JP2618984B2 - Pulse Doppler radar device - Google Patents

Pulse Doppler radar device

Info

Publication number
JP2618984B2
JP2618984B2 JP63138935A JP13893588A JP2618984B2 JP 2618984 B2 JP2618984 B2 JP 2618984B2 JP 63138935 A JP63138935 A JP 63138935A JP 13893588 A JP13893588 A JP 13893588A JP 2618984 B2 JP2618984 B2 JP 2618984B2
Authority
JP
Japan
Prior art keywords
agc
setting
amount
receiving system
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63138935A
Other languages
Japanese (ja)
Other versions
JPH01307682A (en
Inventor
俊二 田中
信博 武内
裕 木之下
正信 津藤
正樹 安福
和巳 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63138935A priority Critical patent/JP2618984B2/en
Publication of JPH01307682A publication Critical patent/JPH01307682A/en
Application granted granted Critical
Publication of JP2618984B2 publication Critical patent/JP2618984B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、FFTで構成されるドプラフイルタを有す
るパルスドプラレーダ装置に関し、特にそのドプラフイ
ルタへのデータ入力設定期間に着目し、その設定期間を
処理単位として、受信系飽和による相互変調で生じる誤
目標の発生を抑えることを目的とした、AGCの掛け方の
改良に関するものである。
Description: TECHNICAL FIELD The present invention relates to a pulse Doppler radar device having a Doppler filter constituted by an FFT, and particularly focuses on a data input setting period to the Doppler filter, and sets the setting period. The present invention relates to an improvement in the method of applying AGC for the purpose of suppressing generation of an erroneous target caused by intermodulation due to reception system saturation as a processing unit.

〔従来の技術〕[Conventional technology]

従来技術としてのパルスドプラレーダ装置およびIAGC
(Instantaneous AGC)の例を第3図および第4図にそ
れぞれ示す。第3図は例えば電子通信学会発行の文献
「レーダ技術(その2)」12.3章の図12.6に、第4図は
マグロウヒル ブツクカンパニー発行の文献「レーダー
ハンドブック」(“RADAR HANDBOOK")の図21にそれ
ぞれ類似の回路が示されている。
Conventional pulsed Doppler radar and IAGC
Examples of (Instantaneous AGC) are shown in FIGS. 3 and 4, respectively. Fig. 3 is a diagram of the document "Radar Technology (No. 2)" published by the Institute of Electronics and Communication Engineers, for example, Fig. 12.6 of Chapter 12.3, and Fig. 4 is a diagram of the document "Radar Handbook"("RADARHANDBOOK") published by McGraw-Hill Book Company. Similar circuits are shown in each case.

第3図において、(1)はアンテナ、(2)は送受切
換器、(3)は送信機、(4)はIF増幅器で、検波器
(6)とともに受信系を構成している。(9)はレンジ
ゲート、(10)はnポイントFFTより構成されるドプラ
フイルタ、(11)はドプラフイルタ(10)に接続された
検出器群である。
In FIG. 3, (1) is an antenna, (2) is a transmission / reception switch, (3) is a transmitter, (4) is an IF amplifier, and constitutes a reception system together with a detector (6). (9) is a range gate, (10) is a Doppler filter composed of an n-point FFT, and (11) is a detector group connected to the Doppler filter (10).

第4図は、第3図のIF増幅器(4)と検波器(6)と
の間にATT(ATTenuater)回路(5)を挿入するととも
に、検波器(6)の出力に応じて瞬時にATT回路(5)
を調整し受信系利得を調整するATT制御回路(12)を追
加して構成されるIAGCである。
FIG. 4 shows that an ATT (ATTenuater) circuit (5) is inserted between the IF amplifier (4) and the detector (6) in FIG. 3, and the ATT is instantaneously changed according to the output of the detector (6). Circuit (5)
This is an IAGC that is configured by adding an ATT control circuit (12) that adjusts the gain and adjusts the reception system gain.

次に動作について説明する。 Next, the operation will be described.

送信機(3)にて発生した送信波は送受切換器(2)
からアンテナ(1)を経て空中に放射され、目標にて反
射され受信波として再びアンテナ(1)から送受切換器
(2)を通り、IF増幅器(4)にて増幅され、検波器
(6)にて受信ビデオ信号となる。受信ビデオ信号はレ
ンジゲート(9)にて時間軸上で選別され、ドプラフイ
ルタ(10)に入力される。
The transmission wave generated by the transmitter (3) is transmitted and received by the transmission / reception switch (2).
From the antenna (1), is radiated into the air via the antenna (1), is reflected by the target, is received again as a reception wave, passes through the transmission / reception switch (2) from the antenna (1), is amplified by the IF amplifier (4), and is detected by the detector (6) Is a received video signal. The received video signal is selected on the time axis by the range gate (9) and input to the Doppler filter (10).

今、説明を簡単にするために、目標は2個とし、同一
距離Rにあつてそれぞれf1,f2なるドプラ周波数を有し
ていると仮定する(以後、受信波は上記内容の信号とす
る)。
For the sake of simplicity, it is assumed that the number of targets is two and the Doppler frequencies are f 1 and f 2 at the same distance R. Do).

上記2目標よりの受信波にて受信系が飽和していなけ
れば、受信ビデオは第5図(a)に示すごとく、時間軸
上ではf1,f2のビート周波数として現れる。レンジゲー
ト(9)は距離R相当の時刻より、レーダパルス繰返し
周期Tごとにn個のデータサンプリングを行い、これを
処理単位(以後バーストと称する)として、nポイント
FFTにて構成されるドプラフイルタ(10)へ送出する。
ドプラフイルタ(10)で受信ビデオは第5図(b)に示
すごとくドプラ周波数f1,f2に分離され、検出器群(1
1)でそれぞれが検出される。
If the receiving system is not saturated with the received waves from the two targets, the received video appears on the time axis as beat frequencies f 1 and f 2 as shown in FIG. 5 (a). The range gate (9) performs n data samplings at every radar pulse repetition period T from the time corresponding to the distance R, and uses this as a processing unit (hereinafter referred to as a burst) for n points.
Send to the Doppler filter (10) composed of FFT.
The received video is separated by the Doppler filter (10) into Doppler frequencies f 1 and f 2 as shown in FIG.
Each is detected in 1).

しかし、受信波が受信系を飽和させる程に強力な場合
は、受信ビデオは第6図(a)に実線で示すごとく、時
間軸上で歪み、相互変調を起こし、ドプラフイルタ(1
0)出力にはf1,f2以外に同図(b)に示すごとく2f1−f
2,2f2−f1の不要波を生じる。これらの不要波は検出器
群(11)で誤目標として検出される恐れがある。
However, if the received wave is strong enough to saturate the receiving system, the received video will be distorted on the time axis and cause intermodulation as shown by a solid line in FIG.
0) In addition to f 1 and f 2 , the output is 2f 1 −f as shown in FIG.
2, resulting in unnecessary wave of 2f 2 -f 1. These unnecessary waves may be detected as wrong targets by the detector group (11).

そこで、受信系を飽和させない方法としてAGCを考慮
する必要があるが、従来この種の方法としては第4図に
示すようなIAGCがあつた。IAGCは同図に示すごとく検波
器(6),ATT制御回路(12)およびATT回路(5)から
なる制御ループにて、検波器(6)出力に応じて瞬時に
ATT回路(5)のATT量を設定し、受信系の利得制御を行
うものである。しかるにこの方法では先に述べたバース
ト期間において、n個のデータサンプリングの受信系利
得が検波器(6)出力にて変化するため、各データで同
一とはならず、第6図と同様に時間波形を歪ませ、周波
数軸で不要波を発生させてしまう。
Therefore, it is necessary to consider AGC as a method of not saturating the receiving system. Conventionally, an IAGC as shown in FIG. 4 has been provided as this type of method. The IAGC is instantaneous according to the output of the detector (6) in a control loop composed of the detector (6), the ATT control circuit (12) and the ATT circuit (5) as shown in FIG.
The ATT amount of the ATT circuit (5) is set, and gain control of the receiving system is performed. However, in this method, the reception system gain of the n data samplings changes at the output of the detector (6) during the burst period described above, so that the data does not become the same, and the time becomes the same as in FIG. The waveform is distorted, and unnecessary waves are generated on the frequency axis.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

このように従来のIAGCを、パルスドプラレーダ装置の
ように周波数軸上で検出を行うレーダ装置と組合わせ
て、受信系の利得制御を瞬時に行おうとすると、バース
ト期間、即ちnポイントFFTのデータ設定期間(n・
T)内で各データの受信系利得が異なり、波形歪みによ
り相互変調が生じて、FFT出力に不要波が現れ、誤目標
として検出されるという問題点があつた。
As described above, when the conventional IAGC is combined with a radar apparatus that performs detection on the frequency axis like a pulse Doppler radar apparatus, when the gain control of the receiving system is performed instantaneously, the burst period, that is, data setting of the n-point FFT is performed. Period (n.
In T), the receiving system gain of each data is different, and intermodulation occurs due to waveform distortion, an unnecessary wave appears in the FFT output, and there is a problem that it is detected as an erroneous target.

この発明は上記のような従来のものの問題点を解消す
るためになされたもので、IAGCとは異なる方法にて実現
され、パルスドプラレーダ装置のように周波数軸上で目
標検出を行うレーダ装置においても使用できるAGCをも
つパルスドプラレーダ装置を得ることを目的としてい
る。
The present invention has been made in order to solve the above-described problems of the related art, and is realized by a method different from the IAGC, and is also applicable to a radar apparatus that performs target detection on a frequency axis such as a pulse Doppler radar apparatus. The purpose is to obtain a pulsed Doppler radar device having an AGC that can be used.

〔課題を解決するための手段〕[Means for solving the problem]

この発明に係るパルスドプラレーダ装置は、nポイン
トFFT(Fast Fourier Transform)により構成されるド
プラフィルタを用いて目標検出を行なうパルスドプラレ
ーダ装置において、上記ドプラフィルタへのデータ入力
設定期間を処理単位とし、該処理単位の間の受信系の飽
和レベルを検出する飽和レベル検出手段と、該飽和レベ
ルに応じてAGC(Automatic Gain Control)量を設定
し、該設定したAGC量を次の処理単位期間中一定として
上記受信系に設定するAGC量設定手段と、該AGC量設定手
段のAGC量設定に応じて上記受信系の信号を減衰し強力
な受信信号による該受信系の飽和を防止する減衰手段と
を備えたものである。
A pulse Doppler radar device according to the present invention is a pulse Doppler radar device that performs target detection using a Doppler filter configured by an n-point FFT (Fast Fourier Transform), wherein a data input setting period to the Doppler filter is set as a processing unit. A saturation level detecting means for detecting a saturation level of the receiving system between processing units, and setting an automatic gain control (AGC) amount in accordance with the saturation level, and setting the set amount of AGC constant during the next processing unit period AGC amount setting means for setting the receiving system, and attenuating means for attenuating the signal of the receiving system according to the AGC amount setting of the AGC amount setting means and preventing saturation of the receiving system due to a strong received signal. It is a thing.

〔作用〕[Action]

この発明においては、AGCは受信波の飽和レベルを検
出し、バースト期間ごとにそのAGC量を設定し、次のバ
ースト期間中にその一定のAGC量で受信系利得を設定す
るようにしたので、受信系の飽和による相互変調で生じ
る誤目標の発生を抑え、パルスドプラレーダ装置の検出
性能低下を防止する。
In the present invention, the AGC detects the saturation level of the received wave, sets the AGC amount for each burst period, and sets the receiving system gain at the constant AGC amount during the next burst period. An erroneous target caused by intermodulation due to saturation of the receiving system is suppressed, and a decrease in detection performance of the pulse Doppler radar device is prevented.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例によるパルスドプラレーダ
装置を示し、図において、(1)〜(4),(6)およ
び(9)〜(11)は従来のパルスドプラレーダ装置のも
のと、(5)はIAGCのものとそれぞれ同じものである。
また(7)は受信波のレベルが受信系で相互変調の生じ
ない最大入力レベルより大きな場合、その飽和レベルを
検出する飽和レベル検出器(飽和レベル検出手段)、
(8)は飽和レベル検出器(7)の検出値のバースト期
間内最大値を記憶し、その最大値をAGC制御量としてATT
回路(5)を設定する最大値記憶回路(AGC量設定手
段)である。
FIG. 1 shows a pulse Doppler radar apparatus according to an embodiment of the present invention. In the figure, (1) to (4), (6) and (9) to (11) show a conventional pulse Doppler radar apparatus, 5) is the same as that of IAGC, respectively.
(7) a saturation level detector (saturation level detection means) for detecting the saturation level when the level of the received wave is higher than the maximum input level at which no intermodulation occurs in the reception system;
(8) stores the maximum value of the detection value of the saturation level detector (7) in the burst period, and uses the maximum value as the AGC control amount.
This is a maximum value storage circuit (AGC amount setting means) for setting the circuit (5).

次に動作について説明する。 Next, the operation will be described.

第1図において、レーダが送信してから受信波を受
け、送受切換器(2)を出るまでの動作は、従来と同一
のため省略する。
In FIG. 1, the operation from the transmission of the radar to the reception of the received wave and the exit from the transmission / reception switch (2) is the same as that of the conventional art, and therefore the description thereof is omitted.

送受切換器(2)を通過した受信波は2分され、一方
は飽和レベル検出器(7)へ入力される。飽和レベル検
出器(7)では、受信波入力レベルが受信系最大入力レ
ベルより大きな場合、その飽和レベルを検出し最大値記
憶回路(8)へ送出している。
The received wave that has passed through the transmission / reception switch (2) is split into two, and one is input to the saturation level detector (7). When the received wave input level is higher than the maximum input level of the receiving system, the saturation level detector (7) detects the saturation level and sends it to the maximum value storage circuit (8).

最大値記憶回路(8)では、バースト期間を一処理単
位として、飽和レベル検出器(7)より送られてくる飽
和レベルの中より最大値を記憶し、この最大値によりAT
T回路(5)を制御するに必要なAGC量を設定する。
The maximum value storage circuit (8) stores the maximum value from among the saturation levels sent from the saturation level detector (7) with the burst period as one processing unit, and uses the maximum value to set the AT.
The AGC amount required to control the T circuit (5) is set.

以上に述べた動作を今、第2図に示すバースト(1)
において行うものとすると、バースト(1)における最
大値記憶回路(8)のバースト(1)期間中のAGC制御
量はATT1となる。この制御量ATT1は次のバースト(2)
において、そのバースト期間中ATT回路(5)を設定す
るのに用いられ、受信系の飽和をバースト(2)期間に
ついて防止し、第5図同様相互変調による不要波の発生
を抑え、パルスドプラレーダ装置の検出性能低下を防止
する。
The operation described above is now described in burst (1) shown in FIG.
In this case, the AGC control amount during the burst (1) of the maximum value storage circuit (8) in the burst (1) is ATT1. This control amount ATT1 is the next burst (2)
In the burst period, the ATT circuit (5) is used during the burst period to prevent the saturation of the receiving system for the burst (2) period, suppress the generation of unnecessary waves due to intermodulation as in FIG. To prevent the detection performance from decreasing.

以後同様に1バースト前にて設定されたAGC制御量に
て、次のバースト期間内でATT回路を制御し、受信系の
飽和を防ぐAGCとして動作する。
Thereafter, similarly, the ATT circuit is controlled within the next burst period with the AGC control amount set one burst before, and operates as an AGC that prevents saturation of the reception system.

また上記実施例の他に、 (i)バースト期間(=処理単位)の設定の仕方につい
て、 nポイントFFTの出力データを積分処理している場合
は、その積分回数をm回とすれば、バースト期間をm・
n・Tとすることで第2図のn・Tの場合に比べ時間軸
波形のサンプリング期間が増大し、受信波の飽和レベル
最大値の設定精度(最大値記憶回路(8)にて設定する
AGC制御量)が向上する(第7図参照)。
In addition to the above embodiment, (i) the method of setting the burst period (= processing unit) is as follows. When the output data of the n-point FFT is integrated, if the number of integrations is m, the burst The period is m
By using n · T, the sampling period of the time axis waveform is increased as compared with the case of n · T in FIG. 2, and the setting accuracy of the maximum saturation level of the received wave (set by the maximum value storage circuit (8))
AGC control amount) is improved (see FIG. 7).

(ii)AGC設定量について、 バースト期間内の受信波最大飽和レベルを用いる代わ
りに、最大値記憶回路の記憶容量を増大させて、パルス
繰返し周期T内の各レンジゲートごとにバースト期間内
の最大飽和レベルを記憶させ、次のバースト期間にて1
バースト前におけるパルス繰返し周期内の各レンジゲー
トごとの最大飽和レベルをもとに、各パルス繰返し周期
ごとの同一レンジゲートに対し、同一のAGC量を設定す
るようにATT回路(5)を制御することにより、同一の
バースト期間内においては、各パルス繰返し周期間でAG
C設定は変化せず一定となり、各レンジゲートごとに最
適のAGC設定となるので、小信号検出性能を上記実施例
に比べ、向上させることができる(第8図)。また、同
一のバースト期間内においては、AGC量は必ずしも一定
とはならないが、同一バースト期間内のレンジゲート毎
においては、AGC量は一定としているので、AGC量を逐次
変化させるものと比較した場合、不要波の発生がほとん
ど問題とはならない。
(Ii) For the AGC set amount, instead of using the maximum saturation level of the received wave in the burst period, the storage capacity of the maximum value storage circuit is increased, and the maximum value in the burst period is set for each range gate in the pulse repetition period T. The saturation level is stored, and 1 is stored in the next burst period.
Based on the maximum saturation level of each range gate in the pulse repetition cycle before the burst, the ATT circuit (5) is controlled so that the same AGC amount is set for the same range gate in each pulse repetition cycle. Therefore, during the same burst period, AG
Since the C setting does not change and remains constant, and the AGC setting is optimal for each range gate, the small signal detection performance can be improved as compared with the above embodiment (FIG. 8). Also, the AGC amount is not always constant during the same burst period, but the AGC amount is constant at each range gate during the same burst period. However, generation of unnecessary waves is hardly a problem.

(iii)AGC量測定期間とAGC量設定期間が1バースト分
ずれていることによる予測誤差の補正について、 上記実施例においては、厳密には1バースト前に次の
バーストで設定するAGC量を測定しているため、そのAGC
量は予測値であり、時間的に近接しているとは言え、受
信系が全く飽和しないとは保証できない(但し、予測値
でAGCを掛けているので、本方式を備えていない場合に
比べ、飽和量は遥かに小さい)ので、予測誤差を補正す
ることで飽和の確率を減少できる。
(Iii) Regarding the correction of the prediction error due to the difference between the AGC amount measurement period and the AGC amount setting period by one burst, in the above embodiment, strictly, the AGC amount set in the next burst before one burst is measured. Because that AGC
The amount is a predicted value, and although it is close in time, it cannot be guaranteed that the receiving system will not saturate at all. (However, since the AGC is multiplied by the predicted value, compared to the case without this method, , The amount of saturation is much smaller), so that the probability of saturation can be reduced by correcting the prediction error.

この補正方法としては、1バースト前に設定した予測
AGC量に若干AGC量を付加することである。
As the correction method, the prediction set one burst before
That is, the AGC amount is slightly added to the AGC amount.

計算機シミユレーシヨン及び実験回路にて求めた補正
量△としては△≒3dBが適当であり、この値を実験回路
の最大値記憶回路(8)のAGC量に付加することで、満
足する結果が得られている。
An appropriate correction amount 補正 obtained by the computer simulation and the experimental circuit is △ ≒ 3 dB, and a satisfactory result can be obtained by adding this value to the AGC amount of the maximum value storage circuit (8) of the experimental circuit. ing.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明に係るパルスドプラレーダ装
置によれば、nポイントFFTにて構成されるドプラフイ
ルタにおいて、その入力データ設定期間を処理単位と
し、受信系のAGC量をその間一定とするようにしたの
で、受信系の飽和を抑え、相互変調による不要波発生が
防止でき、パルスドプラレーダ装置のように周波数軸上
で検出を行うレーダ装置にも検出性能低下を生じること
のないAGCを備えることができる。
As described above, according to the pulse Doppler radar device according to the present invention, in the Doppler filter configured by the n-point FFT, the input data setting period is set as a processing unit, and the AGC amount of the receiving system is kept constant during that period. Therefore, it is possible to suppress the saturation of the receiving system, prevent the generation of unnecessary waves due to intermodulation, and provide an AGC that does not cause deterioration in detection performance even for radar devices that detect on the frequency axis like pulsed Doppler radar devices. it can.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例によるAGCを備えたパルスド
プラレーダ装置の系統図、第2図は本発明によるAGCの
動作説明図、第3図は従来のパルスドプラレーダ装置の
系統図、第4図は従来のパルスドプラレーダ装置の受信
系に従来のIAGCを付加した系統図、第5図は受信系が飽
和していない場合の受信信号の説明図、第6図は受信系
が飽和している場合の受信信号の説明図、第7図は本発
明によるAGCの処理単位(=バースト)についての他の
設定図、第8図は本発明によるAGCのAGC量設定について
の他の実施例を示す図である。 図において、(1)はアンテナ、(2)は送受切換器、
(3)は送信機、(4)はIF増幅器、(5)はATT回路
(減衰手段)、(6)は検波器、(7)は飽和レベル検
出器(飽和レベル検出手段)、(8)は最大値記憶回路
(AGC量設定手段)、(9)はレンジゲート、(10)は
ドプラフイルタ、(11)は検出器群である。 なお図中同一符号は同一又は相当部分を示す。
FIG. 1 is a system diagram of a pulse Doppler radar device having an AGC according to an embodiment of the present invention, FIG. 2 is a diagram illustrating the operation of the AGC according to the present invention, FIG. 3 is a system diagram of a conventional pulse Doppler radar device, FIG. The figure is a system diagram in which the conventional IAGC is added to the receiving system of the conventional pulsed Doppler radar device, FIG. 5 is an explanatory diagram of the received signal when the receiving system is not saturated, and FIG. 6 is the receiving system is saturated. FIG. 7 is a diagram showing another setting for the AGC processing unit (= burst) according to the present invention, and FIG. 8 is a diagram showing another embodiment for setting the AGC amount of the AGC according to the present invention. FIG. In the figure, (1) is an antenna, (2) is a duplexer,
(3) is a transmitter, (4) is an IF amplifier, (5) is an ATT circuit (attenuation means), (6) is a detector, (7) is a saturation level detector (saturation level detection means), (8) Is a maximum value storage circuit (AGC amount setting means), (9) is a range gate, (10) is a Doppler filter, and (11) is a detector group. In the drawings, the same reference numerals indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木之下 裕 兵庫県尼崎市塚口本町8丁目1番1号 菱電特機株式会社内 (72)発明者 津藤 正信 兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社通信機製作所内 (72)発明者 安福 正樹 兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社通信機製作所内 (72)発明者 山口 和巳 兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社通信機製作所内 (56)参考文献 特開 昭61−79178(JP,A) 特開 昭63−36176(JP,A) 特開 昭62−170867(JP,A) 特公 昭61−61071(JP,B2) 特公 平2−42438(JP,B2) 特公 平4−78950(JP,B2) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Kinoshita 8-1-1, Tsukaguchi-Honcho, Amagasaki-shi, Hyogo Ryoden Toki Co., Ltd. (72) Inventor Masanobu Tsuto 8-1-1, Tsukaguchi-Honcho, Amagasaki-shi, Hyogo 1 Mitsubishi Electric Corporation Communication Equipment Works (72) Inventor Masaki Anfuku 8-1-1 Tsukaguchi Honcho, Amagasaki City, Hyogo Prefecture Mitsubishi Electric Corporation Communication Equipment Works (72) Inventor Kazumi Yamaguchi Tsukaguchi Honmachi, Amagasaki City, Hyogo Prefecture 8-1-1, Mitsubishi Electric Corporation Communication Equipment Works (56) References JP-A-61-79178 (JP, A) JP-A-63-36176 (JP, A) JP-A-62-170867 (JP, A) A) Japanese Patent Publication No. 61-61071 (JP, B2) Japanese Patent Publication No. 2-42438 (JP, B2) Japanese Patent Publication No. 4-78950 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】nポイントFFT(Fast Fourier Transfor
m)により構成されるドプラフィルタを用いて目標検出
を行なうパルスドプラレーダ装置において、 上記ドプラフィルタへのデータ入力設定期間を処理単位
とし、該処理単位の間の受信系の飽和レベルを検出する
飽和レベル検出手段と、 該飽和レベルに応じてAGC(Automatic Gain Control)
量を設定し、該設定したAGC量を次の処理単位期間中一
定として上記受信系に設定するAGC量設定手段と、 該AGC量設定手段のAGC量設定に応じて上記受信系の信号
を減衰し強力な受信信号による該受信系の飽和を防止す
る減衰手段とを備えたことを特徴とするパルスドプラレ
ーダ装置。
1. An n-point FFT (Fast Fourier Transfor
m) a pulse Doppler radar device for performing target detection using a Doppler filter, wherein a data input setting period to the Doppler filter is set as a processing unit, and a saturation level for detecting a saturation level of a receiving system between the processing units is set. AGC (Automatic Gain Control) according to the detection means and the saturation level
AGC amount setting means for setting the amount, setting the set AGC amount constant during the next processing unit period, and setting the AGC amount in the receiving system, and attenuating the signal of the receiving system according to the AGC amount setting of the AGC amount setting means. And a damping means for preventing the reception system from being saturated by a strong reception signal.
JP63138935A 1988-06-06 1988-06-06 Pulse Doppler radar device Expired - Lifetime JP2618984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63138935A JP2618984B2 (en) 1988-06-06 1988-06-06 Pulse Doppler radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63138935A JP2618984B2 (en) 1988-06-06 1988-06-06 Pulse Doppler radar device

Publications (2)

Publication Number Publication Date
JPH01307682A JPH01307682A (en) 1989-12-12
JP2618984B2 true JP2618984B2 (en) 1997-06-11

Family

ID=15233584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63138935A Expired - Lifetime JP2618984B2 (en) 1988-06-06 1988-06-06 Pulse Doppler radar device

Country Status (1)

Country Link
JP (1) JP2618984B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2687479B1 (en) * 1992-02-18 1994-04-08 Thomson Csf METHOD AND DEVICE FOR ELIMINATING FIXED ECHOS RECEIVED BY RADARS.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179178A (en) * 1984-09-27 1986-04-22 Mitsubishi Electric Corp Target tracking device

Also Published As

Publication number Publication date
JPH01307682A (en) 1989-12-12

Similar Documents

Publication Publication Date Title
US4366483A (en) Receiver and method for use with a four-arm spiral antenna
CA2232754A1 (en) Gain control method and receiver
JPH0320712B2 (en)
US6727840B1 (en) Interference suppression circuit and method thereof for multi-channel receivers
US3947848A (en) Anti-jam dual channel video cancellation circuit for first target tracking system
JP2618984B2 (en) Pulse Doppler radar device
JPH07154315A (en) Method for correcting amplitude and phase distortions in both bqualizer and transmission system
JP3477133B2 (en) Radar equipment
EP0687080B1 (en) Receive signal level detection system
KR20160088644A (en) Apparatus and method for attenuating the phase noise by using the time delay of the local oscillator signal
US3243815A (en) Radar testing apparatus
JP2748502B2 (en) Radar equipment
JPS6177775A (en) Automatic clutter removing system for radar equipment
JPH11281732A (en) Saturation prevention circuit
JP2006170816A (en) Pulse specifications detection circuit
JP2770473B2 (en) Active sonar signal processing method and device
JP3749742B2 (en) Radio wave induction control device
JP2612081B2 (en) Underwater acoustic detector
JPH0772235A (en) Cw radar apparatus
JP2001024456A (en) Receiver
JPS62249087A (en) Transponder device
JP3034170B2 (en) Saturation prevention gain circuit
JPH0697259B2 (en) Radar receiver
JPS6179178A (en) Target tracking device
JP2002139563A (en) Radar device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12