JP2615225B2 - Vibration isolator for buildings - Google Patents

Vibration isolator for buildings

Info

Publication number
JP2615225B2
JP2615225B2 JP34422789A JP34422789A JP2615225B2 JP 2615225 B2 JP2615225 B2 JP 2615225B2 JP 34422789 A JP34422789 A JP 34422789A JP 34422789 A JP34422789 A JP 34422789A JP 2615225 B2 JP2615225 B2 JP 2615225B2
Authority
JP
Japan
Prior art keywords
vibration
air
air pressure
liquid
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34422789A
Other languages
Japanese (ja)
Other versions
JPH03202572A (en
Inventor
輝美 日比
洸二 香川
一誠 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP34422789A priority Critical patent/JP2615225B2/en
Publication of JPH03202572A publication Critical patent/JPH03202572A/en
Application granted granted Critical
Publication of JP2615225B2 publication Critical patent/JP2615225B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、構築物の防振のための装置に関し、特に構
築物上に配設されて、例えば強風時の風圧等によって生
じる比較的高振動数の構築物の振動のみならず、大きな
地震により生じる大振幅の比較的低い振動数の構築物の
振動に対しても防振効果を有するように、振動数に対応
して防振機能を自動的に調整できるようにした、構築物
用防振装置に関する。
Description: TECHNICAL FIELD The present invention relates to an apparatus for vibration damping of a structure, and more particularly, to a device having a relatively high frequency which is disposed on the structure and which is generated by, for example, wind pressure in a strong wind. Automatically adjusts the anti-vibration function according to the frequency so that it has an anti-vibration effect not only for the vibration of the building but also for the vibration of the building with a relatively low frequency of large amplitude caused by a large earthquake The present invention relates to a vibration damping device for a structure.

〔従来の技術〕[Conventional technology]

高層建築物は、例えば強風時に風圧を受けて揺れ、振
動することがある。その防止のために動吸振器を設置す
ることが考えられている。動吸振器としては機械式のも
のと液体式のものとがあるが、いずれも建築物の頂部に
設置され、動吸振作用により振動を低減させる。液体式
動吸振器すなわち液体ダンパーとしての防振タンクが第
5図に示されている。
For example, a high-rise building may shake and vibrate due to wind pressure during a strong wind. It is considered to install a dynamic vibration absorber to prevent such a problem. There are a mechanical type and a liquid type as a dynamic vibration absorber, and both are installed at the top of a building and reduce vibration by a dynamic vibration absorbing action. A vibration damping tank as a liquid dynamic vibration absorber or liquid damper is shown in FIG.

第5図において、基礎部18上に建設された高層建築物
としての構築物8の屋上部には防振タンク1が配設され
ている。この防振タンク1として使用することができる
従来の防振タンクの一例が第3図に示されている。
In FIG. 5, an anti-vibration tank 1 is provided on the roof of a building 8 as a high-rise building constructed on a foundation 18. An example of a conventional anti-vibration tank that can be used as the anti-vibration tank 1 is shown in FIG.

第3図において、U字型連通管式防振タンク1内には
液体2が封入されている。液体2は、左右の竪型液槽内
において自由液面を有し、連通路を介して左右の液槽間
で往復移動することができる。構築物8が振動すると防
振タンク1も構築物8と一体的に振動するが、それに伴
って生じる液体2の相対移動の振動により防振効果が生
じる。
In FIG. 3, a liquid 2 is sealed in a U-shaped communicating pipe type anti-vibration tank 1. The liquid 2 has a free liquid level in the left and right vertical liquid tanks, and can reciprocate between the left and right liquid tanks through the communication path. When the structure 8 vibrates, the anti-vibration tank 1 also vibrates integrally with the structure 8, but the vibration of the relative movement of the liquid 2 accompanying the vibration causes an anti-vibration effect.

左右の竪型液槽の上端部には空気室3が形成されてお
り、左右の自由液面がそれぞれそ対応する空気室3内の
空気圧を受ける。各空気室3は、途中に吸気弁17をそな
えた配管4を介して空気源10から圧縮空気の供給を受け
ることができるととともに、途中に排気弁17′をそなえ
た配管4′を介して各空気室3内の空気を排出すること
ができる。したがって、各排気弁17′を閉じて各吸気弁
17を開放すると各空気室3内の空気圧が上昇し、各吸気
弁17を閉じて各排気弁17′を開放すると各空気室3内の
空気圧が減少する。
Air chambers 3 are formed at the upper ends of the left and right vertical liquid tanks, and the left and right free liquid surfaces receive the air pressure in the corresponding air chambers 3 respectively. Each air chamber 3 can receive the supply of compressed air from the air source 10 via a pipe 4 provided with an intake valve 17 on the way, and can also receive a supply of compressed air via a pipe 4 'provided on the way with an exhaust valve 17'. The air in each air chamber 3 can be discharged. Therefore, each exhaust valve 17 'is closed and each intake valve is closed.
When the air valve 17 is opened, the air pressure in each air chamber 3 increases, and when the air intake valves 17 are closed and the exhaust valves 17 'are opened, the air pressure in each air chamber 3 decreases.

各空気室3内の空気は液体に対する空気ばねとしての
作用をし、各空気室3内の空気圧が上昇すると液体2の
往復移動の周期が短くなって振動数が高くなり、各空気
室3内の空気圧が低下すると液体2の往復移動の周期が
長くなって振動数が低くなるので、構築物8の振動の状
況に応じて、各吸気弁17および各排気弁17′を操作する
ことにより、液体2の往復移動の振動を構築物8の振動
に同期させて防振効果を高めることができる。
The air in each air chamber 3 acts as an air spring for the liquid. When the air pressure in each air chamber 3 rises, the cycle of the reciprocating movement of the liquid 2 becomes shorter and the frequency becomes higher. When the air pressure of the liquid drops, the cycle of the reciprocating movement of the liquid 2 becomes longer and the frequency becomes lower. Therefore, by operating each intake valve 17 and each exhaust valve 17 ′ according to the state of vibration of the building 8, the liquid 2 The vibration of the two reciprocating movements can be synchronized with the vibration of the building 8 to enhance the vibration isolation effect.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

第3図に示されたような動吸振器の設置に際しては、
動吸振器の振動数を構築物の振動数に一致させるように
チューニングすることが必要である。しかし、第4図に
示されるように、構築物の振動特性は、強風時の風圧な
どによって振動するときの振動数f1が、大きな地震で生
じる大振幅の場合の振動数f2よりも一般に高い、したが
って、通常は強風の風圧による振動の防止を考えて 空
気室3内の空気圧がP1となるように高い振動数f1にチュ
ーニングされているための地震時の、振動低減の効果が
得られない。
When installing a dynamic vibration absorber as shown in FIG.
It is necessary to tune the frequency of the dynamic vibration absorber to match the frequency of the structure. However, as shown in Figure 4, the vibration characteristics of the construct, the frequency f 1 at the time of vibration, such as by wind pressure at the time of strong winds, generally higher than the frequency f 2 in the case of a large amplitude caused by large earthquakes , therefore, usually during an earthquake for being tuned consider prevention of vibration due to wind pressure of strong winds to a higher frequency f 1 as the air pressure in the air chamber 3 is P 1, the effect of vibration reduction obtained I can't.

そこで、本発明の主な目的は、強風時の風圧等によっ
て生じる比較的高振動数の構築物の振動のみならず、大
きな地震により生じる大振幅の比較的低い振動数に対応
して防振機能を自動的に調整することができるような構
築物用防振装置を提供することを目的とする。
Therefore, a main object of the present invention is to provide an anti-vibration function corresponding to not only the vibration of a structure having a relatively high frequency caused by wind pressure in a strong wind, but also the relatively low frequency of a large amplitude caused by a large earthquake. It is an object of the present invention to provide a vibration isolator for a building that can be automatically adjusted.

〔課題を解決するための手段〕[Means for solving the problem]

上述の目的を達成するため、本発明の構築物用防振装
置は、左右の竪形液槽内において自由液面を形成する液
体が、連通路を介して前記左右の液槽間で往復移動する
ことができ、前記左右の自由液面が、それぞれ前記左右
の竪形液槽の上端部に形成されている空気室内の空気圧
を受けるように構成された構築物用U字型連通管式防振
タンクと、構築物の基礎部の振動を検知する振動検知部
と、同振動検知部により検知された振動の解析データを
もとに演算処理を行なう演算処理部と、同演算処理部に
おける演算により算出された最適な空気室内空気圧とな
るように前記空気室内の空気圧を調整するための空気給
排弁駆動装置とをそなえたことを特徴としている。
In order to achieve the above object, in the vibration damping device for a structure of the present invention, the liquid forming the free liquid surface in the left and right vertical liquid tanks reciprocates between the left and right liquid tanks through the communication path. A U-shaped communicating pipe-type anti-vibration tank for a structure, wherein the left and right free liquid surfaces are configured to receive air pressure in an air chamber formed at an upper end portion of each of the left and right vertical liquid tanks. And a vibration detection unit that detects vibrations of the foundation of the building, a calculation processing unit that performs calculation processing based on analysis data of the vibration detected by the vibration detection unit, and a calculation processing that is performed by the calculation processing unit. And an air supply / discharge valve driving device for adjusting the air pressure in the air chamber so as to obtain the optimum air pressure in the air chamber.

〔作用〕[Action]

本発明の構築物用防振装置では、構築物が揺れて振動
すると防振タンクも構築物と一体的に振動するが、防振
タンク内の液体は構築物の振動に相対して液槽間で往復
移動することにより構築物の振動を打ち消すようにして
防振機能を果たす。
In the anti-vibration device for a structure of the present invention, when the structure shakes and vibrates, the anti-vibration tank also vibrates integrally with the structure, but the liquid in the anti-vibration tank reciprocates between the liquid tanks relative to the vibration of the structure. Thereby, the vibration of the building is counteracted and the vibration-proof function is achieved.

液体の自由液面は空気室内の空気圧の作用を受け、構
築物の振動数に対応して空気室内の空気圧が調整され
る。空気圧は、通常は頻度の高い強風時の風圧による構
築物の振動に対応するように調整しておくことができ
る。地震が発生すると、振動検知部において構築物の基
礎部の振動が検知され、検知された振動の解析データを
もとに演算処理部が演算をし、最適な空気室内の空気圧
が算出される。算出された最適な空気圧と実際の空気圧
とが対比され、実際の空気室内の空気圧が最適な空気圧
となるように空気給排弁駆動装置が作動する。
The free liquid level of the liquid is affected by the air pressure in the air chamber, and the air pressure in the air chamber is adjusted according to the frequency of the structure. The air pressure can be adjusted to accommodate vibrations of the structure due to wind pressure during high winds, which are usually frequent. When an earthquake occurs, the vibration of the foundation of the building is detected by the vibration detection unit, and the arithmetic processing unit calculates based on the analysis data of the detected vibration, and the optimal air pressure in the air chamber is calculated. The calculated optimum air pressure is compared with the actual air pressure, and the air supply / discharge valve driving device is operated so that the actual air pressure in the air chamber becomes the optimum air pressure.

〔実施例〕〔Example〕

以下、図面により本発明の一実施例としての構築物用
防振装置について説明する。
Hereinafter, a vibration damping device for a building as one embodiment of the present invention will be described with reference to the drawings.

第1図において、基礎部18上に建設された構築物8上
に配設される構築物用U字型連通管式防振タンク1自体
の構造は、基本的には第3図の防振タンク1の構造と同
じもので、共通する部分には同一の符号が付されてい
る。
In FIG. 1, the structure of the U-shaped communicating pipe-type anti-vibration tank 1 for a structure provided on the structure 8 constructed on the base portion 18 is basically the same as that of the anti-vibration tank 1 of FIG. , And common portions are denoted by the same reference numerals.

第1図の防振タンク1内には液体2が封入されてお
り、左右の竪形液槽内の自由液面は、それぞれ対応する
竪形液槽の上端部に形成された空気室3内の空気圧を受
ける。左右の空気室3は、途中に電磁弁5を備えた配管
4を介して空気源10からの圧縮空気の供給を受けること
ができるとともに、途中に電磁弁5′をそなえた配管
4′を介して、各空気室3内の空気を排出することがで
きる。
A liquid 2 is sealed in the anti-vibration tank 1 shown in FIG. 1, and the free liquid surfaces in the left and right vertical liquid tanks are in the air chambers 3 formed at the upper ends of the corresponding vertical liquid tanks. Of air pressure. The left and right air chambers 3 can receive the supply of compressed air from the air source 10 via a pipe 4 provided with an electromagnetic valve 5 on the way, and via a pipe 4 'provided with an electromagnetic valve 5' on the way. Thus, the air in each air chamber 3 can be discharged.

各空気排出用電磁弁5′,5′を閉じて各空気供給用電
磁弁5,5を開放すると、各空気室3内の空気圧が上昇し
て液体2の往復移動による固有振動数が上昇し、各空気
供給用電磁弁5,5を閉じて各空気排出用電磁弁5′,5′
を開放すると、各空気室3内の空気圧が下降して液体2
の往復移動による固有振動数が低下する。各電磁弁5,5
および5′,5′の作動は制御装置9により制御される。
When the air discharge solenoid valves 5 ', 5' are closed and the air supply solenoid valves 5, 5 are opened, the air pressure in each air chamber 3 rises and the natural frequency due to the reciprocating movement of the liquid 2 rises. , Each air supply solenoid valve 5,5 is closed, and each air discharge solenoid valve 5 ', 5'
Is opened, the air pressure in each air chamber 3 drops and the liquid 2
, The natural frequency decreases due to the reciprocation. Each solenoid valve 5,5
The operation of 5 'and 5' is controlled by the control device 9.

第1図および第2図において、防振タンク1は、通常
は頻度の多い風圧による構築物の振動に対応するように
チューニングされている。地震が発生すると、構築物8
の基礎部18に配設された振動検知端7を利用して制御装
置9の振動検知部11により基礎部18の振動が検知され
る。振動検知部11により検知された振動は振動解析部13
により解析され、振動解析部13により解析された振幅や
振動数等の解析データは演算処理部14に送られて演算処
理される。演算処理部14における演算により算出された
最適な空気室内空気圧信号は比較器19に送られる。
1 and 2, the anti-vibration tank 1 is usually tuned to cope with the frequent vibration of the building caused by wind pressure. When an earthquake occurs, building 8
The vibration of the base 18 is detected by the vibration detection unit 11 of the control device 9 using the vibration detection end 7 disposed on the base 18 of FIG. The vibration detected by the vibration detection unit 11 is transmitted to the vibration analysis unit 13
The analysis data such as the amplitude and frequency analyzed by the vibration analysis unit 13 is sent to the arithmetic processing unit 14 and subjected to arithmetic processing. The optimum air pressure signal in the air chamber calculated by the calculation in the calculation processing unit 14 is sent to the comparator 19.

他方、各空気室3内に配設された圧力検出端6を利用
して制御装置9の圧力検知部12により検知された各空気
室3内の実際の空気圧に対応する空気圧信号も比較器19
へ送られる。この比較器19において、演算処理部14から
送られた最適な空気圧を示す空気圧信号と実際の空気室
3内の空気圧を示す空気圧信号とが対比され、その結果
の空気圧信号が電磁弁制御装置15へ送られる、この電磁
弁制御装置15は、空気圧差を解消するための電磁弁駆動
信号を電磁弁駆動装置16へ送る。この電磁弁駆動装置16
の作動により、各電磁弁5,5、5′,5′,5′は、各空気
室3内の空気圧が振動検知部11により検知された地震に
よる構築物8の振動に対して最も効果的に防振効果を発
揮するための最適な空気圧となるように、開閉作動す
る。
On the other hand, an air pressure signal corresponding to the actual air pressure in each air chamber 3 detected by the pressure detection unit 12 of the control device 9 using the pressure detection end 6 disposed in each air chamber 3 is also used as a comparator 19.
Sent to In the comparator 19, the air pressure signal indicating the optimum air pressure sent from the arithmetic processing unit 14 is compared with the air pressure signal indicating the actual air pressure in the air chamber 3, and the resulting air pressure signal is compared with the electromagnetic valve control device 15. The electromagnetic valve control device 15 sends an electromagnetic valve drive signal to the electromagnetic valve drive device 16 for eliminating the air pressure difference. This solenoid valve drive 16
By the operation of the above, each of the solenoid valves 5, 5, 5 ', 5', 5 'is most effective against the vibration of the building 8 due to the earthquake in which the air pressure in each air chamber 3 is detected by the vibration detecting unit 11. Opening / closing operation is performed to achieve the optimum air pressure for exhibiting the vibration isolation effect.

一般に大きな地震が発生するときには、その直前に建
物の基礎部18(地盤)には初期微動が観測されることは
良く知られている。したがって、あらかじめ初期微動を
振動検出端7において観測し、大地震による大振幅時の
建物振動数に対応して防振タンクのチューニングを速や
かに行なうと、大地震に対しても防振効果が得られる。
地震が終わってしまうと、再び風圧による構築物8の振
動の振動数に対応するように動吸振器のチューニングが
行なわれる。このようにして、動吸振器の振動数を所要
の振動数となるように自動的にチューニングを行なうこ
とにより、常時的確な制振作用が得られる。
It is well known that, in general, when a large earthquake occurs, initial tremors are observed in the foundation 18 (ground) of the building immediately before it. Therefore, if the initial tremor is observed in advance at the vibration detection end 7 and the tuning of the anti-vibration tank is performed promptly in response to the building frequency at the time of large amplitude due to the large earthquake, the anti-vibration effect can be obtained even for a large earthquake. Can be
After the earthquake, the dynamic vibration absorber is tuned again so as to correspond to the frequency of the vibration of the building 8 due to the wind pressure. In this way, by automatically tuning the frequency of the dynamic vibration absorber to a required frequency, an accurate vibration control action can always be obtained.

なお、第2図において、圧力検知部12により常時空気
室3内の空気圧を検知し、この空気圧の検知信号を電磁
弁制御装置15へフィードバックさせるようにしてもよ
い。
In FIG. 2, the air pressure in the air chamber 3 may be constantly detected by the pressure detection unit 12 and a detection signal of the air pressure may be fed back to the solenoid valve control device 15.

また、空気室3内の空気圧をあらかじめ複数段階に設
定しておき、構築物8の振動の状況を判断して、あらか
じめ設定された複数段階の設定空気圧のうち、最適な設
定空気圧を選択するように制御装置9を構成するように
してもよい。
In addition, the air pressure in the air chamber 3 is set in advance in a plurality of stages, the state of vibration of the building 8 is determined, and an optimal set air pressure is selected from the preset air pressures in the plurality of stages. The control device 9 may be configured.

〔発明の効果〕〔The invention's effect〕

以上詳述したように、本発明の構築物用防振装置によ
れば、次のような効果ないし利点が得られる。
As described above in detail, the following effects or advantages can be obtained by the structure vibration damping device of the present invention.

(1)U字型連通管式防振タンクを使用しているので、
簡単な構成により液体の往復移動を利用して効果的に構
築物の防振を行なうことができる。
(1) Since a U-shaped communicating pipe type anti-vibration tank is used,
With a simple configuration, the vibration of the building can be effectively damped by utilizing the reciprocating movement of the liquid.

(2)U字型連通管式防振タンクにおいて、左右の液槽
内の自由液面が各竪形液槽の上端部に形成された空気室
の空気圧を受けるように構成されているので、空気室内
の空気圧を調整することによって液体の固有振動数を変
更することができ、構築物の振動の状況に対応して防振
機能を調整することが容易である。
(2) In the U-shaped communicating pipe type vibration isolating tank, the free liquid surfaces in the left and right liquid tanks are configured to receive the air pressure of the air chamber formed at the upper end of each vertical liquid tank. By adjusting the air pressure in the air chamber, the natural frequency of the liquid can be changed, and it is easy to adjust the anti-vibration function according to the state of vibration of the building.

(3)構築物の基礎部の振動を検知する振動検知部をそ
なえているので、地震の際には初期微動を早期に検知し
て、速やかに防振タンクのチューニングを行なうことが
できる。
(3) Since a vibration detecting unit for detecting the vibration of the foundation of the building is provided, early vibration can be detected early in the event of an earthquake, and the vibration isolating tank can be quickly tuned.

(4)振動検知部により検知された振動の解析データを
もとに演算処理を行ない、最適な空気室内の空気圧を算
出する演算処理部と、同演算処理部における演算処理の
結果に従って空気室内の空気圧を調整する空気給排弁駆
動装置とをそなえているので、風圧によって生じる小振
幅の比較的高振動数の構築物の振動のみならず、大きな
地震により生じる大振幅の比較的低い振動数の構築物の
振動に対しても、それぞれの振動数に対応して防振機能
を自動的に調整することができる。
(4) an arithmetic processing unit that performs an arithmetic process based on the analysis data of the vibration detected by the vibration detection unit to calculate an optimal air pressure in the air chamber; Since it has an air supply / exhaust valve driving device that adjusts air pressure, not only the vibration of a small-amplitude relatively high-frequency building caused by wind pressure but also a large-amplitude relatively low-frequency building caused by a large earthquake The vibration control function can be automatically adjusted corresponding to each vibration frequency.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例としての構築物用防振装置の
全体説明図、第2図は上記構築物用防振装置における制
御装置の信号経路図、第3図は従来の防振タンクの一例
を示す横断面図、第4図はU字形連通管式防振タンクに
おける振動数と空気室内の最適空気圧との関係を示すグ
ラフ、第5図は構築物における防振タンクの設置位置を
例示する正面図である。 1…防振タンク、2…液体、3…空気室、4,4′…配
管、5…空気供給用電磁弁、5′…空気排出用電磁弁、
6…圧力検出端、7…振動検出端、8…構築物、9…制
御装置、10…空気源、11…振動検知部、12…圧力検知
部、13…周波数制御部、14…演算処理部、15…電磁弁制
御装置、16…電磁弁駆動装置、17…吸気弁、17′…排気
弁、18…構築物の基礎部、19…比較器。
FIG. 1 is an overall explanatory view of an anti-vibration device for a building as one embodiment of the present invention, FIG. 2 is a signal path diagram of a control device in the anti-vibration device for a building, and FIG. FIG. 4 is a cross-sectional view showing an example, FIG. 4 is a graph showing the relationship between the vibration frequency in the U-shaped communicating pipe type vibration isolating tank and the optimum air pressure in the air chamber, and FIG. 5 exemplifies the installation position of the vibration isolating tank in the building. It is a front view. 1 ... vibration isolation tank, 2 ... liquid, 3 ... air chamber, 4, 4 '... pipe, 5 ... air supply solenoid valve, 5' ... air discharge solenoid valve,
6: Pressure detection end, 7: Vibration detection end, 8: Construction, 9: Control device, 10: Air source, 11: Vibration detection unit, 12: Pressure detection unit, 13: Frequency control unit, 14: Operation processing unit, 15 ... solenoid valve control device, 16 ... solenoid valve drive device, 17 ... intake valve, 17 '... exhaust valve, 18 ... foundation of building, 19 ... comparator.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】左右の竪形液槽内において自由液面を形成
する液体が、連通路を介して前記左右の液槽間で往復移
動することができ、前記左右の自由液面は、それぞれ前
記左右の竪形液槽の上端部に形成されている空気室内の
空気圧を受けるように構成された構築物用U字型連通管
式防振タンクと、前記構築物の基礎部の振動を検知する
振動検知部と、同振動検知部により検知された振動の解
析データをもとに演算処理を行なう演算処理部と、同演
算処理部における演算により算出された最適な空気室内
空気圧となるように前期空気室内の空気圧を調整するた
めの空気給排弁駆動装置とをそなえたことを特徴とす
る、構築物用防振装置。
A liquid forming a free liquid surface in left and right vertical liquid tanks can reciprocate between the left and right liquid tanks through a communication path, and the left and right free liquid surfaces are respectively A U-shaped communicating pipe type anti-vibration tank for a structure configured to receive air pressure in an air chamber formed at an upper end portion of the left and right vertical liquid tanks, and vibration for detecting vibration of a foundation of the structure. A detection unit, a calculation processing unit that performs calculation processing based on the analysis data of the vibration detected by the vibration detection unit, and an air control unit that calculates the optimum air pressure in the air chamber by the calculation in the calculation processing unit. An anti-vibration device for a building, comprising an air supply / exhaust valve driving device for adjusting the air pressure in a room.
JP34422789A 1989-12-28 1989-12-28 Vibration isolator for buildings Expired - Lifetime JP2615225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34422789A JP2615225B2 (en) 1989-12-28 1989-12-28 Vibration isolator for buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34422789A JP2615225B2 (en) 1989-12-28 1989-12-28 Vibration isolator for buildings

Publications (2)

Publication Number Publication Date
JPH03202572A JPH03202572A (en) 1991-09-04
JP2615225B2 true JP2615225B2 (en) 1997-05-28

Family

ID=18367616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34422789A Expired - Lifetime JP2615225B2 (en) 1989-12-28 1989-12-28 Vibration isolator for buildings

Country Status (1)

Country Link
JP (1) JP2615225B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2623925B2 (en) * 1990-06-29 1997-06-25 株式会社大林組 Structure damping device

Also Published As

Publication number Publication date
JPH03202572A (en) 1991-09-04

Similar Documents

Publication Publication Date Title
KR100812297B1 (en) Vibration Dampening System For A Reciprocating Compressor With A Linear Motor
US20120128484A1 (en) Turbomolecular Pump and Connector Device Therefor
JP2615225B2 (en) Vibration isolator for buildings
JPS6196229A (en) Liquid enclosing type vibro-isolating body
US6435841B1 (en) Hermetic reciprocating compressor
JPH07293038A (en) Damping device
JPH09317815A (en) Vibration isolator
KR20130012786A (en) Tuned mass damper using metal plate spring and vibration isolation base using the tuned mass damper
JP2001206073A (en) Method for damping vibration, active hydraulic vibration damping mount, and conveyance including the mount
JPH03247872A (en) Vibration isolator for structure
KR101362930B1 (en) Negative-stiffness vibration isolation system
JPH03257268A (en) Damping device with oil damper
CN220908938U (en) Steel stair with hidden TMD vibration damper
JPH10159893A (en) Liquid filled vibration proof device
JP2001234972A (en) Vibration damping unit and damping device
KR101672128B1 (en) Slab vibration reduction device for structure with slab
JPH11351616A (en) Vibrationproofing structure of engine heat-pump outdoor unit
JP2552361B2 (en) Damper for liquid storage tank
CN109630408A (en) A kind of shock-reducing and noise-reducing structure of electric scroll compressor for vehicles
JP2003139191A (en) Vibration prevention device
JP2585551B2 (en) Control method of active vibration isolation support device
JPH07301277A (en) Liquid-sealed type vibration control device
JP3511124B2 (en) Liquid filled type vibration damping device
JPH116540A (en) Vibration isolation device
JP3502970B2 (en) Liquid filled type vibration damping device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090311

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

EXPY Cancellation because of completion of term