JP2617113B2 - Rare earth permanent magnet excellent in corrosion resistance and method for producing the same - Google Patents

Rare earth permanent magnet excellent in corrosion resistance and method for producing the same

Info

Publication number
JP2617113B2
JP2617113B2 JP11494388A JP11494388A JP2617113B2 JP 2617113 B2 JP2617113 B2 JP 2617113B2 JP 11494388 A JP11494388 A JP 11494388A JP 11494388 A JP11494388 A JP 11494388A JP 2617113 B2 JP2617113 B2 JP 2617113B2
Authority
JP
Japan
Prior art keywords
rare earth
corrosion resistance
permanent magnet
plating
earth permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11494388A
Other languages
Japanese (ja)
Other versions
JPH01286407A (en
Inventor
隆文 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP11494388A priority Critical patent/JP2617113B2/en
Publication of JPH01286407A publication Critical patent/JPH01286407A/en
Application granted granted Critical
Publication of JP2617113B2 publication Critical patent/JP2617113B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はR,Fe,Bを主成分とする永久磁石合金に関し、
特に耐食性に優れた希土類永久磁石合金及びその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a permanent magnet alloy containing R, Fe, B as a main component,
Particularly, the present invention relates to a rare earth permanent magnet alloy having excellent corrosion resistance and a method for producing the same.

[従来の技術] R−Fe−B系永久磁石合金は、所定の組成から成るイ
ンゴットを粉砕し、粉末冶金法による焼結して得られ
る。そして、この合金は従来の希土類磁石であるSm−Co
系磁石に比較して高い磁気特性を有する。
[Prior Art] An R-Fe-B permanent magnet alloy is obtained by crushing an ingot having a predetermined composition and sintering it by a powder metallurgy method. And this alloy is a conventional rare earth magnet, Sm-Co
It has higher magnetic properties than the system magnet.

しかしながら、R−Fe−B系磁石合金は、この金属組
織中に、極めて酸化し易いNd−Fe固溶体相を含有してい
る為、磁気回路等の装置に組み込んだ場合、通常の環境
条件下でもSm−Co系磁石に比べ磁石の酸化による特性の
劣化、及びそのばらつきも大きい。さらに、磁石から発
生した酸化物の飛散による周辺部への影響も引き起こ
す。
However, since the R-Fe-B-based magnet alloy contains an Nd-Fe solid solution phase which is extremely easily oxidized in this metal structure, when incorporated in a device such as a magnetic circuit, even under ordinary environmental conditions. Deterioration of characteristics due to oxidation of the magnet and variation thereof are larger than those of the Sm-Co magnet. Further, scattering of the oxide generated from the magnet also affects the peripheral portion.

このため得られたこの磁石にめっきを施し耐食性を向
上させる試みが、特開昭49−86896号公報、あるいは特
開昭60−63901号公報などに見られるが、この場合磁石
製造中に発生する酸化を防ぐことは困難である。
Attempts to improve the corrosion resistance by plating the magnet thus obtained are found in JP-A-49-86896, JP-A-60-63901, etc., which occur during the manufacture of the magnet. It is difficult to prevent oxidation.

一方、従来からアルカリ性水溶液めっき浴にて電解め
っきを行うと、金属組織中で極めて酸化され易いNd−Fe
固溶体相が腐食し溶け出してしまい、きれいな密着性の
良いめっき膜は得られず、使用中にその部分より錆が発
生し、耐食性に優れためっき膜を得ることが出来ない問
題点を有している。
On the other hand, when electrolytic plating is conventionally performed in an alkaline aqueous solution plating bath, Nd-Fe
The solid solution phase corrodes and dissolves out, so a clean plating film with good adhesion cannot be obtained, rust is generated from that part during use, and there is a problem that a plating film with excellent corrosion resistance cannot be obtained. ing.

本発明は、前項で述べた問題点を解決するためのもの
であり、その技術課題は電解めっき中でのNd−Fe固溶体
相の酸化を防ぐとともに、磁石表面に密着性の良いめっ
き膜を形成し、耐食性に優れた希土類永久磁石合金及び
その製造方法を提供することにある。
The present invention is to solve the problems described in the preceding paragraph, and the technical problem is to prevent oxidation of the Nd-Fe solid solution phase during electrolytic plating and to form a plating film with good adhesion on the magnet surface. Another object of the present invention is to provide a rare earth permanent magnet alloy having excellent corrosion resistance and a method for producing the same.

[課題を解決するための手段] 本発明によれば、R−Fe−B(Rはイットリウムを含
む希土類元素を表わす。)系焼結磁石合金の表面に0.1
μm以上の厚さの密着性の良い電解めっき層を有し、こ
の電解めっき層は、この焼結磁石合金との界面から、こ
の電解めっき層表面に向ってR−Fe固溶体相が漸減して
いることを特徴とする耐食性に優れた希土類永久磁石が
得られる。
[Means for Solving the Problems] According to the present invention, 0.1% of R-Fe-B (R represents a rare earth element containing yttrium) is added to the surface of a sintered magnet alloy.
μm or more, having a good adhesion electrolytic plating layer having a thickness of at least μm, and the electrolytic plating layer gradually decreases in the R-Fe solid solution phase from the interface with the sintered magnet alloy toward the surface of the electrolytic plating layer. Thus, a rare earth permanent magnet excellent in corrosion resistance is obtained.

本発明によれば、R−Fe−B(Rはイットリウムを含
む希土類元素を表わす。)系焼結磁石合金の表面に、電
解めっき層を金属塩を含むアルカリ性浴で電着する希土
類永久磁石の製造方法において、上記アルカリ性浴は、
5.0ppm以下の溶存酸素を含むことを特徴とする耐食性に
優れた希土類永久磁石の製造方法が得られる。
According to the present invention, a rare-earth permanent magnet in which an electrolytic plating layer is electrodeposited with an alkaline bath containing a metal salt on the surface of an R-Fe-B (R represents a rare earth element containing yttrium) -based sintered magnet alloy. In the production method, the alkaline bath comprises:
A method for producing a rare-earth permanent magnet excellent in corrosion resistance characterized by containing 5.0 ppm or less of dissolved oxygen is obtained.

ここで、本発明の耐食性に優れた希土類永久磁石の製
造方法において、上記焼結磁石合金を陰極とし、通電し
ながら上記アルカリ性浴に浸漬することが望ましい。
Here, in the method for producing a rare earth permanent magnet excellent in corrosion resistance according to the present invention, it is desirable that the sintered magnet alloy be used as a cathode and immersed in the alkaline bath while energizing.

即ち、金属塩を溶解した水溶液めっき浴、特にアルカ
リ性のめっき浴にて電解めっきを行うと、Nd−Fe−B磁
石合金の場合、金属組織中で極めて酸化され易いNd−Fe
固溶体相が選択的に腐食してしまう。表面はNd−Fe固溶
体相が腐食し溶け出した部分に穴があき、きれいな密着
性の良いめっき膜は得られず、通常の環境条件下でもそ
の部分より酸化が進行する。電解めっき中電流密度が高
い程、その傾向は顕著である。
That is, when electrolytic plating is performed in an aqueous plating bath in which a metal salt is dissolved, particularly in an alkaline plating bath, in the case of a Nd-Fe-B magnet alloy, Nd-Fe which is extremely easily oxidized in the metallographic structure.
The solid solution phase corrodes selectively. On the surface, a hole is formed in a portion where the Nd-Fe solid solution phase is corroded and melted out, and a plated film with good adhesion cannot be obtained. Oxidation proceeds from that portion even under ordinary environmental conditions. The tendency is more remarkable as the current density during electrolytic plating is higher.

この事を様々調べてみると、水溶液中の溶存酸素の量
が大きく影響していることが判明した。通常水溶液中に
含まれる溶存酸素は多く(飽和値20ppm/)、水溶液中
に酸素が溶存していると電解めっき中に、Nd−Fe固溶体
相は酸素の還元により腐食してしまう。
Examining this in various ways revealed that the amount of dissolved oxygen in the aqueous solution had a significant effect. Normally, the dissolved oxygen contained in the aqueous solution is large (saturation value: 20 ppm /), and if oxygen is dissolved in the aqueous solution, the Nd-Fe solid solution phase is corroded by the reduction of oxygen during electrolytic plating.

この様に、溶存酸素を多く含む水溶液中で電解めっき
を行うと、耐食性に優れためっき膜を得ることが困難で
ある。
Thus, when electrolytic plating is performed in an aqueous solution containing a large amount of dissolved oxygen, it is difficult to obtain a plating film having excellent corrosion resistance.

そこで、本発明では使用する水溶液をあらかじめN2
スあるいはArガス等の不活性ガスによりバブリングを行
い、溶存酸素を極力除去し、その量が5.0ppm/以下、
望ましくは1.0ppm/以下になる様にすることが必要で
あることを見い出した。
Therefore, in the present invention, the aqueous solution to be used is previously bubbled with an inert gas such as N 2 gas or Ar gas to remove dissolved oxygen as much as possible, and the amount is 5.0 ppm / or less.
It has been found that it is necessary to desirably control the concentration to 1.0 ppm / or less.

溶存酸素を抜いた水溶液を用いて電解めっきを行った
場合、Nd−Fe固溶体相が選択的に腐食することなく、き
れいな密着性の良いめっき膜が得られ、溶存酸素を抜い
た効果が顕著に見られた。
When electrolytic plating is performed using an aqueous solution from which dissolved oxygen has been removed, the Nd-Fe solid solution phase does not selectively corrode, and a plating film with good adhesion is obtained, and the effect of removing dissolved oxygen is remarkable. Was seen.

アルカリ性浴電解めっきの金属は、磁石中に含まれる
希土類金属より酸化されにくい金属であれば何でもよ
く、一般的にアルカリ性電解めっき浴として、Cuめっき
ではピロリン酸銅めっき浴、スズめっきでは、ナトリウ
ム浴あるいはカリウム浴、スズ−ニッケル合金めっきで
はピロリン酸化浴等あげられる。
The metal for the alkaline bath electroplating may be any metal as long as it is less oxidizable than the rare earth metal contained in the magnet. Alternatively, a potassium bath or a pyrophosphoric acid bath for tin-nickel alloy plating may be used.

これらアルカリ性電解めっき浴のpHは8〜12、浴温は
20〜50℃、電流密度は0.5〜10A/dm2の条件下でめっき膜
の形成がなされる。特にCuめっきは、めっき膜表面が大
気中にても酸化してしまう為、Niめっきの下地として使
われる。
The pH of these alkaline electrolytic plating baths is 8 to 12, and the bath temperature is
The plating film is formed under the conditions of 20 to 50 ° C. and the current density of 0.5 to 10 A / dm 2 . In particular, Cu plating is used as a base for Ni plating because the plating film surface is oxidized even in the air.

めっき膜の厚さは0.1(μm)未満ではめっきが十分
に行なわれない為、磁石表面での酸化が進行し、また10
(μm)以上では磁石の単位体積当りに含まれる非磁性
部分が多くなり、磁石の磁気性能が低下する為、めっき
膜の厚さは0.1〜10(μm)の範囲が望ましい。
If the thickness of the plating film is less than 0.1 (μm), the plating is not sufficiently performed, so that oxidation on the magnet surface progresses.
Above (μm), the non-magnetic portion contained per unit volume of the magnet increases, and the magnetic performance of the magnet deteriorates.

電解めっきを行う時、通常、試料をめっき液に浸漬し
てから後、電圧をかけ、電解めっきを行うのが常であ
る。しかしながら、Nd−Fe−B磁石試片をアルカリ性め
っき浴に浸漬し、そのままにして置くとNd−Fe固溶体相
が溶け出し腐食してしまう。液に浸漬し電解めっきを行
うと、密着性の良いきれいなめっき膜が形成される。
When performing electroplating, usually, a sample is immersed in a plating solution and then a voltage is applied to perform electroplating. However, if the Nd-Fe-B magnet specimen is immersed in an alkaline plating bath and left as it is, the Nd-Fe solid solution phase melts out and corrodes. When immersion in the solution and electroplating, a clean plating film having good adhesion is formed.

本発明によれば、溶存酸素を抜いた水溶液を用いたア
ルカリ性浴中にて電解めっきを行なった場合、磁石表面
に密着性の良いめっき膜が形成され、耐食性に優れ、か
つ磁石特性においても劣らない実用上非常に有益な磁石
を得ることが可能となった。
According to the present invention, when electrolytic plating is performed in an alkaline bath using an aqueous solution from which dissolved oxygen has been removed, a plating film having good adhesion is formed on the magnet surface, excellent in corrosion resistance, and poor in magnet properties. It became possible to obtain a magnet that was not very useful in practical use.

以下、その実施例を示す。 Hereinafter, examples thereof will be described.

[実施例] 実施例1 粉末冶金法によって得られた33Wt%Nd−1.0Wt%B−F
ebalの組成をもつ焼結体を1×7×10(mm)の大きさに
加工し、試料とした。第1表に示すピロリン酸銅めっき
浴(ストライク浴)にて、アノード側にCu板、カソード
側にNd−Fe−B焼結体試片とし、25℃の浴温中にて、電
流密度0.5〜2.0A/dm2の範囲で30分間Cuめっきを行っ
た。この時金属塩を溶解するに用いた水溶液は予めN2
スにて3時間バブリングし、溶存酸素を極力除去したも
のであり1.0ppm/の溶存酸素量であった。
[Example] Example 1 33 Wt% Nd-1.0 Wt% BF obtained by powder metallurgy
The sintered body having the composition of ebal was processed into a size of 1 × 7 × 10 (mm) to obtain a sample. In a copper pyrophosphate plating bath (strike bath) shown in Table 1, a Cu plate was used on the anode side, and a Nd-Fe-B sintered sample was used on the cathode side. Cu plating was performed in the range of 2.02.0 A / dm 2 for 30 minutes. At this time, the aqueous solution used for dissolving the metal salt was previously bubbled with N 2 gas for 3 hours to remove dissolved oxygen as much as possible, and the dissolved oxygen amount was 1.0 ppm /.

電解密度を変化させた各試料について測定しためっき
層の厚さとその外観を第2表に示す。
Table 2 shows the thickness and appearance of the plating layer measured for each sample in which the electrolytic density was changed.

第2表に示される様に電流密度が増加するにつれ、め
っき層は厚くなり、特に0.75〜1.0A/dm2の電流密度で非
常にきれいな金属光沢のあるCuめっきが得られた。
As shown in Table 2, as the current density increased, the plating layer became thicker. In particular, a very clean metallic plating with a metallic luster was obtained at a current density of 0.75 to 1.0 A / dm 2 .

この時、素地(Nd−Fe−B)とCuめっきとの界面に組
織写真を第1図のSEM写真1に示した。第1図は素地と
の密着性が非常に良く、のりの良いCuめっきが得られて
いることを示している。
At this time, a micrograph of the interface between the substrate (Nd-Fe-B) and the Cu plating was shown in SEM photograph 1 of FIG. FIG. 1 shows that the adhesion to the substrate is very good, and a Cu plating with good adhesion is obtained.

次に、密着力試験として試片に外力(摩擦、折り曲
げ、衝撃等)を加えた時の影響を定性的に確かめた結果
を第3表に示した。
Next, Table 3 shows the results of qualitatively confirming the effects of applying an external force (friction, bending, impact, etc.) to the specimen as an adhesion test.

さらにNd−Fe−B磁石表面にCu下地めっき後電解Niめ
っき処理を施した。これら試験片を60℃×95%の恒温恒
湿の条件下で1000時間耐食性試験を行った時の結果を第
4表に示す。
Further, the surface of the Nd-Fe-B magnet was subjected to electrolytic Ni plating after Cu underplating. Table 4 shows the results obtained when these test pieces were subjected to a corrosion resistance test for 1000 hours under the conditions of constant temperature and humidity of 60 ° C. × 95%.

また、第5表に溶存酸素量とめっき表面状態を示し
た。
Table 5 shows the dissolved oxygen content and the plating surface condition.

本発明による試験片は赤さび、剥離、ふくれ等の欠点
を生ずることなく、非常に耐食性に優れていることがわ
かる。
It can be seen that the test piece according to the present invention is extremely excellent in corrosion resistance without causing defects such as red rust, peeling, and blistering.

実施例2 第6表に示す様に、溶存酸素を抜いた水溶液を用いた
スズめっき浴(ナトリウム浴)にて、アノード側にSn
板、カソード側にNd−Fe−B焼結体試片とし、60℃の浴
温中にて、電流密度1.0A/dm2で10分間電解めっきを行っ
たところ、5.0μmスズめっき層が得られた。
Example 2 As shown in Table 6, in a tin plating bath (sodium bath) using an aqueous solution from which dissolved oxygen was removed, Sn was added to the anode side.
Plate, and Nd-Fe-B sintered samples were placed in the cathode side, resulting in a bath temperature of 60 ° C., it was subjected to 10 minutes electroplating at a current density of 1.0A / dm 2, 5.0 .mu.m tin plating layer Was done.

素地とスズめっきとの密着性は非常に良く、密着力試
験でもふくれ、剥離等の欠陥は無かった。
The adhesion between the substrate and the tin plating was very good, and no defects such as blistering and peeling were found in the adhesion test.

又、60℃×95%の恒温、恒湿の条件下で1000時間耐食
性試験を行ったところ、赤さび、ふくれ、剥離等の変化
は何ら観察されなかった。
When a corrosion resistance test was conducted for 1000 hours under the conditions of constant temperature and humidity of 60 ° C. × 95%, no change such as red rust, blistering and peeling was observed.

実施例3 第7表に示す様に、溶存酸素を抜いた水溶液を用いた
スズ−ニッケル合金めっき浴(ピロリン酸浴、Sn70−Ni
30浴)にて、アノード側に70Wt%Sn−30Wt%Ni合金板、
カソード側にNd−Fe−B焼結体試片とし、50℃の浴温中
にて、電流密度1.0A/dm2で10分間電解めっきを行ったと
ころ、4.0μmスズ−ニッケルめっき層が得られた。
Example 3 As shown in Table 7, a tin-nickel alloy plating bath (pyrophosphate bath, Sn70-Ni
30 bath), 70Wt% Sn-30Wt% Ni alloy plate on the anode side,
And Nd-Fe-B sintered samples were placed in the cathode side, at a bath temperature of 50 ° C., was subjected to 10 minutes electroplating at a current density of 1.0A / dm 2, 4.0 .mu.m tin - nickel plating layer is obtained Was done.

合金板の素地とスズめっき層との密着性は非常に良
く、密着力試験でもふくれ、剥離等の欠陥は無かった。
The adhesion between the base material of the alloy plate and the tin plating layer was very good, and no defects such as blistering and peeling were found in the adhesion test.

又、60℃×95%の恒温恒湿の条件下で1000時間耐食性
試験を行ったところ、赤さび、ふくれ、剥離等の変化は
何ら見られず、耐食性に非常に優れていることがわかっ
た。
Further, when a corrosion resistance test was conducted for 1000 hours under the condition of constant temperature and humidity of 60 ° C. × 95%, no change such as red rust, blistering and peeling was observed, and it was found that the corrosion resistance was very excellent.

[発明の効果] 以上の詳述したように、本発明によれば、溶存酸素量
を極力とり除いた水溶液を用いることにより、アルカリ
性浴中にて電解めっきした場合、R−Fe−B磁石合金表
面に密着性の良いめっき膜が形成され、耐食性に非常に
優れた希土類永久磁石を得ることが出来る。
[Effects of the Invention] As described in detail above, according to the present invention, when an electrolytic plating is performed in an alkaline bath by using an aqueous solution from which the amount of dissolved oxygen has been removed as much as possible, the R-Fe-B magnet alloy A plated film with good adhesion is formed on the surface, and a rare-earth permanent magnet with extremely excellent corrosion resistance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図はNd−Fe−B磁石表面にCuめっきした時の境界付
近の破断面の金属組織を示すSEM写真である。 第2図は従来法によるめっき表面の金属組織を示すSEM
写真である。
FIG. 1 is an SEM photograph showing the metal structure of the fracture surface near the boundary when the Nd—Fe—B magnet surface is plated with Cu. Fig. 2 is an SEM showing the metallographic structure of the plating surface by the conventional method
It is a photograph.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】R−Fe−B(Rはイットリウムを含む希土
類元素を表わす。)系焼結磁石合金の表面に0.1μm以
上の厚さの密着性の良い電解めっき層を有し、上記電解
めっき層は、上記焼結磁石合金との界面から該電解めっ
き層表面に向ってR−Fe固溶体相が漸減していることを
特徴とする耐食性に優れた希土類永久磁石。
A sintered magnet alloy based on R-Fe-B (R represents a rare earth element containing yttrium) having an electrolytic plating layer having a thickness of 0.1 μm or more and having good adhesion, A rare earth permanent magnet excellent in corrosion resistance, characterized in that the plating layer has an R-Fe solid solution phase gradually decreasing from an interface with the sintered magnet alloy toward the surface of the electrolytic plating layer.
【請求項2】R−Fe−B(Rはイットリウムを含む希土
類元素を表わす。)系焼結磁石合金の表面に電解めっき
層をアルカリ性浴から電着させる希土類永久磁石の製造
方法において、 上記アルカリ性浴は、5.0ppm以下の溶存酸素を含むこと
を特徴とする耐食性に優れた希土類永久磁石の製造方
法。
2. A method for producing a rare earth permanent magnet, wherein an electrolytic plating layer is electrodeposited from an alkaline bath on the surface of an R—Fe—B (R represents a rare earth element containing yttrium) based sintered alloy, A method for producing a rare earth permanent magnet excellent in corrosion resistance, characterized in that the bath contains dissolved oxygen of 5.0 ppm or less.
【請求項3】上記焼結磁石合金を陰極と、通電しながら
上記アルカリ性浴に浸漬することを特徴とする第2の請
求項記載の耐食性に優れた希土類永久磁石の製造方法。
3. The method for producing a rare-earth permanent magnet having excellent corrosion resistance according to claim 2, wherein said sintered magnet alloy is immersed in said alkaline bath while being energized with a cathode.
JP11494388A 1988-05-13 1988-05-13 Rare earth permanent magnet excellent in corrosion resistance and method for producing the same Expired - Fee Related JP2617113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11494388A JP2617113B2 (en) 1988-05-13 1988-05-13 Rare earth permanent magnet excellent in corrosion resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11494388A JP2617113B2 (en) 1988-05-13 1988-05-13 Rare earth permanent magnet excellent in corrosion resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01286407A JPH01286407A (en) 1989-11-17
JP2617113B2 true JP2617113B2 (en) 1997-06-04

Family

ID=14650493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11494388A Expired - Fee Related JP2617113B2 (en) 1988-05-13 1988-05-13 Rare earth permanent magnet excellent in corrosion resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP2617113B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314756A (en) * 1991-11-27 1994-05-24 Hitachi Metals, Ltd. Permanent magnet of rare-earth-element/transition-metal system having improved corrosion resistance and manufacturing method thereof
CN100554530C (en) 2003-03-05 2009-10-28 Tdk株式会社 The manufacture method of rare earth element magnet and electroplate liquid
CN103370446B (en) * 2011-02-15 2016-02-10 日立金属株式会社 Surface has the manufacture method of the R-Fe-B system sintered magnet of plating tunicle

Also Published As

Publication number Publication date
JPH01286407A (en) 1989-11-17

Similar Documents

Publication Publication Date Title
JP3972111B2 (en) Method for producing rare earth based permanent magnet having copper plating film on its surface
WO2009139055A1 (en) Rare-earth-based permanent magnet
US20090035603A1 (en) Method for producing rare earth metal-based permanent magnet having copper plating film on surface thereof
JP2007291457A (en) HEAT-RESISTANT Sn SOLDERED STRIP OF Cu-Zn ALLOY WITH SUPPRESSED GENERATION OF WHISKER
JP2002327278A (en) Copper plating liquid and copper plating method
JP2617113B2 (en) Rare earth permanent magnet excellent in corrosion resistance and method for producing the same
JP4650275B2 (en) Rare earth permanent magnet with copper plating film on the surface
JP2617118B2 (en) Rare earth permanent magnet with excellent corrosion resistance and method of manufacturing the same
JP4045530B2 (en) Electrolytic copper plating method for RTB-based magnets
JP2004039917A (en) Permanent magnet and manufacturing method therefor
JP4538959B2 (en) Electric Ni plating method for rare earth permanent magnet
JP2908637B2 (en) Surface treatment method for Fe-BR-based sintered magnet
EP2624266A1 (en) Method for forming electric copper plating film on surface of rare earth permanent magnet
JP3826323B2 (en) Manufacturing method of plated magnetic thin film
JPS6389698A (en) Treatment of copper foil
JP3672374B2 (en) Lead frame manufacturing method
JP3151843B2 (en) Alloy magnet plating method
JP3377605B2 (en) Corrosion resistant magnetic alloy
JP3650141B2 (en) permanent magnet
JP2840998B2 (en) Surface treatment method for R-Fe-B permanent magnet
JP3142172B2 (en) R-TM-B permanent magnet with improved adhesion and method for producing the same
JP4539179B2 (en) Method for improving the wettability of a nickel plating film formed on the surface of an article
JP2535199B2 (en) Method for producing rare earth permanent magnet excellent in oxidation resistance
JP2002353057A (en) Rare earth permanent magnet having superior oxidataion resistance, and method of manufacturing the same
JPH04283911A (en) Manufacture of permament magnet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees