JP2620959B2 - Low loss oxide magnetic material - Google Patents

Low loss oxide magnetic material

Info

Publication number
JP2620959B2
JP2620959B2 JP63205990A JP20599088A JP2620959B2 JP 2620959 B2 JP2620959 B2 JP 2620959B2 JP 63205990 A JP63205990 A JP 63205990A JP 20599088 A JP20599088 A JP 20599088A JP 2620959 B2 JP2620959 B2 JP 2620959B2
Authority
JP
Japan
Prior art keywords
ppm
magnetic material
loss
oxide magnetic
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63205990A
Other languages
Japanese (ja)
Other versions
JPH0254901A (en
Inventor
彦宏 当金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63205990A priority Critical patent/JP2620959B2/en
Priority to GB8915563A priority patent/GB2220935B/en
Priority to DE3922997A priority patent/DE3922997A1/en
Priority to KR1019890010092A priority patent/KR920001163B1/en
Priority to US07/381,302 priority patent/US4985167A/en
Publication of JPH0254901A publication Critical patent/JPH0254901A/en
Priority to GB9209762A priority patent/GB2253842B/en
Priority to GB9209763A priority patent/GB2253843B/en
Application granted granted Critical
Publication of JP2620959B2 publication Critical patent/JP2620959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はディスプレーモニタ等の電源用磁心に用い
るに適したMn−Zn系フェライトからなる低損失酸化物磁
性材料に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-loss oxide magnetic material comprising a Mn-Zn ferrite suitable for use in a power supply core such as a display monitor.

〔従来の技術〕 従来この種の電源用フェライトとしては、本出願人が
特公昭53−28634号で提案したMn−Zn系フェライトがあ
る。このMn−Zn系フェライトはCaO、SiO2、ClおよびSnF
2を添加して電力損失の低減を図ったものである。
[Prior Art] Conventionally, as this type of ferrite for power supply, there is a Mn-Zn ferrite proposed by the present applicant in Japanese Patent Publication No. 53-28634. This Mn-Zn ferrite is composed of CaO, SiO 2 , Cl and SnF.
The addition of 2 is intended to reduce power loss.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところで近年、ディスプレーモニタ等の高解像度化、
民生用カラーテレビの大画面化等の要求により、これら
に使用される電源は動作周波数の高周波化、ならびに高
負荷化が進展している。
By the way, in recent years, higher resolution of display monitors and the like,
In response to demands for larger screens and the like for consumer color televisions, power supplies used for these devices have been operating at higher frequencies and have been increasingly loaded.

しかしながら従来のMn−Zn系フェライトでは電力損失
が増大し、電源の温度上昇が著しく高くなり、信頼性の
低下をきたしていた。
However, in the conventional Mn-Zn ferrite, the power loss increases, the temperature of the power supply rises remarkably, and the reliability decreases.

この発明は上記問題点を解決するため、高周波、高負
荷においても、電力損失を著しく改善した低損失Mn−Zn
系フェライトからなる低損失酸化物磁性材料を提供する
ことを目的とする。
The present invention solves the above-mentioned problems by providing a low-loss Mn-Zn with significantly improved power loss even at high frequencies and high loads.
An object of the present invention is to provide a low-loss oxide magnetic material comprising a system ferrite.

〔課題を解決するための手段〕[Means for solving the problem]

この発明は次の低損失酸化物磁性材料である。 The present invention is the following low-loss oxide magnetic material.

(1)Fe2O352〜56mol%、MnO32〜42mol%およびZnO5〜
15mol%を主成分とし、Al10〜130ppm、SiO2200〜300ppm
およびCaO500〜2000ppmを副成分として同時に含む低損
失酸化物磁性材料。
(1) Fe 2 O 3 52~56mol %, MnO32~42mol% and ZnO5~
15 mol% as main component, Al10 ~ 130ppm, SiO2 200 ~ 300ppm
And a low-loss oxide magnetic material simultaneously containing 500 to 2000 ppm of CaO as an auxiliary component.

(2)Fe2O352〜56mol%、MnO32〜42mol%およびZnO5〜
15mol%を主成分とし、Cr10〜100ppm、SiO2200〜300ppm
およびCaO500〜2000ppmを副成分として同時に含む低損
失酸化物磁性材料。
(2) Fe 2 O 3 52~56mol %, MnO32~42mol% and ZnO5~
15mol% as main component, Cr 10-100ppm, SiO 2 200-300ppm
And a low-loss oxide magnetic material simultaneously containing 500 to 2000 ppm of CaO as an auxiliary component.

本発明の低損失酸化物磁性材料の製造方法は、主成分
の原料を混合して仮焼した後、微粉砕して得たフェライ
ト粉末に副成分の原料を添加して混合し、ポリビニルア
ルコール等の結合剤を加えて造粒、成形して焼結するこ
とにより製造することができる。上記の各原料としては
それぞれの酸化物のほか、焼結により上記酸化物となる
塩その他の化合物を使用することができる。
In the method for producing a low-loss oxide magnetic material of the present invention, a raw material of a main component is mixed and calcined, and a raw material of an auxiliary component is added to a ferrite powder obtained by pulverization and mixed, and polyvinyl alcohol or the like is mixed. And then granulating, molding and sintering. As each of the above-mentioned raw materials, in addition to the respective oxides, salts and other compounds which become the above-mentioned oxides by sintering can be used.

〔作用〕[Action]

この発明の低損失酸化物磁性材料用Mn−Zn系フェライ
トは、Fe2O3、MnOおよびZnOを主成分とし、副成分とし
てAl10〜130ppmまたはCr10〜100ppm、SiO2200〜300ppm
およびCaO500〜2000ppmを重量比でそれぞれ複合添加し
たものであり、電力損失を著しく低減でき、130kHz程度
の周波数領域でも充分な低損失特性を実現可能である。
また変成器の磁心に使用した場合、稼動時に発熱を伴う
が、この発明の低損失フェライトは60℃ないし100℃程
度の温度範囲で電力損失が最も低くなるよう設定するこ
とが可能である。このため稼働時の電力損失を少なくす
ることができる。
The low-loss oxide magnetic material for Mn-Zn ferrite of the invention, the main component Fe 2 O 3, MnO and ZnO, Al10~130ppm or Cr10~100ppm as subcomponent, SiO 2 200-300 ppm
And 500 to 2,000 ppm of CaO are added in a weight ratio, and the power loss can be remarkably reduced, and a sufficiently low loss characteristic can be realized even in a frequency region of about 130 kHz.
When used in a transformer core, heat is generated during operation. However, the low-loss ferrite of the present invention can be set so that power loss is minimized in a temperature range of about 60 ° C. to 100 ° C. Therefore, power loss during operation can be reduced.

〔発明の実施例〕(Example of the invention)

以下、本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described.

実施例1 Fe2O353.5mol%、MnO38.5mol%およびZnO8.0mol%を
主成分とする原料を仮焼した後、微粉砕して得たフェラ
イト粉末に副成分としてAl2O3を94ppm(Alとして50pp
m)、SiO2を200ppm、CaCO3を1640ppm(CaOとして1000pp
m)の割合で添加混合の上、結合剤としてポリビニール
アルコール溶液を加え造粒後、外径60mm、内径40mm、高
さ10mmのリング状試料に成型圧1ton/cm2で成型した。但
しこれらの添加物は、予め原料に含まれているものを分
析して、添加量をその分だけ減じ、全体として上記の値
となるように調整した。この試料を酸素濃度を制御した
N2雰囲気炉中、1350℃で2時間本焼成を行った。
Example 1 After calcining a raw material mainly containing 53.5 mol% of Fe 2 O 3, 38.5 mol% of MnO and 8.0 mol% of ZnO, a ferrite powder obtained by finely pulverizing was added with 94 ppm of Al 2 O 3 as an auxiliary component. (50pp as Al
m), 1000PP the SiO 2 200 ppm, the CaCO 3 as 1640ppm (CaO
After adding and mixing at a ratio of m), a polyvinyl alcohol solution was added as a binder, and the mixture was granulated, and molded into a ring-shaped sample having an outer diameter of 60 mm, an inner diameter of 40 mm, and a height of 10 mm at a molding pressure of 1 ton / cm 2 . However, as for these additives, those contained in the raw material were analyzed in advance, and the added amount was reduced by that amount, and adjusted so as to have the above value as a whole. The oxygen concentration of this sample was controlled.
The main firing was performed at 1350 ° C. for 2 hours in a N 2 atmosphere furnace.

この試料を周波数25kHz、磁束密度2000Gauss、100℃
の測定条件において電力損失を測定した結果は65mW/cm3
であった。この時の波形は正弦波である。また10kHz、1
0T、10mAにおける初透磁率μiを測定した結果は1880で
あった。
This sample was subjected to a frequency of 25 kHz, a magnetic flux density of 2000 Gauss, and 100 ° C.
The result of measuring the power loss under the above measurement conditions is 65 mW / cm 3
Met. The waveform at this time is a sine wave. Also 10kHz, 1
The result of measurement of the initial magnetic permeability μi at 0 T and 10 mA was 1880.

実施例2〜10、比較例1〜5 実施例1と主成分を同一とし、また試料作成の方法も
同一手順として副成分を変化させ、電力損失およびμi
を測定した結果を表1に示す。この表中での電力損失お
よびμiの測定条件は実施例1と同一である。
Examples 2 to 10 and Comparative Examples 1 to 5 The main components were the same as in Example 1, and the sample preparation method was the same as that of Example 1 except that the sub-components were changed, and the power loss and μ
Are shown in Table 1. The measurement conditions of the power loss and μi in this table are the same as in the first embodiment.

表1の結果からAl、SiO2およびCaOを複合添加するこ
とにより、電力損失が大幅に改善され、低損失酸化物磁
性材料が得られることが明らかである。但し副成分のAl
が10ppmよりも少ない場合および130ppmより多い場合
は、電力損失が共に大きくなるため不適当である。
From the results shown in Table 1, it is clear that by adding Al, SiO 2 and CaO in combination, power loss is greatly improved and a low-loss oxide magnetic material can be obtained. However, sub-component Al
Is less than 10 ppm and more than 130 ppm, the power loss is undesirably large.

副成分のSiO2は200ppmより少ない場合も、300ppmより
多い場合も共に電気抵抗は減少し、電力損失が増大する
ため不適当である。CaOは2000ppmより多いと結晶粒径は
小さくなるが、ヒステリシスロスが増大するため電力損
失は大きくなる。CaOが500ppmより少なくなると結晶粒
界層が薄くなり、エディカレントロスが増大するため不
適当である。また本発明における上記成分は本焼成前に
おいて含まれていれば、その添加は如何なる工程にて行
っても差し支えない。
When the content of SiO 2 as a sub-component is less than 200 ppm or more than 300 ppm, the electric resistance decreases and the power loss increases, which is inappropriate. If the content of CaO is more than 2000 ppm, the crystal grain size becomes small, but the power loss becomes large because the hysteresis loss increases. If the content of CaO is less than 500 ppm, the crystal grain boundary layer becomes thin, and eddy current loss increases. In addition, as long as the above components in the present invention are contained before the main firing, the addition thereof may be performed in any step.

実施例11〜20、比較例6〜10 実施例1と主成分を同一とし、試料作成の方法も同一
手順とし、副成分のAl2O3の代りにCr2O3を使用して副成
分の量を変化させ、電力損失およびμiを測定した結果
を表2に示す。この表中での電力損失およびμiの測定
条件は実施例1と同一である。
Example 11 to 20, the same Comparative Example 6-10 Example 1 and the main component, the method of sample preparation is also the same procedure, the sub-components using the Cr 2 O 3 instead of Al 2 O 3 subcomponents Table 2 shows the results of measuring the power loss and μi by changing the amount of The measurement conditions of the power loss and μi in this table are the same as in the first embodiment.

表2の結果から、Cr、SiO2およびCaOを複合添加する
ことにより、電力損失が大幅に改善され、低損失酸化物
磁性材料が得られることが明らかである。但し副成分の
Crが10ppmよりも少ない場合は結晶粒径が小さく、また1
00ppmより多い場合は大きくなり、電力損失が共に大き
くなるため不適当である。
From the results in Table 2, it is clear that the composite loss of Cr, SiO 2 and CaO significantly reduces the power loss and provides a low-loss oxide magnetic material. However,
When Cr is less than 10 ppm, the crystal grain size is small and 1
If it is more than 00 ppm, it becomes large, and both power loss becomes large, which is inappropriate.

副成分のSiO2は200ppmより少ない場合も、300ppmより
多い場合も共に電気抵抗は減少し、電力損失が増大する
ため不適当である。CaOは2000ppmより多いと結晶粒径は
小さくなるが、ヒステリシスロスが増大するため電力損
失は大きくなる。CaOが500ppmより少なくなると結晶粒
界層が薄くなり、エディカレントロスが増大するため不
適当である。また本発明における上記成分は本焼成前に
おいて含まれていれば、その添加は如何なる工程にて行
っても差し支えない。
When the content of SiO 2 as a sub-component is less than 200 ppm or more than 300 ppm, the electric resistance decreases and the power loss increases, which is inappropriate. If the content of CaO is more than 2000 ppm, the crystal grain size becomes small, but the power loss becomes large because the hysteresis loss increases. If the content of CaO is less than 500 ppm, the crystal grain boundary layer becomes thin, and eddy current loss increases. In addition, as long as the above components in the present invention are contained before the main firing, the addition thereof may be performed in any step.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、Fe2O3、MnOおよび
ZnOを主成分とし、副成分としてAl10〜130ppm、またはC
r10〜100ppm、SiO2200〜300ppmおよびCaO500〜2000ppm
を複合添加した組成とすることにより、電力損失を著し
く低減できる。このため高周波ディスプレーモニタ、大
画面カラーテレビ等の電源の効率化、小型化に寄与で
き、産業上極めて有益である。
As described above, according to the present invention, Fe 2 O 3 , MnO and
ZnO as a main component, Al10-130ppm as a subcomponent, or C
r10~100ppm, SiO 2 200~300ppm and CaO500~2000ppm
Can be significantly reduced by using a composition in which is added as a composite. For this reason, it is possible to contribute to the efficiency and miniaturization of the power supply of a high-frequency display monitor, a large-screen color television, and the like, which is extremely useful in industry.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Fe2O352〜56mol%、MnO32〜42mol%および
ZnO5〜15mol%を主成分とし、Al10〜130ppm、SiO2200〜
300ppmおよびCaO500〜2000ppmを副成分として同時に含
むことを特徴とする低損失酸化物磁性材料。
(1) 52 to 56 mol% of Fe 2 O 3, 32 to 42 mol% of MnO and
A main component ZnO5~15mol%, Al10~130ppm, SiO 2 200~
A low-loss oxide magnetic material comprising simultaneously 300 ppm and 500 to 2000 ppm of CaO as accessory components.
【請求項2】Fe2O352〜56mol%、MnO32〜42mol%および
ZnO5〜15mol%を主成分とし、Cr10〜100ppm、SiO2200〜
300ppmおよびCaO500〜2000ppmを副成分として同時に含
むことを特徴とする低損失酸化物磁性材料。
2. 52 to 56 mol% of Fe 2 O 3, 32 to 42 mol% of MnO and
A main component ZnO5~15mol%, Cr10~100ppm, SiO 2 200~
A low-loss oxide magnetic material comprising simultaneously 300 ppm and 500 to 2000 ppm of CaO as accessory components.
JP63205990A 1988-07-18 1988-08-19 Low loss oxide magnetic material Expired - Lifetime JP2620959B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63205990A JP2620959B2 (en) 1988-08-19 1988-08-19 Low loss oxide magnetic material
GB8915563A GB2220935B (en) 1988-07-18 1989-07-07 Magnetic oxide material
DE3922997A DE3922997A1 (en) 1988-07-18 1989-07-12 LOW LOSS OXIDE MAGNETIC MATERIAL
KR1019890010092A KR920001163B1 (en) 1988-07-18 1989-07-15 Low loss ferrite mage-netic materials
US07/381,302 US4985167A (en) 1988-07-18 1989-07-18 Low-loss oxide magnetic material
GB9209762A GB2253842B (en) 1988-07-18 1992-05-06 Magnetic oxide material
GB9209763A GB2253843B (en) 1988-07-18 1992-05-06 Magnetic oxide material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63205990A JP2620959B2 (en) 1988-08-19 1988-08-19 Low loss oxide magnetic material

Publications (2)

Publication Number Publication Date
JPH0254901A JPH0254901A (en) 1990-02-23
JP2620959B2 true JP2620959B2 (en) 1997-06-18

Family

ID=16516077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63205990A Expired - Lifetime JP2620959B2 (en) 1988-07-18 1988-08-19 Low loss oxide magnetic material

Country Status (1)

Country Link
JP (1) JP2620959B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688430A (en) * 1993-02-23 1997-11-18 Nippon Steel Corporation Soft ferrite raw material powder, its sintered body, and their production method and apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845163A (en) * 1981-09-10 1983-03-16 日立金属株式会社 Oxide magnetic material
JPS6065709A (en) * 1983-09-21 1985-04-15 Tadayoshi Karasawa Purification and decomposition of metal chloride solution
JPS6177304A (en) * 1984-09-21 1986-04-19 Sumitomo Special Metals Co Ltd Manufacture of mn-zn ferrite
JPS61236106A (en) * 1985-04-12 1986-10-21 Magune Kk Magnetic material of high resistance and density
JPS61256967A (en) * 1985-05-08 1986-11-14 住友特殊金属株式会社 Manufacture of mn-zn ferrite
JPS63151666A (en) * 1986-12-15 1988-06-24 京セラ株式会社 Mn-zn base oxide magnetic material and manufacture

Also Published As

Publication number Publication date
JPH0254901A (en) 1990-02-23

Similar Documents

Publication Publication Date Title
EP0707323B1 (en) Ferrite and ferrite core for switching power source
JP3968188B2 (en) Ferrite
EP1083158A2 (en) Magnetic ferrit material
JP2002231520A (en) MnZn FERRITE
JPH05335132A (en) Oxide magnetic body material
JPH06120022A (en) Oxide magnetic material
EP0445965B1 (en) Low power loss Mn-Zn ferrites
JPH06310320A (en) Oxide magnetic substance material
JP3597673B2 (en) Ferrite material
JP3490504B2 (en) Low-loss oxide magnetic material
JPH081844B2 (en) High frequency low loss ferrite for power supply
JP2620959B2 (en) Low loss oxide magnetic material
JP2003068516A (en) Mn-Zn-Ni FERRITE AND ITS MANUFACTURING METHOD
JPH08148322A (en) Oxide magnetic material and switching power supply employing the same
JPH07130527A (en) Oxide magnetic material
JPH0653023A (en) Oxide magnetic material
JP3790606B2 (en) Mn-Co ferrite material
US4985167A (en) Low-loss oxide magnetic material
JP2556917B2 (en) Manufacturing method of high frequency and low loss ferrite for power supply
JPH0710744B2 (en) Low loss oxide magnetic material
JPH10270231A (en) Mn-ni ferrite material
JP2802839B2 (en) Oxide soft magnetic material
JP2510788B2 (en) Low power loss oxide magnetic material
US3066102A (en) Ferrite containing neodymium
JPH1074612A (en) High-permeability oxide magnetic material