JP2620900B2 - High temperature pure water production equipment - Google Patents

High temperature pure water production equipment

Info

Publication number
JP2620900B2
JP2620900B2 JP29435691A JP29435691A JP2620900B2 JP 2620900 B2 JP2620900 B2 JP 2620900B2 JP 29435691 A JP29435691 A JP 29435691A JP 29435691 A JP29435691 A JP 29435691A JP 2620900 B2 JP2620900 B2 JP 2620900B2
Authority
JP
Japan
Prior art keywords
temperature
water
pure water
effect
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29435691A
Other languages
Japanese (ja)
Other versions
JPH05131188A (en
Inventor
司朗 井上
日出雄 末松
和則 木場
英隆 澤田
隆 平野
祥一 百瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP29435691A priority Critical patent/JP2620900B2/en
Publication of JPH05131188A publication Critical patent/JPH05131188A/en
Application granted granted Critical
Publication of JP2620900B2 publication Critical patent/JP2620900B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、たとえば、半導体工業
などの電子工業で使用される高温超純水や、精密工業や
自動車工業において今後フロンや有機溶剤洗浄の代替洗
浄液として広く用いられる高温純水の製造装置の改良に
関する。
The present invention relates to a high-temperature ultrapure water used in the electronics industry such as the semiconductor industry, and a high-temperature pure water widely used as an alternative cleaning solution for chlorofluorocarbons and organic solvents in the precision and automotive industries. The present invention relates to improvement of a water production apparatus.

【0002】[0002]

【従来の技術】従来、純水および超純水の製造方法とし
ては、膜分離法とイオン交換法をベースとするものが主
流であった。近年、図2に示す蒸留法が、プロセスが
シンプルである、メインテナンスの回数が少ない、
生産水の水質が一定している、洗浄力の強い高温の純
水ないし超純水を造水するのに適している、などの理由
で注目されている。図2中、(21)はドレンポンプ、(22)
は効用ポンプ、(23)は一次純水ポンプ、(24)は効用ポン
プ、(25)は二次純水ポンプ、(26)はUFモジュウル、(2
7)はUFモジュウルである。
2. Description of the Related Art Conventionally, as a method for producing pure water and ultrapure water, a method based on a membrane separation method and an ion exchange method has been mainly used. In recent years, the distillation method shown in FIG. 2 has a simple process, a small number of maintenances,
Attention has been paid to the fact that the quality of the produced water is constant, and it is suitable for producing high-temperature pure water or ultrapure water with strong detergency. In FIG. 2, (21) is a drain pump, (22)
Is a utility pump, (23) is a primary pure water pump, (24) is a utility pump, (25) is a secondary pure water pump, (26) is a UF module, (2)
7) is a UF module.

【0003】本発明は、蒸留法に基づく純水ないし超純
水製造装置の新技術を提供するものである。
The present invention provides a new technology of a pure water or ultrapure water production apparatus based on a distillation method.

【0004】[0004]

【発明が解決しようとする課題】蒸留法に基づく純水な
いし超純水製造装置では、水質向上技術以外に、熱効率
も高く保つことと、装置の規模および製造コストを左右
する伝熱面積を小さくすることとの相入れない二つの条
件を如何に両立させるかが、最も重要な技術的課題であ
る。
In a pure water or ultrapure water production apparatus based on a distillation method, in addition to a technique for improving water quality, a high heat efficiency is maintained, and a heat transfer area which affects the scale and production cost of the apparatus is reduced. The most important technical issue is how to balance the two conditions that conflict with each other.

【0005】本発明は、熱効率を低下させることなく、
高温純水ないし高温超純水製造装置の伝熱面積を低減す
る方策を提供するものである。
[0005] The present invention does not reduce the thermal efficiency,
It is intended to provide a measure for reducing the heat transfer area of a high-temperature pure water or high-temperature ultrapure water production apparatus.

【0006】また、製造水の温度は、半導体洗浄などの
用途において最適な洗浄効果を奏する温度に選定される
が、従来の技術では多重効用蒸留装置部分の設計条件が
その都度変った。
[0006] The temperature of the production water is selected so as to provide an optimum cleaning effect in applications such as semiconductor cleaning. However, in the prior art, the design conditions of the multi-effect distillation unit changed each time.

【0007】本発明は、製造水の温度に依らず多重効用
蒸留装置部分の設計条件が一定である高温純水製造装置
を提供するものである。
The present invention provides a high-temperature pure water producing apparatus in which the design conditions of a multi-effect distillation unit are constant irrespective of the temperature of produced water.

【0008】[0008]

【課題を解決するための手段】本発明による高温純水製
造装置は、多重効用蒸留装置を備えた高温純水製造装置
において、最終効用で発生した水蒸気を凝縮させる凝
縮器が、水蒸気凝縮温度を冷却水温度にできるだけ近づ
けるように低く設定するものであり、凝縮により生じた
中温度の純水または超純水を所定温度に加熱するヒータ
多重効用蒸留装置の外部に設けられていることを特徴
とするものである。
A high-temperature pure water producing apparatus according to the present invention is a high-temperature pure water producing apparatus provided with a multi-effect distillation apparatus, wherein a condenser for condensing steam generated in a final effect can has a steam condensing temperature. Is set as low as possible to the cooling water temperature, and a heater for heating the medium-temperature pure water or ultrapure water generated by condensation to a predetermined temperature is provided outside the multiple effect distillation apparatus. It is a feature.

【0009】図2の実線部分のみで構成される一次純水
製造システムでは、抵抗率として約15MΩ・cm程度
(25℃に冷却した時の値として)の純水が製造され
る。破線部分すなわち超純水製造システムを付加した装
置では(この場合、一次純水蒸留装置の冷却水循環ライ
ンおよび一次純水ポンプを有する一次純水取出しライン
は不要となる)、市水を原水として抵抗率18MΩ・c
m以上の超純水が製造される。
In the primary pure water production system constituted only by the solid line portion in FIG. 2, pure water having a resistivity of about 15 MΩ · cm (as a value when cooled to 25 ° C.) is produced. In an apparatus to which a broken line portion, that is, an ultrapure water production system is added (in this case, a cooling water circulation line of a primary pure water distillation apparatus and a primary pure water extraction line having a primary pure water pump are not required), city water is used as raw water and resistance is reduced. Rate 18MΩ ・ c
m or more of ultrapure water is produced.

【0010】これらの装置の一次純水蒸留装置部分およ
び超純水蒸留装置部分は、図3に示すような多重効用蒸
留装置となっている。図3では、説明の簡略化のため
に、イオン交換法などを用いた既存の純水装置で製造さ
れた1次純水を原水として超純水を製造する方式を例示
しているが、図2に示す2段階の蒸留法の組合せによる
方式の場合も、個々の蒸留装置において、作用は図3の
ものと同様となる。
[0010] The primary pure water distillation unit and the ultrapure water distillation unit of these units are multiple effect distillation units as shown in FIG. FIG. 3 exemplifies a method of producing ultrapure water using primary pure water produced by an existing pure water apparatus using an ion exchange method or the like as raw water for simplification of the description. In the case of the system based on the combination of the two-stage distillation methods shown in FIG. 2, the operation is the same as that of FIG. 3 in each distillation apparatus.

【0011】[0011]

【作用】本発明の高温純水製造装置によれば、最終効用
で発生した水蒸気を凝縮させる凝縮器において水蒸気
凝縮温度を冷却水温度にできるだけ近づけるように低く
設定して中温度の純水または超純水を造水し、ついで中
温度の純水または超純水をヒータによって所定温度に加
熱することによって、所望する高温純水ないし高温超純
水が製造せられる。
According to the high temperature pure water producing apparatus of the present invention, the final utility
In the condenser that condenses water vapor generated in the can , the water vapor condensation temperature is set as low as possible to the cooling water temperature to produce medium-temperature pure water or ultrapure water, and then medium-temperature pure water or ultrapure water. By heating water to a predetermined temperature by a heater, desired high-temperature pure water or high-temperature ultrapure water is produced.

【0012】[0012]

【実施例】次に、本発明の作用を実施例に基づき説明す
る。
Next, the operation of the present invention will be described based on an embodiment.

【0013】まず、比較のために、図4に示す従来技術
の作用を説明する。
First, the operation of the prior art shown in FIG. 4 will be described for comparison.

【0014】高温超純水の取出し温度としては、半導体
などの洗浄効果を高めかつ常時無菌状態を維持するため
に、60〜95℃程度の範囲が望ましく、この例では8
0℃とした。加熱蒸気の凝縮温度は、安全な大気圧凝縮
温度100℃にした。
The temperature for taking out high-temperature ultrapure water is preferably in the range of about 60 to 95 ° C. in order to enhance the cleaning effect of semiconductors and the like and maintain an aseptic state at all times.
0 ° C. The condensation temperature of the heated steam was set to a safe atmospheric condensation temperature of 100 ° C.

【0015】効用缶の数(効用数)は、熱効率を高くす
るためにはできるだけ多くするのが望ましいが、装置コ
ストを低くするためには少なくするのが望ましく、実用
的な効用数の例として5効用とした。この場合の熱効率
の例として造水比(=生産水量/加熱蒸気量=4が実際
的である。冷却水の温度は、国内における冷却塔の標準
的な設計条件に合わせて、入口で32℃、出口で37℃
とした。
The number of utility cans (utility number) is desirably as large as possible in order to increase the thermal efficiency, but is desirably small in order to reduce the cost of the apparatus. 5 effects. As a practical example of the thermal efficiency in this case, the desalination ratio (= production water volume / heating steam volume = 4) is practical. The temperature of the cooling water is 32 ° C. at the inlet according to the standard design conditions of the cooling tower in Japan. 37 ° C at the outlet
And

【0016】説明をより具体的にするために、超純水と
しての生産水量を1000kg/時として、この部分に
おける水の回収率を80%にすると、1次純水の供給量
1250kg/時、排水量250kg/時がそれぞれ定
まり、仮定した造水比から加熱蒸気量250kg/時が
定まる。
In order to make the description more concrete, if the amount of water produced as ultrapure water is 1000 kg / hour and the water recovery in this part is 80%, the supply amount of primary pure water is 1250 kg / hour. The drainage rate of 250 kg / hour is determined, and the heating steam rate of 250 kg / hour is determined from the assumed fresh water production ratio.

【0017】ここで、装置の規模および製造コストを左
右する要因となる伝熱面積を概かに検討するに当って、
説明の簡略化のために、各効用缶(予熱器も各効用毎に
組込まれる状態のものを考える)と凝縮器(1) における
熱交換量は等しいとみなし、総括伝熱係数も等しいとみ
なす(この仮定は、実際に超純水を製造するためには、
概か過ぎるが、本発明の作用を説明するには問題な
い)。
Here, in roughly examining the heat transfer area which is a factor affecting the scale and manufacturing cost of the apparatus,
For the sake of simplicity, it is assumed that the amount of heat exchange in each utility can (assuming the preheater is also installed in each utility) and the condenser (1) are equal, and that the overall heat transfer coefficient is also equal. (This assumption is that in order to actually produce ultrapure water,
Although too rough, there is no problem in explaining the operation of the present invention).

【0018】そうすれば、各効用缶および凝縮器の伝熱
面積は、各効用における伝熱温度差に逆比例することに
なる。
Then, the heat transfer area of each effect can and the condenser is inversely proportional to the heat transfer temperature difference in each effect.

【0019】効用缶における平均温度差(ΔTE )は、 ΔTE =(Ts −Tw2)/N=(100−80)/5=4℃ ここで、Ts は加熱蒸気の凝縮温度 Tw2は凝縮器における凝縮温度 Nは効用数 をそれぞれ意味する。The average temperature difference (ΔT E ) in the utility can is as follows: ΔT E = (T s −T w2 ) / N = (100−80) / 5 = 4 ° C. where T s is the condensing temperature T of the heated steam. w2 is the condensation temperature in the condenser N is the utility number, respectively.

【0020】凝縮器における温度差は、The temperature difference in the condenser is

【0021】[0021]

【式1】(Equation 1)

【0022】 [0022]

【0023】全伝熱面積はThe total heat transfer area is

【0024】[0024]

【式2】(Equation 2)

【0025】 [0025]

【0026】ここで、QM は各効用における伝熱量 Uは平均総括伝熱係数 aA は単位伝熱量、単位熱抵抗当たりの伝熱面積 をそれぞれ意味する。Here, Q M is the heat transfer amount in each utility U is the average overall heat transfer coefficient a A is the unit heat transfer amount and the heat transfer area per unit heat resistance, respectively.

【0027】凝縮器からの熱排気量は全体のヒートバラ
ンスよりQc=66,000kcal/時となる。
The amount of heat exhausted from the condenser is Qc = 66,000 kcal / hour from the overall heat balance.

【0028】本発明の一例を図1に基づき具体的に説明
する。
An example of the present invention will be specifically described with reference to FIG.

【0029】本発明による超純水製造装置は多重効用蒸
留装置から成る。多重効用蒸留装置は、多重効用蒸留器
(2) 、複数の効用ポンプ(9) 、超純水ポンプ(10)および
真空装置(4) から主として構成されている。
The apparatus for producing ultrapure water according to the present invention comprises a multiple effect distillation apparatus. A multi-effect distillation device is a multi-effect distillation device
(2) It mainly comprises a plurality of utility pumps (9), an ultrapure water pump (10) and a vacuum device (4).

【0030】一次純水は蒸留器(2) 内の各効用缶を縦貫
する予熱管(5) に供給され、各効用缶の垂直の伝熱管
(7) 内で発生した水蒸気の一部の凝縮潜熱を受けて加熱
され、さらに、第1効用缶内の予熱管(5) で加熱蒸気の
一部の凝縮潜熱を受けて125℃以上の所定温度に加熱
され、第1効用缶底部の水溜部(13)に入る。水溜部(13)
に入った供給水は、伝熱管(7) 内で水蒸気を発生した残
りの濃縮液と混合し、この混合液の大部分は循環ポンプ
(6) を介して第1効用缶上部に配置された上部水室(3)
に供給される。この混合液は、伝熱管(7) 内を薄膜状に
流下し、管外面から加熱蒸気の大部分の凝縮潜熱を受け
て125℃以上の温度で蒸発し水蒸気を発生する。水蒸
気を発生した濃縮液は水溜部(13)に流下し、前記の如く
供給水と混合し、その大部分は循環ポンプ(6) を介して
上部水室(3) に送られる。
The primary pure water is supplied to a preheating tube (5) running through each effect can in the still (2), and a vertical heat transfer tube of each effect can is provided.
(7) Heated by receiving a part of the latent heat of condensation of the water vapor generated in the tank, and further heated by a preheating pipe (5) in the first effect can receiving part of the latent heat of condensation of the heated steam to a temperature of 125 ° C or higher. It is heated to a temperature and enters the water reservoir (13) at the bottom of the first effect can. Pool (13)
The supplied water is mixed with the remaining concentrate that has generated steam in the heat transfer tube (7), and most of this mixture is
Upper water chamber located above the first utility can through (6) (3)
Supplied to This mixed solution flows down in a thin film form in the heat transfer tube (7), receives most of the latent heat of condensation of the heated steam from the outer surface of the tube, and evaporates at a temperature of 125 ° C. or more to generate steam. The concentrated liquid that has generated steam flows down to the water reservoir (13), mixes with the supply water as described above, and most of it is sent to the upper water chamber (3) via the circulation pump (6).

【0031】残りの混合液は連通口(14)を通って第2効
用缶水溜部(13)に入り、ここで上記と同じく伝熱管(7)
内を流下する濃縮液と混合し、その大部分は第2効用缶
の循環ポンプ(6) を介して第2効用缶上部水室(3) に送
られる。
The remaining liquid mixture enters the second effect can reservoir (13) through the communication port (14), where the heat transfer tube (7) is again provided.
The mixture is mixed with the concentrated liquid flowing down, and most of the mixture is sent to the second effect can upper water chamber (3) via the second effect can circulation pump (6).

【0032】第1効用缶の伝熱管(7) で発生した水蒸気
はミストセパレータ(15)を経て第2効用缶に入る。水蒸
気に同伴するミストが極めて微量になるように、ミスト
セパレータ(15)でミストが除去される。こうして純粋化
された水蒸気の大部分は第2効用缶の伝熱管(7) 外面で
凝縮し、凝縮液は第2効用缶内の凝縮液収集部(図示せ
ず)に二次純水すなわち超純水として収容される。残余
の水蒸気は第2効用缶予熱管(5) 外面で凝縮し、凝縮液
は凝縮液収集部で伝熱管(7) からの凝縮液と混合し、そ
の全部が第3効用缶内の凝縮液収集部へ二次純水すなわ
ち超純水として入る。第n効用缶で発生した蒸気は、ミ
ストセパレータ(15)でミスト除去された後、予熱管(5)
の外表面および凝縮器(1) の伝熱管外表面で凝縮し、最
終効用缶の二次純水溜部(11)に超純水として収容され
る。
The steam generated in the heat transfer tube (7) of the first effect can enters the second effect can via the mist separator (15). The mist is removed by the mist separator (15) so that the mist accompanying the water vapor becomes extremely small. Most of the purified water vapor is condensed on the outer surface of the heat transfer tube (7) of the second effect can, and the condensate is collected in the condensate collecting section (not shown) in the second effect can, ie, the secondary pure water, that is, It is stored as pure water. The remaining water vapor is condensed on the outer surface of the second effect can preheating tube (5), and the condensate is mixed with the condensate from the heat transfer tube (7) in the condensate collecting section, and all of the condensate is contained in the third effect can. The secondary water or ultrapure water enters the collection unit. The steam generated in the n-th utility can, after the mist is removed by the mist separator (15), the preheating tube (5)
Is condensed on the outer surface of the heat exchanger and the outer surface of the heat transfer tube of the condenser (1), and is stored as ultrapure water in the secondary pure water reservoir (11) of the final utility can.

【0033】こうして前記のプロセスを各効用缶毎に繰
り返し、最終的に凝縮液は蒸留器第n効用缶に近接した
凝縮器(1) の下の二次純水溜部(11)に集められ、ここよ
り超純水ポンプ内を介して極めて純度の高い超純水とし
て導出される。
Thus, the above process is repeated for each effect can, and finally the condensate is collected in the secondary pure water reservoir (11) below the condenser (1) close to the n-th effect can of the still, From here, it is derived as ultrapure water of extremely high purity through the ultrapure water pump.

【0034】この実施例では、最終効用で発生した水
蒸気を凝縮させる凝縮器(1) は、水蒸気凝縮温度を冷却
水温度にできるだけ近づけるように低く設定するもので
あり、凝縮により生じた中温度の純水または超純水を所
定温度に加熱するヒータ(16)が多重効用蒸留装置の外部
設けられている。そして、利用できる冷却水温度を考
慮して、凝縮器(1) における凝縮温度を下げて、各効用
缶および凝縮器(1) の伝熱温度差をほぼ等しくし、取出
した超純水を別途超純水ヒータ(16)で80℃の高温超純
水に加熱している。その他の条件は、図4の場合の条件
と同じである。
In this embodiment, the condenser (1) for condensing the water vapor generated in the final utility can is set so that the water vapor condensation temperature is as low as possible to the cooling water temperature, and the medium temperature generated by the condensation is reduced. A heater (16) for heating pure water or ultrapure water to a predetermined temperature is provided outside the multi-effect distillation apparatus.
It is provided in. In consideration of the available cooling water temperature, the condensation temperature in the condenser (1) is lowered to make the heat transfer temperature difference between each effect can and the condenser (1) substantially equal, and the ultrapure water taken out is separately separated. It is heated to a high temperature ultrapure water of 80 ° C by an ultrapure water heater (16). Other conditions are the same as those in FIG.

【0035】凝縮器における冷却水の平均温度をTCM
1/2 (Tcw1 +Tcw2 )とし、凝縮器における伝熱温度
差を近似的にΔT=Tw2−TCMとおくと、各効用缶お
よび凝縮器における平均伝熱温度差は、である。
The average temperature of the cooling water in the condenser is represented by T CM =
Assuming that the heat transfer temperature difference in the condenser is approximately ΔT c = T w2 −T CM , the average heat transfer temperature difference in each effect can and the condenser is as follows : 1/2 (T cw1 + T cw2 ) .

【0036】[0036]

【式3】(Equation 3)

【0037】 [0037]

【0038】図1に示す実施例の場合の凝縮温度は、図
4に示す従来技術の場合の凝縮温度80℃に比べて、T
W2=TCM ΔTC =34.5+10.9=45.4℃と
低くなり、凝縮潜熱が大きくなって同一の凝縮量に対す
る交換熱量が大きくなることのみを補正すると、 Q'c=Qc ・(Δh45.4℃/Δh80℃)=66,000×572 /551.5 =68,453Kcal/時 となる。
The condensation temperature of the embodiment shown in FIG. 1 is higher than the condensation temperature of 80 ° C. of the prior art shown in FIG.
W2 = T CM + ΔT C = 34.5 + 10.9 = 45.4 ℃ and lower, when correcting only the heat exchange rate is increased for the same amount of condensation in the condensation latent heat increases, Q'c = Qc · (Δh45.4 ° C / Δh80 ° C) = 66,000 x 572 / 551.5 = 68,453 Kcal / hour.

【0039】全体のヒートバランスから 加熱熱量(=Qs'' )=凝縮器からの熱排気量+水の持出し熱量 =Q' C +Fw ・(Tw2−Tw1)・Cw =68,453+1250×(45.4 −25) ×1.0 =68,453+25,500=93,953Kcal/時 加熱蒸気量(効用缶)=Qs'/Δh 100℃=93,953/539 =174.3 kg/時 超純水ヒータにおける加熱量QH =1000(80-45.4)1.0 =34,600Kcal/時 超純水ヒータにおける加熱蒸気量=64.2kg/時 全加熱量=Qs'' +QH =93,953+34,600=128,553 Kcal/時 全加熱水蒸気量=238.5kg /時 各効用缶および凝縮器における平均伝熱量QM ' = 1/2 (Qs'' +Qc') = 1/2 (93,953+68,453) =81,203Kcal/時 本発明における全伝熱面積はThe amount of heat from the overall heat balance (= Qs'') = thermal emissions from the condenser + takeout heat = Q water' C + Fw · (T w2 -T w1) · Cw = 68,453 + 1250 × (45.4 -25) × 1.0 = 68,453 + 25,500 = 93,953Kcal / h heating steam quantity (effect evaporator) = Qs' / Δh 100 ℃ = 93,953 / 539 = 174.3 kg / time heating amount Q H = 1000 in ultrapure water heater ( 80-45.4) 1.0 = 34,600Kcal / time heating steam quantity in ultrapure water heater = 64.2kg / when the total heating amount = Qs '' + Q H = 93,953 + 34,600 = 128,553 Kcal / when the total heating amount of water vapor = 238.5kg / when the average amount of transferred heat Q M '= 1/2 (Qs' in each effect evaporator and condenser '+ Qc') = 1/2 ( 93,953 + 68,453) = 81,203Kcal / when the total heat transfer area in the present invention

【0040】[0040]

【式4】(Equation 4)

【0041】 [0041]

【0042】である。Is as follows.

【0043】以上のまとめとして、図1に示す本発明の
実施例によれば、図4に示す従来の方法に比べ、伝熱面
積は、
In summary, according to the embodiment of the present invention shown in FIG. 1, the heat transfer area is smaller than that of the conventional method shown in FIG.

【0044】[0044]

【式5】(Equation 5)

【0045】 [0045]

【0046】となり、 加熱蒸気量はQs'/Qs =128,553 /134,700 =0.954
(4.6 %減) となる。
The heating steam amount is Qs' / Qs = 128,553 / 134,700 = 0.954.
(A 4.6% decrease).

【0047】即ち、加熱水蒸気量を増加させることなく
(実際にはわずかではあるが減少する)、全伝熱面積を
大幅に減少させることが可能である。
That is, it is possible to greatly reduce the total heat transfer area without increasing the amount of heated steam (actually but slightly).

【0048】[0048]

【発明の効果】本発明の高温純水製造装置によれば、最
終効用で発生した水蒸気を凝縮させる凝縮器において
水蒸気凝縮温度を冷却水温度にできるだけ近づけるよう
に低く設定して中温度の純水または超純水を造水し、つ
いで中温度の純水または超純水をヒータによって所定温
度に加熱することによって、所望する高温純水ないし高
温超純水を製造することができる。
According to the high-temperature pure water producing apparatus of the present invention, in the condenser for condensing the steam generated in the final utility can , the steam condensing temperature is set low so as to be as close as possible to the cooling water temperature, and the medium temperature pure water is set. By producing water or ultrapure water and then heating the medium temperature pure water or ultrapure water to a predetermined temperature by a heater, desired high temperature pure water or high temperature ultrapure water can be produced.

【0049】その結果、下記の事項が可能である。As a result, the following items are possible.

【0050】・上記実施例とは逆に、全伝熱面積を変え
ないで、効用数を増加させることによって、大幅に熱効
率を上昇させることも可能である。
Contrary to the above embodiment, it is possible to greatly increase the thermal efficiency by increasing the number of utilities without changing the total heat transfer area.

【0051】・また、それらの中間的な方法として、熱
効率もある程度上昇させ、同時に全伝熱面積をある程度
減少させることもできる。
As an intermediate method between them, the thermal efficiency can be increased to some extent, and at the same time, the total heat transfer area can be reduced to some extent.

【0052】・高温超純水の取出し温度の要求が変って
も、超純水ヒータの設計を変えるのみでよい。
Even if the requirement for the temperature for taking out high-temperature ultrapure water changes, it is only necessary to change the design of the ultrapure water heater.

【0053】・市水から高温純水をつくる場合や、市水
から2段階蒸留によって高温超純水をつくる場合につい
ても、同様な作用が可能なことは明らかである。
It is clear that the same effect can be obtained when producing high-temperature pure water from city water or when producing high-temperature ultrapure water from city water by two-stage distillation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示すフローシートである。FIG. 1 is a flow sheet showing an embodiment of the present invention.

【図2】従来の超純水製造方法を示す形体を示すフロー
シートである。
FIG. 2 is a flow sheet showing a configuration showing a conventional ultrapure water production method.

【図3】従来の超純水製造方法を示す形体を示すフロー
シートである。
FIG. 3 is a flow sheet showing a configuration showing a conventional ultrapure water production method.

【図4】従来の超純水製造方法を示す形体を示すフロー
シートである。
FIG. 4 is a flow sheet showing a form showing a conventional ultrapure water production method.

【符号の説明】[Explanation of symbols]

1 凝縮器 2 多重効用蒸留器 16 ヒータ DESCRIPTION OF SYMBOLS 1 Condenser 2 Multiple effect still 16 Heater

フロントページの続き (72)発明者 澤田 英隆 大阪市此花区西九条5丁目3番28号 日 立造船株式会社内 (72)発明者 平野 隆 大阪市此花区西九条5丁目3番28号 日 立造船株式会社内 (72)発明者 百瀬 祥一 大阪市此花区西九条5丁目3番28号 日 立造船株式会社内Continuation of the front page (72) Inventor Hidetaka Sawada 5-3-28 Nishikujo, Konohana-ku, Osaka-shi Inside Tachibashi Shipbuilding Co., Ltd. (72) Inventor Takashi Hirano 5-28-28 Nishikujo, Konohana-ku, Osaka-shi Hitachi Inside Shipbuilding Co., Ltd. (72) Inventor Shoichi Momose 5-3-28 Nishikujo, Konohana-ku, Osaka

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 多重効用蒸留装置を備えた高温純水製造
装置において、最終効用で発生した水蒸気を凝縮させ
る凝縮器が、水蒸気凝縮温度を冷却水温度にできるだけ
近づけるように低く設定するものであり、凝縮により生
じた中温度の純水または超純水を所定温度に加熱するヒ
ータが多重効用蒸留装置の外部に設けられていることを
特徴とする高温純水製造装置。
1. A high-temperature pure water producing apparatus provided with a multiple-effect distillation apparatus, wherein a condenser for condensing steam generated in a final-effect can is set to have a low steam condensing temperature as close as possible to a cooling water temperature. A high-temperature pure water production apparatus, wherein a heater for heating medium-temperature pure water or ultrapure water generated by condensation to a predetermined temperature is provided outside the multiple effect distillation apparatus.
JP29435691A 1991-11-11 1991-11-11 High temperature pure water production equipment Expired - Lifetime JP2620900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29435691A JP2620900B2 (en) 1991-11-11 1991-11-11 High temperature pure water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29435691A JP2620900B2 (en) 1991-11-11 1991-11-11 High temperature pure water production equipment

Publications (2)

Publication Number Publication Date
JPH05131188A JPH05131188A (en) 1993-05-28
JP2620900B2 true JP2620900B2 (en) 1997-06-18

Family

ID=17806653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29435691A Expired - Lifetime JP2620900B2 (en) 1991-11-11 1991-11-11 High temperature pure water production equipment

Country Status (1)

Country Link
JP (1) JP2620900B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2860987B1 (en) * 2003-10-15 2006-02-24 Cheng Ming Chou MULTI-STEP PROCESS FOR DISTILLATION, COOLING AND VACUUM FREEZING
CN100391570C (en) * 2006-04-30 2008-06-04 周堃 A multi-effect distilling method for desalt and condensation and device

Also Published As

Publication number Publication date
JPH05131188A (en) 1993-05-28

Similar Documents

Publication Publication Date Title
US6984292B2 (en) Water treatment process for thermal heavy oil recovery
US3203875A (en) Apparatus for distilling water with waste heat
US20090218210A1 (en) Energy-efficient distillation system
CN104190258B (en) Liquid gap multiple-effect membrane distillation technique and device thereof
JP2002515336A (en) Mechanical vapor recompression process
CN1086006A (en) Triple effect absorption heat exchahger
US3843463A (en) Evaporative method
US3522151A (en) Distillation apparatus with spray chamber and air circulating means
US4329204A (en) Multiple effect thin film distillation system
US3583895A (en) Evaporation using vapor-reheat and multieffects
CN103316588A (en) Multiple-effect membrane distillation device and method
CN101028918B (en) Recovery of hydrofluoric acid
CN105110396B (en) Method and device for continuously separating low-boiling point substances in wastewater produced by extraction of natural gas and shale gas
JP2620900B2 (en) High temperature pure water production equipment
WO2001072638A1 (en) Desalination device
Awerbuch Desalination technology: An overview
CN106629938A (en) Four-effect vacuum energy-saving evaporative crystallization system for high-concentration saline wastewater
US11465068B2 (en) Multi-stage flash (MSF) reversal system and method
US3961658A (en) Sea water desalination apparatus
US4366027A (en) Device for distillation or concentration of a solution and more particularly for desalination of a saline solution such as sea water
CN206027114U (en) Humidification dehumidification system
CN108815869A (en) Liquid-purifying device
US3457143A (en) Method for multiple effect flash evaporation and contact condensation
CN106730942A (en) A kind of salt organic waste water low-temperature evaporation crystallization apparatus high
Low et al. Vacuum desalination using waste heat from a steam turbine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961210