as to satisfy the notation formula. Made of low thermal expansion high Ni cast iron with an expansion coefficient of 6 × 10 -6 / ° C or less, K = 6.447 + 0.914C% + 1.254Si% + 0.828MN% -0.108Ni
% (C, K ≦ 6) The shaft portion is, by weight ratio, C: 0.25% or less, Cr: 10 to 30%, Ni; 6
A first water-cooled mold for casting a material at one end of the shaft portion on a water-cooled platen so as to be composed of a stainless steel alloy having excellent corrosion resistance consisting of about 15%, the balance being Fe and unavoidable impurities. A cylindrical material having a tooth profile portion made of Ni cast iron, and a second water-cooled mold for casting a material at the other end of the shaft portion,
Each of the first water-cooled mold, the material of the tooth profile portion and the second water-cooled mold are arranged through the axial space of each of the first water-cooled molds, and the consumable electrodes to be the stainless steel alloy steel are arranged. After the solvent is put into the first water-cooled mold, a current is applied between the first water-cooled mold from the upper end of the consumable electrode to melt the solvent to generate a molten slag, and the consumable electrode is rotated while rotating the water-cooled platen. Manufacturing a composite screw rotor for a compressor, wherein a material on one end side of the shaft portion, a core portion of the tooth profile portion and a material on the other end side of the shaft portion are formed by electroslag re-melting. Law.
JP62106023A 1987-04-28 1987-04-28 Manufacturing method of compound screw rotor for compressor Expired - Lifetime JP2622684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62106023A JP2622684B2 (en) 1987-04-28 1987-04-28 Manufacturing method of compound screw rotor for compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62106023A JP2622684B2 (en) 1987-04-28 1987-04-28 Manufacturing method of compound screw rotor for compressor

Publications (2)

Publication Number Publication Date
JPS63272986A JPS63272986A (en) 1988-11-10
JP2622684B2 true JP2622684B2 (en) 1997-06-18

Family

ID=14423047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62106023A Expired - Lifetime JP2622684B2 (en) 1987-04-28 1987-04-28 Manufacturing method of compound screw rotor for compressor

Country Status (1)

Country Link
JP (1) JP2622684B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533815A (en) * 1990-09-29 1993-02-09 Mazda Motor Corp Connecting structure of rotary shaft and rotor of rotary machine and manufacture thereof
KR100386753B1 (en) * 1998-03-23 2003-06-09 다이코 기카이 고교 가부시키가이샤 Dry vacuum pump
JP5108809B2 (en) * 2009-02-26 2012-12-26 株式会社日立産機システム Screw rotor manufacturing method and screw rotor
JP2012021508A (en) * 2010-07-16 2012-02-02 Tohoku Univ Processing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142081A (en) * 1983-12-29 1985-07-27 Hitachi Ltd Compressor
JPS61169689A (en) * 1985-01-23 1986-07-31 Hitachi Ltd Complex screw rotor

Also Published As

Publication number Publication date
JPS63272986A (en) 1988-11-10

Similar Documents

Publication Publication Date Title
CN108467972A (en) A kind of ni-base wrought superalloy and preparation method thereof of bearing high temperature ability
CN100553811C (en) Semisolid Kelmet/bimetal copper-steel composite technique for rolling
CN106636895A (en) Special bearing steel and manufacturing method thereof
JP6474038B2 (en) Composite roll for continuous casting and overlay casting
CN110129632B (en) Method for processing aluminum profile for movable and static disc of scroll compressor
CN103602920B (en) A kind of method of manufacturing technology of bearing steel and anti-friction bearing
RU2672651C1 (en) Method of producing heat-resistant superalloy hn62bmktyu on nickel based
CN112570925A (en) Nickel-based welding wire for 3D printing and preparation method thereof
CN106893921A (en) A kind of method of nickel-base alloy electric slag refusion and smelting
JP2622684B2 (en) Manufacturing method of compound screw rotor for compressor
JP6614371B1 (en) A high-chromium cast iron cast-in method for cermet TiC chips and a plate liner manufacturing method for a bellless raw material charging apparatus using this method.
JPH1158034A (en) Joining method of ferrous material and high tension brass alloy and composite material joined by the method
CN1327899A (en) Multi-element Cu-base solder for soldering low-alloy chilled cast iron
JP6516093B2 (en) Composite roll for continuous cast overlay casting rolling
CN106636850B (en) High-temperature oxidation resistance high intensity mixes rare-earth alloy material and preparation method
CN111360232B (en) Manufacturing method of composite cutting pick and composite cutting pick
JP4123903B2 (en) Hot roll outer layer material and hot roll composite roll
KR101376328B1 (en) Roll for use in continuous casting
JPH1177375A (en) Cobalt base alloy for cladding hot forging die by welding
JPH11189834A (en) High strength trolley wire and its manufacture
FR2727982A1 (en) AUSTENITIC STAINLESS STEEL FOR HOT EMPLOYMENT
JPS60238432A (en) Cu alloy for continuous casting mold
FR2808807A1 (en) Steel composition exhibiting excellent mechanical strength and oxidation resistance at temperatures between 800 and 900 degrees Celsius
JPH1177118A (en) Combined sleeve for rolling wide-flange shape steel
CN101829860A (en) Welding wire for unpreheated welding of red copper thick and large part and preparation method thereof