JP2614788B2 - AC motor control device - Google Patents

AC motor control device

Info

Publication number
JP2614788B2
JP2614788B2 JP3122126A JP12212691A JP2614788B2 JP 2614788 B2 JP2614788 B2 JP 2614788B2 JP 3122126 A JP3122126 A JP 3122126A JP 12212691 A JP12212691 A JP 12212691A JP 2614788 B2 JP2614788 B2 JP 2614788B2
Authority
JP
Japan
Prior art keywords
output
voltage command
current
generating
coordinate conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3122126A
Other languages
Japanese (ja)
Other versions
JPH04325893A (en
Inventor
清隆 小林
飛世  正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3122126A priority Critical patent/JP2614788B2/en
Publication of JPH04325893A publication Critical patent/JPH04325893A/en
Application granted granted Critical
Publication of JP2614788B2 publication Critical patent/JP2614788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、交流電動機の制御装
置、特に、複数台のインバータから多相交流電動機に交
流電力を供給する交流電動機制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for an AC motor, and more particularly to an AC motor control device for supplying AC power from a plurality of inverters to a polyphase AC motor.

【0002】[0002]

【従来の技術】インバータの大容量化には、スイッチン
グ素子の直列、並列化並びに複数台インバータによる多
重、多相化が行なわれる。多重、多相化の一方法に、交
流電動機を多相巻線にして起磁力で多重化する方法が有
るが、多相交流電動機では各一次巻線間の磁気結合によ
り、過渡インピーダンスが非常に小さくなり、高速応答
の電流制御ができないという問題がある。そこで、従来
はインバータと多相交流電動機間にリアクトルを設ける
ことにより、過渡インピーダンスを大きくする方法が電
気学会論文誌108巻2号、昭和63年、第137ペー
ジに記載されている。
2. Description of the Related Art In order to increase the capacity of an inverter, switching elements are connected in series and in parallel, and multiple inverters are multiplexed and multi-phased. As one method of multiplexing and multi-phase, there is a method in which an AC motor is multi-phase winding and multiplexing is performed by a magnetomotive force.However, in a poly-phase AC motor, transient impedance is extremely large due to magnetic coupling between respective primary windings. There is a problem that the current control cannot be performed at a high speed because of the small size. Therefore, conventionally, a method of increasing the transient impedance by providing a reactor between the inverter and the polyphase AC motor is described in IEEJ Transactions on Volume 108, No. 2, 1988, pp. 137.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、イン
バータと多相交流電動機間に外部リアクトルを必要とす
る問題が有る。また、多相交流電動機とインバータ間に
直列リアクトルを接続した方式では、前記リアクトルの
電圧降下によって多相交流電動機に供給できる電圧の最
大値が低下し、電圧利用率が悪くなる問題が有る。本発
明の目的は、複数台のインバータを用いて多相交流電動
機に電力を供給するシステムにおいて、外部リアクトル
を小型化または無くして、多重インバータの出力電流ま
たは多相交流電動機の各相の巻線電流を安定的に平衡さ
せることのできる電動機制御装置を提供することに有
る。
The above prior art has a problem that an external reactor is required between the inverter and the polyphase AC motor. Further, in a system in which a series reactor is connected between a polyphase AC motor and an inverter, there is a problem that the maximum value of the voltage that can be supplied to the polyphase AC motor is reduced due to the voltage drop of the reactor, and the voltage utilization rate is deteriorated. SUMMARY OF THE INVENTION It is an object of the present invention to provide a system for supplying power to a polyphase AC motor using a plurality of inverters, by reducing or eliminating an external reactor to reduce the output current of a multiplex inverter or the winding of each phase of the polyphase AC motor. An object of the present invention is to provide a motor control device capable of stably balancing current.

【0004】[0004]

【課題を解決するための手段】上記目的は、多相交流電
動機に並列接続された複数台のインバータの、交流電動
機の回転座標系上に設けられた代表の電流制御系への帰
還信号を各インバータ出力電流の平均値とし、また、交
流電動機の回転座標系上に設けられた不平衡抑制の電流
制御系への帰還信号を各インバータ出力電流の差分値と
することにより、達成される。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a multi-phase AC motor in which a plurality of inverters are connected in parallel to a representative current control system provided on a rotating coordinate system of the AC motor. This is achieved by setting the average value of the inverter output currents and the difference between the inverter output currents as the feedback signal to the unbalanced current control system provided on the rotating coordinate system of the AC motor.

【0005】[0005]

【作用】各インバータの出力電流が等しくなるように不
平衡抑制の電流制御系が作用するので、多相交流電動機
の各相の各巻線の電流を平衡させることが出来る。ま
た、外部リアクトルを用いて並列接続したインバータに
おいても、同様に電流制御系の作用により不平衡電流を
低減することができる。このように、各インバータの出
力電流を平衡させることにより、外部リアクトルを小さ
くまたは無くすることができ、高速応答可能な制御を実
現することが可能となる。
The current control system for suppressing imbalance acts so that the output currents of the inverters become equal, so that the currents of the windings of each phase of the polyphase AC motor can be balanced. Also, in an inverter connected in parallel using an external reactor, the unbalanced current can be similarly reduced by the operation of the current control system. As described above, by balancing the output currents of the inverters, the external reactor can be reduced or eliminated, and control capable of high-speed response can be realized.

【0006】[0006]

【実施例】以下、本発明の一実施例を図1により説明す
る。この図は、2組の3相巻線を有する多相交流電動機
に適用したときの実施例であり、インバータ1Aと1B
が外部リアクトルを介さずに直接電動機2の2組の3相
巻線UA、VA、WAとUB、VB、WBに接続されて
いる。インバータ1A、1Bの出力側にはU相の電流を
検出する電流検出器3A、3B,V相の電流を検出する
電流検出器4A、4B,W相の電流を検出する電流検出
器5A、5Bがそれぞれ設けられている。交流電動機2
の回転速度は、速度検出器14により検出され、速度信
号Wrが加算器22に供給されている。トルク電流指令
信号Iq*は加算器20A及びすべり角周波数演算器21
に供給される。すべり角周波数演算器21はトルク電流
指令信号Iq*にしたがってすべり周波数指令信号Ws*を
生成し、生成した信号を加算器22へ出力する。加算器
22は速度信号Wrとすべり角周波数指令信号Ws*を加
算して一次角周波数指令信号W1*を生成する。一次角周
波数指令信号W1*は座標変換器15A、15B,16
A、16Bに供給されている。座標変換器16Aは電流
検出器3A、4A、5Aからの検出信号IUA、IVA、I
WAを回転磁界座標系における励磁電流信号IdAとトルク
電流信号IqAに変換する。座標変換器16Bは電流検出
器3B,4B,5Bからの検出信号IUB、IVB、IWBを
回転磁界座標系における励磁電流信号IdBとトルク電流
信号IqBに変換する。加算器24においては励磁電流信
号IdAとIdBが加算され、加算器23においてはトルク
電流指令IqAとIqBが加算され、各加算器の出力信号が
それぞれ係数器26、25に供給される。係数器25、
26は、ゲイン0.5(厳密にはインバータ1A,1B
の容量配分比)をもち、減算器19A、20Aに供給さ
れる。減算器19Aにおいては励磁電流指令信号Id*と
係数器26の出力信号とが減算され、減算器20Aにお
いてはトルク電流指令信号Iq*と係数器25の出力信号
とが減算され、各減算器の出力信号がそれぞれ電流調節
器17A、18Aに供給される。電流調節器17A、1
8Aは、それぞれ減算器19A,20Aからの信号に従
って、回転磁界座標系における電圧指令信号Vd*、Vq*
を生成する。減算器46においては励磁電流信号IdAよ
りIdBが減算され、減算器47においてはトルク電流信
号IqAよりIqBが減算される。減算器44においては基
準指令信号I0*より減算器46の出力信号が減算され、
減算器45においては基準指令信号I0*より減算器47
の出力信号が減算され、各減算器の出力信号がそれぞれ
電流調節器30,31に供給されている。電流調節器3
0,31は、それぞれ減算器44,45からの信号に従
って、回転磁界座標系における電圧指令補正信号ΔVd
*、ΔVq*を生成する。係数器32A、32Bは、ゲイ
ン0〜1を持ち、電圧指令補正信号ΔVd*をゲイン倍
し、それぞれ加算器40、減算器42に供給する。係数
器33A、33Bは、ゲイン0〜1を持ち、電圧指令補
正信号ΔVq*をゲイン倍し、それぞれ加算器41、減算
器43に供給する。加算器40においては、電圧指令信
号Vd*と係数器32Aの出力とが加算され、加算器41
においては、電圧指令信号Vq*と係数器33Aの出力と
が加算され、各々の電圧指令信号VdA**、VqA**を生成
する。座標変換器15Aは、電圧指令信号VdA**、VqA
**を交流電動機2の固定子座標系における3相交流出力
電圧指令信号VUA**、VVA**、VWA**に変換し、変換し
た3相交流出力電圧指令をインバータ1Aへ出力する。
減算器42においては、電圧指令信号Vd*より係数器3
2Bの出力が減算され、減算器43においては、電圧指
令信号Vq*より係数器33Bの出力が減算され、各々の
電圧指令信号VdB**、VqB**を生成する。座標変換器1
5Bは、電圧指令信号VdB**、VqB**を交流電動機2の
固定子座標系における3相交流出力電圧指令信号VUB*
*、VVB**、VWB**に変換し、変換した3相交流出力電
圧指令をインバータ1Bへ出力する。
An embodiment of the present invention will be described below with reference to FIG. This figure is an embodiment applied to a polyphase AC motor having two sets of three-phase windings, and shows inverters 1A and 1B
Are directly connected to two sets of three-phase windings UA, VA, WA and UB, VB, WB of the electric motor 2 without passing through an external reactor. Current detectors 3A and 3B for detecting U-phase currents, current detectors 4A and 4B for detecting V-phase currents, and current detectors 5A and 5B for detecting W-phase currents are provided on the output sides of the inverters 1A and 1B. Are provided respectively. AC motor 2
Is detected by the speed detector 14, and the speed signal Wr is supplied to the adder 22. The torque current command signal Iq * is supplied to an adder 20A and a slip angular frequency calculator 21.
Supplied to The slip angular frequency calculator 21 generates a slip frequency command signal Ws * according to the torque current command signal Iq *, and outputs the generated signal to the adder 22. The adder 22 adds the speed signal Wr and the slip angular frequency command signal Ws * to generate a primary angular frequency command signal W1 *. The primary angular frequency command signal W1 * is supplied to the coordinate converters 15A, 15B, 16
A, 16B. The coordinate converter 16A detects the detection signals IUA, IVA, IA from the current detectors 3A, 4A, 5A.
WA is converted into an exciting current signal IdA and a torque current signal IqA in the rotating magnetic field coordinate system. The coordinate converter 16B converts the detection signals IUB, IVB, IWB from the current detectors 3B, 4B, 5B into an excitation current signal IdB and a torque current signal IqB in the rotating magnetic field coordinate system. The adder 24 adds the exciting current signals IdA and IdB, the adder 23 adds the torque current commands IqA and IqB, and the output signals of the adders are supplied to coefficient units 26 and 25, respectively. Coefficient unit 25,
26 has a gain of 0.5 (strictly speaking, inverters 1A and 1B
, And supplied to the subtracters 19A and 20A. In the subtractor 19A, the exciting current command signal Id * and the output signal of the coefficient unit 26 are subtracted. In the subtractor 20A, the torque current command signal Iq * and the output signal of the coefficient unit 25 are subtracted. The output signals are supplied to current controllers 17A and 18A, respectively. Current regulator 17A, 1
8A are voltage command signals Vd * and Vq * in the rotating magnetic field coordinate system according to signals from the subtracters 19A and 20A, respectively.
Generate The subtractor 46 subtracts IdB from the exciting current signal IdA, and the subtractor 47 subtracts IqB from the torque current signal IqA. In the subtractor 44, the output signal of the subtractor 46 is subtracted from the reference command signal I0 *,
In the subtractor 45, the subtractor 47 is derived from the reference command signal I0 *.
Are subtracted, and the output signals of the respective subtracters are supplied to the current regulators 30 and 31, respectively. Current regulator 3
0 and 31 are voltage command correction signals ΔVd in the rotating magnetic field coordinate system according to signals from the subtracters 44 and 45, respectively.
*, ΔVq *. The coefficient units 32A and 32B have gains of 0 to 1, multiply the voltage command correction signal ΔVd * by a gain, and supply them to the adder 40 and the subtractor 42, respectively. The coefficient units 33A and 33B have gains of 0 to 1, multiply the voltage command correction signal ΔVq * by a gain, and supply the multiplied signals to the adder 41 and the subtractor 43, respectively. In the adder 40, the voltage command signal Vd * and the output of the coefficient unit 32A are added, and the adder 41
In, the voltage command signal Vq * and the output of the coefficient unit 33A are added to generate respective voltage command signals VdA ** and VqA **. The coordinate converter 15A receives the voltage command signals VdA **, VqA
** is converted into three-phase AC output voltage command signals VUA **, VVA **, and VWA ** in the stator coordinate system of the AC motor 2, and the converted three-phase AC output voltage command is output to the inverter 1A.
In the subtractor 42, the voltage command signal Vd * is used to calculate the coefficient
The output of 2B is subtracted, and the output of the coefficient unit 33B is subtracted from the voltage command signal Vq * in the subtractor 43 to generate the respective voltage command signals VdB ** and VqB **. Coordinate converter 1
5B is a three-phase AC output voltage command signal VUB * in the stator coordinate system of the AC motor 2 for the voltage command signals VdB ** and VqB **.
*, VVB **, and VWB **, and outputs the converted three-phase AC output voltage command to the inverter 1B.

【0007】ここで、座標変換器16Aの演算は、図6
に示した[数1]の(1)式によって表される。また、
座標変換器15Aの演算は、図6に示した[数2]の
(2)式によって表される。
The operation of the coordinate converter 16A is as shown in FIG.
(1) of [Equation 1] shown in FIG. Also,
The operation of the coordinate converter 15A is represented by Expression (2) of [Equation 2] shown in FIG.

【0008】従来の方法では、インバータと交流電動機
間に外部リアクトルを設けること無しに、インバータを
含めた各主回路インピーダンスのアンバランス及び各イ
ンバータ出力電圧の差による不平衡電流は抑制できなか
った。(前記電気学会論文誌108巻2号に詳述されて
いる。)本発明では、2組の3相巻線を有する交流電動
機の平均電流(厳密にはインバータ1A、1Bの容量配
分比)を電流調節器17A、18Aにより電流制御し、
一方の3相巻線と他方の3相巻線間の不平衡電流は、そ
の差分が零となるように電流調節器30、31により電
流制御する。以上のように、本実施例においては、イン
バータを含めた各主回路にインピーダンスのアンバラン
ス及び各インバータ出力電圧の差による不平衡電流は、
不平衡抑制の電流制御系によって抑制できるため、リア
クトルを無くすことができる。
In the conventional method, the imbalance of the impedance of each main circuit including the inverter and the unbalanced current due to the difference between the output voltages of the inverters cannot be suppressed without providing an external reactor between the inverter and the AC motor. In the present invention, the average current (strictly speaking, the capacity distribution ratio of the inverters 1A and 1B) of an AC motor having two sets of three-phase windings is determined in the present invention. The current is controlled by the current regulators 17A and 18A,
An unbalanced current between one three-phase winding and the other three-phase winding is controlled by the current regulators 30 and 31 so that the difference becomes zero. As described above, in the present embodiment, the unbalanced current due to the impedance imbalance and the difference between the inverter output voltages in each main circuit including the inverter is:
Since the current can be suppressed by the current control system for suppressing the unbalance, the reactor can be eliminated.

【0009】図2に本発明を6相巻線を有する多相交流
電動機に適用したときの実施例を示す。ここで、図1と
異なるのは、交流電動機が6相巻線か2組の3相巻線か
の点である。各部の動作は、図1の実施例とほぼ同じで
あるので、ここでの説明は省略する。ただ、本発明を6
相巻線交流電動機に適用しても、インバータを含めた各
主回路インピーダンスのアンバランス及び各インバータ
出力電圧の差による不平衡電流は、不平衡抑制の電流制
御系によって抑制できるため、外部リアクトルを無くす
ことができる。
FIG. 2 shows an embodiment in which the present invention is applied to a polyphase AC motor having six-phase windings. Here, what differs from FIG. 1 is that the AC motor is a six-phase winding or two sets of three-phase windings. The operation of each part is almost the same as that of the embodiment of FIG. 1, and the description is omitted here. However, the present invention
Even when applied to a phase winding AC motor, the unbalanced current due to the unbalance of each main circuit impedance including the inverter and the difference of each inverter output voltage can be suppressed by the unbalanced current control system. Can be eliminated.

【0010】図3に本発明を3相交流電動機に適用した
ときの実施例を示す。各部の動作は、図1の実施例とほ
ぼ同じであるので、違いだけを説明する。インバータ1
A、1Bは複数のスイッチング素子を備えており、各ス
イッチング素子が動作すると、図には示していないが、
入力された直流電圧が3相の交流電圧に変換され、中間
タップ付リアクトル27U、27V、27Wの両端に供
給される。インバータ1Aと1Bの3相交流電圧を加算
平均した電圧が中間タップ付リアクトルの中間タップか
ら交流電動機2に供給される。従来の多重化方法とし
て、中間タップ付リアクトルを介してインバータを並列
接続しても、インバータ出力電圧の差によって出力電流
の不平衡が発生するという問題が残る。しかし、本実施
例においては、不平衡電流をアンバランス補正の電流制
御系によって抑制できるため、中間タップ付リアクトル
の大きさを小さくすことができる。
FIG. 3 shows an embodiment in which the present invention is applied to a three-phase AC motor. The operation of each part is almost the same as that of the embodiment of FIG. 1, and only the differences will be described. Inverter 1
A and 1B have a plurality of switching elements, and when each switching element operates, it is not shown in the drawing,
The input DC voltage is converted into a three-phase AC voltage and supplied to both ends of the reactors 27U, 27V, and 27W with intermediate taps. A voltage obtained by averaging the three-phase AC voltages of the inverters 1A and 1B is supplied to the AC motor 2 from the intermediate tap of the reactor with the intermediate tap. As a conventional multiplexing method, even if inverters are connected in parallel via a reactor with an intermediate tap, there remains a problem that an imbalance in output current occurs due to a difference in inverter output voltage. However, in the present embodiment, since the unbalanced current can be suppressed by the current control system for unbalance correction, the size of the reactor with the intermediate tap can be reduced.

【0011】図4に本発明を2組の3相巻線を有する多
相交流電動機に適用したときの他の実施例を示す。各部
の動作は、図1の実施例とほぼ同じであるので、違いだ
けを説明する。座標変換器15Aは、電圧指令信号VdA
*、VqA*を交流電動機2の固定子座標系における電圧指
令信号VU*、VV*、VW*に変換する。減算器50A、5
0B、50Cにおいては検出信号IUA、IVA、IWAより
検出信号IUB、IVB、IWBが減算される。減算器51
A、51B、51Cにおいては基準指令信号I0*より減
算器50A、50B、50Cの出力信号が減算され、各
減算器の出力信号がそれぞれ電流調節器60A、60
B、60Cに供給される。電流調節器60A、60B、
60Cは、それぞれ減算器51A、51B、51Cから
の信号に従って、固定子座標系における電圧指令補正信
号ΔVU*、ΔVV*、ΔVW*を生成する。係数器54A、
54Bは、ゲイン0〜1を持ち、電圧指令補正信号ΔV
U*をゲイン倍し、それぞれ加算器52A、減算器53A
に供給する。係数器55A、55Bは、ゲイン0〜1を
持ち、電圧指令補正信号ΔVV*をゲイン倍し、それぞれ
加算器52B、減算器53Bに供給する。係数器56
A、56Bは、ゲイン0〜1を持ち、電圧指令補正信号
ΔVW*をゲイン倍し、それぞれ加算器52C、減算器5
3Cに供給する。加算器52A、52B,52Cにおい
ては、電圧指令信号VU*、VV*、VW*と係数器54A、
55A、56Aの出力とがそれぞれ加算され、各々の3
相交流電圧指令信号VUA**、VVA**、VWA**を生成し、
インバータ1Aへ出力する。減算器53A、53B、5
3Cにおいては、電圧指令信号VU*、VV*、VW*より係
数器54B、55B、56Bの出力がそれぞれ減算さ
れ、各々の電圧指令信号VUB**、VVB**、VWB**を生成
し、インバータ1Bへ出力する。本実施例においても、
図1の実施例と同様に3相巻線間の不平衡電流を抑制で
き、外部リアクトルを無くすることができる。
FIG. 4 shows another embodiment in which the present invention is applied to a polyphase AC motor having two sets of three-phase windings. The operation of each part is almost the same as that of the embodiment of FIG. 1, and only the differences will be described. The coordinate converter 15A receives the voltage command signal VdA
*, VqA * are converted into voltage command signals VU *, VV *, VW * in the stator coordinate system of the AC motor 2. Subtractor 50A, 5
At 0B and 50C, the detection signals IUB, IVB and IWB are subtracted from the detection signals IUA, IVA and IWA. Subtractor 51
In A, 51B, and 51C, the output signals of the subtractors 50A, 50B, and 50C are subtracted from the reference command signal I0 *, and the output signals of the respective subtracters are used as current controllers 60A and 60C, respectively.
B, 60C. Current regulators 60A, 60B,
60C generates voltage command correction signals ΔVU *, ΔVV *, ΔVW * in the stator coordinate system according to signals from subtracters 51A, 51B, 51C, respectively. Coefficient unit 54A,
54B has a gain of 0 to 1 and a voltage command correction signal ΔV
The gain of U * is multiplied by an adder 52A and a subtractor 53A, respectively.
To supply. The coefficient units 55A and 55B have gains of 0 to 1, multiply the voltage command correction signal ΔVV * by a gain, and supply the multiplied signals to the adder 52B and the subtractor 53B, respectively. Coefficient unit 56
A and 56B have gains of 0 to 1 and multiply the voltage command correction signal ΔVW * by a gain.
Supply to 3C. In the adders 52A, 52B, 52C, the voltage command signals VU *, VV *, VW * and the coefficient units 54A,
The outputs of 55A and 56A are added, and 3
Generate phase AC voltage command signals VUA **, VVA **, VWA **,
Output to inverter 1A. Subtractors 53A, 53B, 5
In 3C, the outputs of the coefficient units 54B, 55B, 56B are respectively subtracted from the voltage command signals VU *, VV *, VW * to generate respective voltage command signals VUB **, VVB **, VWB **, Output to inverter 1B. Also in this embodiment,
As in the embodiment of FIG. 1, the unbalanced current between the three-phase windings can be suppressed, and the external reactor can be eliminated.

【0012】図5に本発明を3相交流電動機に適用した
ときの他の実施例を示す。各部の動作は、図4の実施例
とほぼ同じであるので、違いだけを説明する。インバー
タ1A、1Bは複数のスイッチング素子を備えており、
各スイッチング素子が動作すると、図には示していない
が、入力された直流電圧が3相の交流電圧に変換され、
中間タップ付リアクトル27U、27V、27Wの両端
に供給される。インバータ1Aと1Bの3相交流電圧を
加算平均した電圧が中間タップ付リアクトルの中間タッ
プから交流電動機2に供給される。従来の多重化方法と
して、中間タップ付リアクトルを介してインバータを並
列接続しても、インバータ出力電圧の差によって出力電
流の不平衡が発生するという問題が残る。しかし、本実
施例においては、不平衡電流をアンバランス補正の電流
制御系によって抑制できるため、中間タップ付リアクト
ルの大きさを小さくすことができる。
FIG. 5 shows another embodiment in which the present invention is applied to a three-phase AC motor. The operation of each part is almost the same as that of the embodiment of FIG. 4, and only the differences will be described. The inverters 1A and 1B have a plurality of switching elements,
When each switching element operates, although not shown, the input DC voltage is converted into a three-phase AC voltage,
It is supplied to both ends of reactors 27U, 27V and 27W with intermediate taps. A voltage obtained by averaging the three-phase AC voltages of the inverters 1A and 1B is supplied to the AC motor 2 from the intermediate tap of the reactor with the intermediate tap. As a conventional multiplexing method, even if inverters are connected in parallel via a reactor with an intermediate tap, there remains a problem that an imbalance in output current occurs due to a difference in inverter output voltage. However, in the present embodiment, since the unbalanced current can be suppressed by the current control system for unbalance correction, the size of the reactor with the intermediate tap can be reduced.

【0013】以上、前記実施例では、インバータ出力電
流を3相分検出するもので説明したが、3相電流の合成
が零であることより2相分を検出して制御するものにも
適用することができる。また、3相巻線を2組以上備え
た多相交流電動機に適用することも可能である。 さら
に、複数組の3相巻線を幾何学的に異なならせて巻かれ
た多相交流電動機にも当然適用できる。また、本発明
は、出力電圧指令と出力位相指令に基づいて出力電圧ベ
クトルを選択する空間ベクトル制御による電圧型インバ
ータに適用しても同様の効果を得られることは明らかで
ある。
In the above embodiment, the description has been given of the case where the inverter output current is detected for three phases. However, the present invention is also applied to the case of detecting and controlling two phases because the combination of three phase currents is zero. be able to. Further, the present invention can be applied to a polyphase AC motor including two or more sets of three-phase windings. Further, the present invention can naturally be applied to a polyphase AC motor in which a plurality of sets of three-phase windings are wound with different geometric shapes. It is also apparent that the same effects can be obtained by applying the present invention to a voltage-type inverter based on space vector control that selects an output voltage vector based on an output voltage command and an output phase command.

【0014】[0014]

【発明の効果】以上説明したように、本発明によれば、
1組の3相巻線の3相誘導電動機の場合、不平衡電流を
抑制でき、外部リアクトルを小さくできる。また、2組
以上の3相巻線で構成される多相交流電動機でも不平衡
電流を抑制でき、外部リアクトルを設けること無しにイ
ンバータを多重化することができる。
As described above, according to the present invention,
In the case of one set of three-phase winding three-phase induction motors, the unbalanced current can be suppressed, and the external reactor can be reduced. Further, even with a polyphase AC motor composed of two or more three-phase windings, unbalanced current can be suppressed, and inverters can be multiplexed without providing an external reactor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例FIG. 1 shows a first embodiment of the present invention.

【図2】本発明の第2の実施例FIG. 2 shows a second embodiment of the present invention.

【図3】本発明の第3の実施例FIG. 3 shows a third embodiment of the present invention.

【図4】本発明の第4の実施例FIG. 4 shows a fourth embodiment of the present invention.

【図5】本発明の第5の実施例FIG. 5 is a fifth embodiment of the present invention.

【図6】数式…(1)式、(2)式FIG. 6: Numerical expressions (1) and (2)

【符号の説明】[Explanation of symbols]

1A、1B インバータ 2 多相交流電動機 17A、18A、30、31 電流調節器 15A、15B、16A、16B 座標変換器 40、41 加算器 42、43、44、45、46、47 減算器 1A, 1B Inverter 2 Polyphase AC motor 17A, 18A, 30, 31 Current controller 15A, 15B, 16A, 16B Coordinate converter 40, 41 Adder 42, 43, 44, 45, 46, 47 Subtractor

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 直流電源と、前記直流電源の電圧を複数
台の電力変換器を介して多相交流電動機に供給する交流
電動機制御装置において、前記複数台の電力変換器の出
力電流を検出する検出手段と、前記電力変換器の一方の
電流検出値を回転座標に変換する第1の座標変換手段と
前記電力変換器の他方の電流検出値を回転座標に変換す
る第2の座標変換手段と、前記第1と第2の座標変換手
段の出力信号から平均出力電流値を求める平均値演算手
段と、前記平均値演算手段の出力と励磁電流指令値及び
トルク電流指令値とから代表の2相電圧指令値を生成す
る電圧指令生成手段と、前記第1と第2の座標変換手段
の出力とから補正信号を生成する補正信号生成手段と、
前記補正信号生成手段の出力と前記電圧指令生成手段の
出力とから複数の2相電圧指令値を生成する電圧指令補
正手段と、前記電圧指令補正手段の出力から3相電圧指
令を生成する複数の指令座標変換手段とから構成し、多
相交流電動機の不平衡電流を低減することを特徴とする
交流電動機制御装置。
1. A DC power supply and an AC motor control device for supplying a voltage of the DC power supply to a polyphase AC motor via a plurality of power converters, wherein output currents of the plurality of power converters are detected. Detection means, first coordinate conversion means for converting one current detection value of the power converter into rotation coordinates, and second coordinate conversion means for converting the other current detection value of the power converter into rotation coordinates. Average value calculating means for calculating an average output current value from output signals of the first and second coordinate conversion means; and a representative two-phase signal based on an output of the average value calculating means, an exciting current command value and a torque current command value. Voltage command generation means for generating a voltage command value, correction signal generation means for generating a correction signal from the outputs of the first and second coordinate conversion means,
Voltage command correction means for generating a plurality of two-phase voltage command values from the output of the correction signal generation means and the output of the voltage command generation means; and a plurality of voltage command correction means for generating a three-phase voltage command from the output of the voltage command correction means. An AC motor control device comprising: command coordinate conversion means for reducing unbalanced current of a polyphase AC motor.
【請求項2】 請求項第1項において、前記補正信号生
成手段は、前記第1の座標変換手段の出力と前記第2の
座標変換手段の出力の差を求める減算手段と、前記減算
手段の出力を零とする電流調節手段からなることを特徴
とする交流電動機制御装置。
2. The subtraction means according to claim 1, wherein said correction signal generation means calculates a difference between an output of said first coordinate conversion means and an output of said second coordinate conversion means. An AC motor control device comprising current adjusting means for setting the output to zero.
【請求項3】 請求項第1項において、前記電圧指令補
正手段は、前記補正信号生成手段の出力のゲイン変換手
段と、前記ゲイン変換手段の出力と前記電圧指令生成手
段の出力の一方を加算する加算手段、他方を減算する減
算手段からなることを特徴とする交流電動機制御装置。
3. The voltage command correcting means according to claim 1, wherein said voltage command correcting means adds a gain converting means of an output of said correction signal generating means and one of an output of said gain converting means and an output of said voltage command generating means. An AC motor control device, comprising: an adding unit that performs subtraction; and a subtraction unit that subtracts the other.
【請求項4】 直流電源と、前記直流電源の電圧を複数
台の電力変換器を介して多相交流電動機に供給する交流
電動機制御装置において、前記複数台の電力変換器の出
力電流を検出する検出手段と、前記電力変換器の一方の
電流検出値を回転座標に変換する第1の座標変換手段と
前記電力変換器の他方の電流検出値を回転座標に変換す
る第2の座標変換手段と、前記第1と第2の座標変換手
段の出力信号から平均出力電流値を求める平均値演算手
段と、前記平均値演算手段の出力と励磁電流指令値及び
トルク電流指令値とから代表の2相電圧指令値を生成す
る電圧指令生成手段と、前記電圧指令手段の出力から3
相電圧指令を生成する複数の指令座標変換手段と、前記
電流検出手段の出力から補正信号を生成する補正信号生
成手段と、前記補正信号生成手段の出力と前記複数の指
令座標変換手段の出力とから複数の3相電圧指令値を生
成する電圧指令補正手段とから構成されることを特徴と
する交流電動機制御装置。
4. A DC power supply and an AC motor control device for supplying a voltage of the DC power supply to a polyphase AC motor via a plurality of power converters, wherein output currents of the plurality of power converters are detected. Detection means, first coordinate conversion means for converting one current detection value of the power converter into rotation coordinates, and second coordinate conversion means for converting the other current detection value of the power converter into rotation coordinates. Average value calculating means for calculating an average output current value from output signals of the first and second coordinate conversion means; and a representative two-phase signal based on an output of the average value calculating means, an exciting current command value and a torque current command value. Voltage command generating means for generating a voltage command value;
A plurality of command coordinate conversion means for generating a phase voltage command; a correction signal generation means for generating a correction signal from an output of the current detection means; an output of the correction signal generation means and an output of the plurality of command coordinate conversion means. And a voltage command correcting means for generating a plurality of three-phase voltage command values from the AC motor control device.
【請求項5】 請求項第4項において、前記補正信号生
成手段は、前記電流検出手段の出力信号から各相毎の差
を求める減算手段と、前記減算手段の出力を零とする電
流調節手段からなることを特徴とする交流電動機制御装
置。
5. The correction signal generating means according to claim 4, wherein said correction signal generating means obtains a difference for each phase from an output signal of said current detecting means, and current adjusting means sets an output of said subtracting means to zero. An AC motor control device, comprising:
【請求項6】 請求項第4項において、前記電圧指令補
正手段は、前記補正信号生成手段の出力のゲイン変換手
段と、前記ゲイン変換手段の出力と前記電圧指令生成手
段の出力の一方を加算する加算手段、他方を減算する減
算手段からなることを特徴とする交流電動機制御装置。
6. The voltage command correcting means according to claim 4, wherein said voltage command correcting means adds a gain converting means of an output of said correction signal generating means and one of an output of said gain converting means and an output of said voltage command generating means. An AC motor control device, comprising: an adding unit that performs subtraction; and a subtraction unit that subtracts the other.
JP3122126A 1991-04-24 1991-04-24 AC motor control device Expired - Fee Related JP2614788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3122126A JP2614788B2 (en) 1991-04-24 1991-04-24 AC motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3122126A JP2614788B2 (en) 1991-04-24 1991-04-24 AC motor control device

Publications (2)

Publication Number Publication Date
JPH04325893A JPH04325893A (en) 1992-11-16
JP2614788B2 true JP2614788B2 (en) 1997-05-28

Family

ID=14828263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3122126A Expired - Fee Related JP2614788B2 (en) 1991-04-24 1991-04-24 AC motor control device

Country Status (1)

Country Link
JP (1) JP2614788B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011152027A (en) * 2009-12-25 2011-08-04 Denso Corp Motor drive apparatus, and electric power steering apparatus using the same
WO2015068258A1 (en) 2013-11-08 2015-05-14 三菱電機株式会社 Alternating-current rotating machine controller
KR20160097376A (en) 2014-03-14 2016-08-17 히다치 오토모티브 시스템즈 가부시키가이샤 Electric motor control device and control method
KR20160100301A (en) 2013-12-25 2016-08-23 히다치 오토모티브 시스템즈 가부시키가이샤 Electric motor drive device and control method
KR20160102080A (en) 2014-04-10 2016-08-26 히다치 오토모티브 시스템즈 가부시키가이샤 Electric motor control device and control method
US9712096B2 (en) 2014-04-28 2017-07-18 Mitsubishi Electric Corporation Control apparatus and control method for AC rotary machine, and electric power steering apparatus
US10205416B2 (en) 2015-02-24 2019-02-12 Mitsubishi Electric Corporation Electric driving apparatus and electric power steering apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06245575A (en) * 1993-02-17 1994-09-02 Nippon Reliance Kk Method for controlling ac motor
JP3938486B2 (en) 2001-11-06 2007-06-27 三菱電機株式会社 Multi-winding motor controller
JP2012076644A (en) * 2010-10-04 2012-04-19 Jtekt Corp Electric power steering device
CN103153755B (en) 2010-10-04 2016-05-04 株式会社捷太格特 Electrically powered steering apparatus using same
JP5562361B2 (en) * 2012-01-26 2014-07-30 三菱電機株式会社 AC rotating machine control device, and electric power steering device equipped with the control device
JP5556845B2 (en) * 2012-04-26 2014-07-23 株式会社デンソー Control device for three-phase rotating machine
CN105024622A (en) * 2015-08-16 2015-11-04 石成富 Intelligent control method of electrically-driven motor
US9991778B2 (en) 2016-02-29 2018-06-05 The Boeing Company Balancing current within a modular converter system
US10454393B2 (en) * 2016-07-25 2019-10-22 The Boeing Company Balancing current within a parallel modular converter system
US11130518B2 (en) * 2016-11-14 2021-09-28 Mitsubishi Electric Corporation Motor control apparatus and electric power steering control apparatus equipped with the motor control apparatus
JP6958230B2 (en) * 2017-10-24 2021-11-02 株式会社デンソー Rotating electric machine control device
JP7092224B1 (en) 2021-02-26 2022-06-28 株式会社安川電機 Power converter, control system, drive system and power conversion method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011152027A (en) * 2009-12-25 2011-08-04 Denso Corp Motor drive apparatus, and electric power steering apparatus using the same
US9954472B2 (en) 2013-11-08 2018-04-24 Mitsubishi Electric Corporation Control apparatus for AC rotary machine
JP5992113B2 (en) * 2013-11-08 2016-09-14 三菱電機株式会社 AC rotating machine control device
JPWO2015068258A1 (en) * 2013-11-08 2017-03-09 三菱電機株式会社 AC rotating machine control device
WO2015068258A1 (en) 2013-11-08 2015-05-14 三菱電機株式会社 Alternating-current rotating machine controller
KR20160100301A (en) 2013-12-25 2016-08-23 히다치 오토모티브 시스템즈 가부시키가이샤 Electric motor drive device and control method
US9985567B2 (en) 2013-12-25 2018-05-29 Hitachi Automotive Systems, Ltd. Electric motor drive device and control method therefor
DE112014006003B4 (en) 2013-12-25 2024-04-25 Hitachi Astemo, Ltd. Electric motor drive device and associated control method
US9647603B2 (en) 2014-03-14 2017-05-09 Hitachi Automotive Systems, Ltd. Controller and control method for electric motor
KR20160097376A (en) 2014-03-14 2016-08-17 히다치 오토모티브 시스템즈 가부시키가이샤 Electric motor control device and control method
DE112015001718B4 (en) 2014-04-10 2022-03-03 Hitachi Astemo, Ltd. Control device and control method for an electric motor
KR20160102080A (en) 2014-04-10 2016-08-26 히다치 오토모티브 시스템즈 가부시키가이샤 Electric motor control device and control method
US10218302B2 (en) 2014-04-10 2019-02-26 Hitachi Automotive Systems, Ltd. Controller and control method for electric motor
US9712096B2 (en) 2014-04-28 2017-07-18 Mitsubishi Electric Corporation Control apparatus and control method for AC rotary machine, and electric power steering apparatus
US10205416B2 (en) 2015-02-24 2019-02-12 Mitsubishi Electric Corporation Electric driving apparatus and electric power steering apparatus

Also Published As

Publication number Publication date
JPH04325893A (en) 1992-11-16

Similar Documents

Publication Publication Date Title
JP2614788B2 (en) AC motor control device
US5206575A (en) Device for controlling an AC motor
JP3938486B2 (en) Multi-winding motor controller
EP2809000B1 (en) Control apparatus for ac rotating machine, and electric power steering apparatus provided with said control apparatus
CN109952701B (en) Motor control device and electric power steering control device provided with same
JP2733724B2 (en) Current control device for multi-winding AC motor
KR100231266B1 (en) Control device for controlling a servo motor
JP3054521B2 (en) Induction motor control device
JP2002233180A (en) Power converter
JPH10201242A (en) Current type converter
JP6682313B2 (en) Motor control device
JPH10191677A (en) Speed control apparatus for ac motor
JP3222028B2 (en) Motor drive system
JP4219362B2 (en) Rotating machine control device
JP3209853B2 (en) Control device for synchronous motor
US9054622B2 (en) Method of controlling a current of a motor and control device of a motor
JPH09140187A (en) Power converter
CN112335167A (en) Power conversion device and power conversion control device
JPH06335252A (en) Method and equipment for controlling self-excited power converter
JP3812142B2 (en) Control device for variable speed power generation system
JP2005218186A (en) Controller for ac electric rolling stock
JP2912316B2 (en) Elevator speed control device
JP2005269818A (en) Control unit of polyphase ac current
JP3249307B2 (en) NPC inverter
JPH0785677B2 (en) Control method of voltage source inverter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees