JP2613152B2 - Electrostatic machining method and apparatus for stationary blade - Google Patents

Electrostatic machining method and apparatus for stationary blade

Info

Publication number
JP2613152B2
JP2613152B2 JP4148975A JP14897592A JP2613152B2 JP 2613152 B2 JP2613152 B2 JP 2613152B2 JP 4148975 A JP4148975 A JP 4148975A JP 14897592 A JP14897592 A JP 14897592A JP 2613152 B2 JP2613152 B2 JP 2613152B2
Authority
JP
Japan
Prior art keywords
electrode
blade
machining
end plate
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4148975A
Other languages
Japanese (ja)
Other versions
JPH05318230A (en
Inventor
金造 山下
祐司 下田
Original Assignee
エーピーシー エアロスペシャルティ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エーピーシー エアロスペシャルティ株式会社 filed Critical エーピーシー エアロスペシャルティ株式会社
Priority to JP4148975A priority Critical patent/JP2613152B2/en
Publication of JPH05318230A publication Critical patent/JPH05318230A/en
Application granted granted Critical
Publication of JP2613152B2 publication Critical patent/JP2613152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電極の移動方向にほぼ
平行な翼端板を両端に有するタービン用の静翼を加工す
るための電解加工方法と、この方法の実施に直接使用す
る装置とに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic machining method for machining a stationary vane for a turbine having blade end plates at both ends which are substantially parallel to the moving direction of an electrode, and an apparatus directly used for carrying out the method. It is about.

【0002】[0002]

【従来の技術】ガスタービン・エンジンなどに使用され
る静翼は、通常各静翼の翼部の両端に翼端板を持つ構造
となっている。図7はガスタービン用の1つの静翼1を
示す斜視図であり、この図で符号2は翼部、3と4はこ
の翼部2の両端に一体に形成された翼端板である。
2. Description of the Related Art A stationary blade used in a gas turbine engine or the like generally has a blade end plate at each end of a blade portion of each stationary blade. FIG. 7 is a perspective view showing one vane 1 for a gas turbine. In this figure, reference numeral 2 denotes a wing portion, and reference numerals 3 and 4 denote wing end plates integrally formed at both ends of the wing portion 2.

【0003】このような静翼を放電加工により作ること
が従来より行われている。この放電加工は被加工物と電
極との間を絶縁液体(主として鉱物油からなる)で満た
し、被加工物と電極との間にパルス状の電流を流すこと
によって被加工物を電極表面に沿った形状に加工するも
のである。しかしこの放電加工は加工速度が極めて遅い
という問題がある。そこでこの放電加工に代えて電解加
工法が従来より提案されている。この電解加工は被加工
物と電極との間に電解液を流動させつつ両者間に電流
(通常は直流)を流すものである。ここに電解液は導電
性の液で、通常食塩水、硝酸ナトリウム(NaNO 3
水溶液、硝酸カリウム(KNO 3 )水溶液などが用いら
れる。
[0003] Making such a stationary blade by electric discharge machining
Has been performed conventionally. This electrical discharge machining is
Fill between poles with insulating liquid (mainly composed of mineral oil)
Pulse current between the workpiece and the electrode
Process the workpiece into a shape along the electrode surface.
It is. However, this electric discharge machining is extremely slow
There is a problem. Therefore, instead of this electric discharge machining, electrolytic
A construction method has been conventionally proposed. This electrolytic processing is
While flowing the electrolyte between the object and the electrode, the current
(Usually direct current). Here the electrolyte is conductive
Liquid, usually saline, sodium nitrate (NaNO 3 )
Aqueous solution, potassium nitrate (KNO 3 ) aqueous solution, etc.
It is.

【0004】放電加工では被加工物の加工が進行して被
加工物と電極との間隔が拡大すると、この同じ場所での
放電が起こりにくくなる。すなわち間隔が狭い場所から
放電加工が進んで被加工物の加工表面全体が電極表面形
状に沿うように自然に調整され得る。しかし電解加工で
はこのような自然な調整機能がないため、高い加工精度
を得るための特別な配慮が必要になる。一般に電解加工
の精度に関する諸要素は数多くあるが、本発明との関係
で特に重要なのが電極と被加工物との近接相対速度であ
る。この近接相対速度は大きくなる程、この速度に反比
例して加工間隙は小さくなる。従っていわゆる転写精度
が向上する。
[0004] In electric discharge machining, machining of a workpiece proceeds, and
As the distance between the workpiece and the electrode increases,
Discharge is less likely to occur. In other words, from a place with a small space
With the progress of electric discharge machining, the entire machining surface of the workpiece is the electrode surface shape
It can be adjusted naturally to conform to the shape. But with electrolytic machining
Does not have such a natural adjustment function, so high machining accuracy
Special considerations are needed to obtain In general, there are many factors related to the accuracy of electrolytic machining, but the most important in relation to the present invention is the relative speed of approach between the electrode and the workpiece. As the approach relative speed increases, the machining gap decreases in inverse proportion to the speed. Therefore, the so-called transfer accuracy is improved.

【0005】図8は一般的な電解加工において、タ−ビ
ン静翼などの被加工物1Aに対して電極7が正対して接
近する状態を示し、ここに電極7の進行方向と被加工面
8とはほぼ垂直である。このような場合、両者(電極7
と被加工面8)の間の、いわゆる加工間隙は殆ど一定で
ある。
FIG. 8 shows a state in which the electrode 7 approaches and directly faces a workpiece 1A such as a turbine vane in general electrolytic processing. Here, the traveling direction of the electrode 7 and the surface to be processed are shown. 8 is almost perpendicular. In such a case, both (electrode 7
The so-called machining gap between the workpiece and the surface to be machined 8) is almost constant.

【0006】図9は被加工面8Bに対して電極7Bをあ
る角度をもって接近させながら加工する場合を示す。矢
印で示す電極7Bの進行方向と電極面9との間の角度A
が小さくなる程、加工間隙は大きくなる。その程度はあ
る角度範囲内では加工間隙が電極7Bの進行方向と電極
面9の間の角度Aの正弦(sin A )に反比例して大きく
なる。すなはち被加工物1Bに対する近接速度の角度A
に対する垂直ベクトルがそれだけ小さくなるからであ
る。
FIG. 9 shows a case where the electrode 7B is processed while approaching the surface 8B to be processed at a certain angle. Angle A between the direction of travel of electrode 7B indicated by the arrow and electrode surface 9
Becomes smaller, the processing gap becomes larger. To the extent, within a certain angle range, the machining gap increases in inverse proportion to the sine of the angle A between the traveling direction of the electrode 7B and the electrode surface 9 (sin A). That is, the angle A of the approach speed to the workpiece 1B.
This is because the vertical vector for is smaller.

【0007】図10は両端に翼端板3、4をもった図7
に示した静翼1の加工過程を説明する図である。この図
では翼部2の加工をするために、これに近似した電極7
Cを用いる。しかし被加工物1の両端部の形状、すなわ
ち翼端板3、4が形成する壁3A、4Aと電極7Cの形
状が一致しない。実際にはこの壁3A、4Aは円錐形の
一部をなしている場合が多く、このような方法では全く
この寸法形状精度の制御が不能である。その理由は前記
の正弦はゼロに近く間隙は大となり、この間隙がある程
度以上になると、すでに電解加工で通常考えられる加工
制御の範囲を超えてしまうからである。
FIG. 10 shows wing end plates 3 and 4 at both ends.
FIG. 4 is a view for explaining a processing process of the stationary blade 1 shown in FIG. In this figure, in order to process the wing part 2, an electrode 7 similar to this is used.
C is used. However, the shapes of both ends of the workpiece 1, that is, the shapes of the walls 3A, 4A formed by the blade end plates 3, 4, and the electrodes 7C do not match. In practice, the walls 3A, 4A often form a part of a conical shape, and such a method cannot control the dimensional accuracy at all. The reason is that the sine is close to zero and the gap becomes large, and if this gap exceeds a certain level, it exceeds the range of machining control that is usually considered in electrolytic machining.

【0008】[0008]

【従来の技術の問題点】このように従来の電解加工で
は、特に翼部の両縁から起立する翼端板3、4の起立壁
3A、4Aの加工精度が低くなる問題があった。このた
め電解加工後に、数値制御型切削機械等を用いて仕上げ
加工を行う必要が生じ、生産性が悪いという問題が生じ
ていた。
As described above, in the conventional electrolytic machining, there is a problem that the machining accuracy of the upright walls 3A, 4A of the wing end plates 3, 4, which rise from both edges of the wing portion, becomes low. For this reason, it is necessary to perform finishing using a numerically controlled cutting machine or the like after electrolytic processing, and there has been a problem that productivity is poor.

【0009】[0009]

【発明の目的】本発明はこのような事情に鑑みなされた
ものであり、電極の進行方向にほぼ直交する翼部の両端
に翼端板を有する静翼を高精度に加工することができる
電解加工方法を提供することを第1の目的とする。また
この方法の実施に直接使用する装置を提供することを第
2の目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and has both ends of a wing portion substantially orthogonal to the direction of electrode travel.
It is a first object of the present invention to provide an electrolytic processing method capable of processing a stationary blade having a blade end plate at high accuracy. It is a second object to provide an apparatus that can be used directly to perform this method.

【0010】[0010]

【発明の構成】本発明によれば第1の目的は、翼部の
端に翼端板を有する導電性の静翼と電極との間に電解液
を流動させつつ、静翼に対して電極を前記翼部にほぼ直
交する方向に接近させる静翼の電解加工方法において、
前記電極を前記翼部にほぼ平行な方向に伸縮可能とし、
電解加工の初期においては前記電極を縮小させて対向す
る前記翼端板との間隙を大きくし、電解加工の途中にお
いては前記電極を次第に伸長させて前記翼端板との間隙
を次第に小さくすることを特徴とする静翼の電解加工方
法により達成される。また第2の目的は、翼部の両端に
翼端板を有する導電性の静翼と電極との間に電解液を流
動させつつ、静翼に対して電極を前記翼部にほぼ直交す
る方向に接近させる静翼の電解加工装置において、前記
電極は、前記翼端板に対向する複数の端部電極と、これ
ら端部電極にそれぞれ傾斜面で摺動可能に密着し前記翼
部にほぼ平行な面での側断面上で略逆台形状となる中間
電極と、加工初期および途中には前記中間電極を端部電
極に対して相対的に遅れて前進させる一方加工終期には
これら中間電極および端部電極の電極面をほぼ連続させ
る電極送り機構とを備えることを特徴とする静翼の電解
加工装置により達成される。
According to the present invention, a first object is to make an electrolyte flow between an electrode and a conductive stationary blade having a blade end plate at both ends of a blade portion. The electrode is placed almost directly on the wing
In the electrolytic processing method of the stator vane to approach in the intersecting direction,
Allowing the electrode to expand and contract in a direction substantially parallel to the wing,
In the early stage of electrolytic machining, the electrode is reduced to increase the gap between the opposing blade end plates, and during the electrolytic machining, the electrode is gradually extended to gradually reduce the gap with the blade end plate. This is achieved by a method for electrolytically machining a stationary blade characterized by the following. The second object is, while flowing an electrolyte solution between the conductive vanes and the electrode having a tip plate on both ends of the wings, substantially perpendicular to the electrode on the blade unit relative to the stationary blade
The electrode is provided with a plurality of end electrodes opposed to the blade end plate and slidably in contact with these end electrodes on inclined surfaces respectively.
An intermediate electrode that is substantially inverted trapezoidal on a side cross section in a plane substantially parallel to the part, and at the end of processing, the intermediate electrode is advanced relatively late with respect to the end electrode during the initial stage of processing and on the way. An electrode feed mechanism for making the electrode surfaces of the intermediate electrode and the end electrode substantially continuous is provided by a stationary blade electrolytic processing apparatus.

【0011】[0011]

【実施例】図1は、本発明の基本概念を示すための電極
70の側面図であり、加工初期または途中を示す。また
図2は同じく加工終了時を示す。電極70は3つの部分
71、72、73に分割されている。中間電極72は楔
(くさび)状あるいは逆台形状をなし、これにあわせた
角度を有する端部電極71、73の中間に位置する。こ
の中間電極72と端部電極71、73は傾斜面P、Qで
摺動可能に密着している。図1は中間電極72が若干電
極底面から浮いた状態になっている。図2においては3
つの電極71、72、73、は一直線上にならび加工終
了の位置にあることを示す。
FIG. 1 is a side view of an electrode 70 for illustrating a basic concept of the present invention, showing an initial stage or an intermediate stage of processing. FIG. 2 also shows the state at the end of the processing. The electrode 70 is divided into three parts 71, 72, 73. The intermediate electrode 72 has a wedge shape or an inverted trapezoidal shape, and is located between the end electrodes 71 and 73 having an angle corresponding thereto. The intermediate electrode 72 and the end electrodes 71 and 73 are slidably adhered on the inclined surfaces P and Q. FIG. 1 shows a state in which the intermediate electrode 72 slightly floats from the electrode bottom surface. In FIG. 2, 3
The three electrodes 71, 72 and 73 are aligned and indicate that they are at the processing end position.

【0012】図1、図2から明らかなように、組合わせ
た電極の全長としては、図2の方が長くなり、図1から
図2にいたる過程において端部電極71、73、は翼端
板3、4の壁3A、4Aに垂直な方向への相対速度を生
ずる。この端部電極71、73の移動必要量は壁3A、
4Aの高さにより異なるが、おおむね片側で2ないし4
ミリメ−トルである。これにより、翼端板3、4の形状
が正確に電極70から転写されるわけである。
As is clear from FIGS. 1 and 2, the total length of the combined electrode is longer in FIG. 2, and the end electrodes 71, 73 are used in the process from FIG. 1 to FIG. This produces a relative velocity in the direction perpendicular to the walls 3A, 4A of the plates 3,4. The required movement amount of the end electrodes 71 and 73 is the wall 3A,
It depends on the height of 4A, but generally 2 to 4 on one side
Millimeters. As a result, the shapes of the wing end plates 3 and 4 are accurately transferred from the electrode 70.

【0013】図3、図4は前記電極70の相互移動を行
わせるための電極送り機構を含む電極部全体の正断面図
と側断面図である。これらの機構は本発明の理解のため
にその一例を示すものであって、これと異なる機構を用
うるとしても、電極の概念が特許請求の範囲に属する限
りにおいて、本特許に含まれるものである。
FIGS. 3 and 4 are a front sectional view and a side sectional view of the entire electrode section including an electrode feed mechanism for causing the electrodes 70 to move mutually. These mechanisms are merely examples for the purpose of understanding the present invention, and even if a different mechanism can be used, as long as the concept of the electrode falls within the scope of the claims, it is included in the present patent. is there.

【0014】図3において、機構全体は30で示す機構
格納部に収納されている。この格納部30は電気的影響
ならびに電解液による浸蝕から防御するため、主として
強化プラスチックで製作されている。また格納部30を
ラム(電極取付板、図示していない)に取り付けるため
の格納部30の突出部31に設けられた複数個のボルト
穴32がある。格納部30の中には取付け面33に平行
にシャフト34があり、格納部30の壁面に設けられた
2個の支持部35により固定される。このシャフト34
のほぼ中間点に中間電極72を図5において上下に移動
させるための偏心カム36が取り付けられる。
In FIG. 3, the entire mechanism is stored in a mechanism storage section indicated by reference numeral 30. The housing 30 is mainly made of reinforced plastic to protect against electrical effects and erosion by the electrolyte. There are also a plurality of bolt holes 32 provided on the protrusion 31 of the storage unit 30 for mounting the storage unit 30 on a ram (electrode mounting plate, not shown). A shaft 34 is provided in the storage unit 30 in parallel with the mounting surface 33, and is fixed by two support portions 35 provided on the wall surface of the storage unit 30. This shaft 34
The eccentric cam 36 for moving the intermediate electrode 72 up and down in FIG.

【0015】このカム36の両側に端部電極71、73
を左右に移動させるための雌溝37A、38Aを有する
スクリュー型カム37、38が取り付けられる。このカ
ム溝37A、38Aは端部電極71、73の台板39、
40に取り付けられた雄型ブロック41、42と嵌合い
になっており、この2対の組合わせカム部はシャフト3
4の回転により端部電極71は図面上で左側に、端部電
極73は右側に移動するようになっている。
End electrodes 71 and 73 are provided on both sides of the cam 36.
Screw cams 37, 38 having female grooves 37A, 38A for moving the right and left are mounted. The cam grooves 37A and 38A are provided on the base plates 39 of the end electrodes 71 and 73,
40 are fitted with the male blocks 41, 42 attached to the shaft 40.
By the rotation of 4, the end electrode 71 moves to the left in the drawing, and the end electrode 73 moves to the right in the drawing.

【0016】台板39、40と格納部30との間には雄
型ブロック41、42と干渉しない位置にスライド・ブ
ロック付きリニヤ・ベアリング43、44があり、端部
電極71の台板39と格納部30との間にはベアリング
43、端部電極73の台板40と格納部の間にはベアリ
ング44がある。それぞれの端部電極71、73は台板
39、40を介してそれぞれのリニヤ・ベアリングのス
ライド・ブロック45、46に固定される。
Between the base plates 39, 40 and the storage unit 30, linear bearings 43, 44 with slide blocks are provided at positions not interfering with the male blocks 41, 42. There is a bearing 43 between the storage unit 30 and a bearing 44 between the base plate 40 of the end electrode 73 and the storage unit. The respective end electrodes 71, 73 are fixed to the slide blocks 45, 46 of the respective linear bearings via the base plates 39, 40.

【0017】リニヤ・ベアリングのレ−ル部は格納部3
0の軸線(紙面と平行)上に取り付けられ、格納部3
0、端部電極71、73は自由に滑動する。実際には滑
動距離は片側5ミリ程度であり、多くのスペ−スを必要
としない。端部電極71、73に陰極電位を印加するた
めの電纜接合部61、63が端部電極71、73に設け
られ、また中間電極72には他の電纜接合部(図示せ
ず)が設けられている。
The rail portion of the linear bearing has a housing 3
0 on the axis (parallel to the paper surface)
0, the end electrodes 71, 73 slide freely. In practice, the sliding distance is on the order of 5 mm per side, and does not require much space. Cable joints 61 and 63 for applying a cathode potential to the end electrodes 71 and 73 are provided on the end electrodes 71 and 73, and another cable joint (not shown) is provided on the intermediate electrode 72. ing.

【0018】このシャフト34の駆動用動力として、格
納部30に固定されかつシャフト34に嵌め合わされた
ステッピング・モータ50がある。モータ50の駆動開
始、停止の指示は、機械本体の操作盤(図示しない)に
示されたラム位置により自動的に与えられる。また、加
工終了の電気的信号によりステッピング・モ−タは原位
置に戻る。中間電極72は引上げ用スプリング65、6
6により原位置に戻る。スプリングの一端は中間電極7
2に、他端は格納部30の適宜の位置に固定される。端
部電極71、73はその最も拡がった位置にストッパ−
51、52があり過剰な拡大を防止する。
As a driving power for the shaft 34, there is a stepping motor 50 fixed to the storage section 30 and fitted to the shaft 34. Instructions to start and stop driving the motor 50 are automatically given by a ram position shown on an operation panel (not shown) of the machine main body. In addition, the stepping motor returns to the original position in response to the electrical signal indicating the end of processing. The intermediate electrode 72 is provided with pulling springs 65 and 6.
6 returns to the original position. One end of the spring is an intermediate electrode 7
2, the other end is fixed to an appropriate position of the storage unit 30. The end electrodes 71 and 73 have stoppers at their most widened positions.
51 and 52 prevent excessive enlargement.

【0019】図4において、シャフト34に固定された
円盤状カム36はステッピング・モータの回転に伴い中
間電極72を下方に押し下げ、その終点において各電極
71、72、73の加工面が一致するように調整され
る。なお、図5に示すように、3つの電極71、72、
73が常に同一軸上にあるようにするため、嵌合溝53
A、53Bが設けている。この電極70は図6に示すよ
うに被加工物1である翼部2の両側に対向配置され、翼
部2を両側から同時に加工するように用いられる。ここ
に中間電極72の被加工物1への接近速度は、端部電極
71、73の壁3A、4Aへの接近側より大きいのが望
ましい。また電極70は3つ以上の部分に分割したもの
でもよい。
In FIG. 4, the disc-shaped cam 36 fixed to the shaft 34 pushes down the intermediate electrode 72 with the rotation of the stepping motor so that the processing surfaces of the electrodes 71, 72, 73 coincide at the end point. It is adjusted to. As shown in FIG. 5, three electrodes 71, 72,
In order to make sure that 73 is always on the same axis, the fitting groove 53
A, 53B. As shown in FIG. 6, the electrodes 70 are arranged on both sides of the wing portion 2 which is the workpiece 1, and are used to simultaneously process the wing portion 2 from both sides. Here, the approach speed of the intermediate electrode 72 to the workpiece 1 is desirably higher than the approach speed of the end electrodes 71, 73 to the walls 3A, 4A. The electrode 70 may be divided into three or more parts.

【0020】[0020]

【発明の効果】請求項1の発明は以上のように、電極を
静翼の翼部とほぼ平行な方向に伸縮可能とし、静翼の電
解加工初期においては電極(70)を翼部とほぼ平行な
方向に縮小させ、加工途中において、電極70を翼部と
平行な方向に伸長させながら電解加工を行うから、電極
と翼端板の壁との間に相対運動を生じさせ、これによ
り、正確な壁の加工が可能となる。このため電解加工後
の機械加工が不要になったり、機械加工量を減らすこと
が可能となる。また請求項2の発明によれば、この方法
の実施に直接使用する装置が得られる。
According to the first aspect of the present invention, as described above ,
And retractable in a direction substantially parallel to the wings of the stationary blade, the electrode (70) in the electrolytic processing early stationary blade substantially parallel to the wing portions
The electrode 70 and the wing part during the processing
Since the electrolytic machining is performed while extending in the parallel direction, a relative motion is generated between the electrode and the wall of the blade end plate, thereby enabling accurate machining of the wall. For this reason, machining after electrolytic machining becomes unnecessary or the amount of machining can be reduced. According to the second aspect of the present invention, there is provided an apparatus directly used for performing the method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】加工途中を示す本発明の概念図FIG. 1 is a conceptual view of the present invention showing a state in the middle of processing.

【図2】加工終期を示す本発明の概念図FIG. 2 is a conceptual diagram of the present invention showing the end of processing.

【図3】加工装置の正断面図FIG. 3 is a front sectional view of the processing apparatus.

【図4】加工装置の側断面図FIG. 4 is a side sectional view of a processing apparatus.

【図5】電極の構造を示す斜視図FIG. 5 is a perspective view showing the structure of an electrode.

【図6】使用例を示す図FIG. 6 shows an example of use.

【図7】静翼の一例斜視図FIG. 7 is an example perspective view of a stationary blade.

【図8】従来の加工方法の説明図FIG. 8 is an explanatory view of a conventional processing method.

【図9】従来の加工方法の説明図FIG. 9 is an explanatory view of a conventional processing method.

【図10】従来の加工方法の説明図FIG. 10 is an explanatory view of a conventional processing method.

【符号の説明】[Explanation of symbols]

1 静翼 3、4 翼端板 3A、4A 壁 70 電極 71、73 端部電極 72 中間電極 DESCRIPTION OF SYMBOLS 1 Stator blade 3, 4 Blade end plate 3A, 4A Wall 70 Electrode 71, 73 End electrode 72 Intermediate electrode

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 翼部の両端に翼端板を有する導電性の静
翼と電極との間に電解液を流動させつつ、静翼に対して
電極を前記翼部にほぼ直交する方向に接近させる静翼の
電解加工方法において、前記電極を前記翼部にほぼ平行
な方向に伸縮可能とし、電解加工の初期においては前記
電極を縮小させて対向する前記翼端板との間隙を大きく
し、電解加工の途中においては前記電極を次第に伸長さ
せて前記翼端板との間隙を次第に小さくすることを特徴
とする静翼の電解加工方法。
1. A while flowing an electrolyte solution between the two ends and the conductive vanes having a blade end plate to the electrode of the wings, close to the direction substantially perpendicular to the electrode on the blade unit relative to the stationary blade In the electrolytic processing method for a stationary blade to be performed, the electrode can be expanded and contracted in a direction substantially parallel to the wing portion, and the electrode is reduced in an initial stage of the electrolytic processing so that a gap between the electrode and the facing blade end plate is reduced. And the gap between the electrode and the blade tip plate is gradually reduced during the electrolytic processing to gradually reduce the gap between the electrode and the blade end plate.
【請求項2】 翼部の両端に翼端板を有する導電性の静
翼と電極との間に電解液を流動させつつ、静翼に対して
電極を前記翼部にほぼ直交する方向に接近させる静翼の
電解加工装置において、前記電極は、前記翼端板に対向
する複数の端部電極と、これら端部電極にそれぞれ傾斜
面で摺動可能に密着し前記翼部にほぼ平行な面での側断
面上で略逆台形状となる中間電極と、加工初期および途
中には前記中間電極を端部電極に対して相対的に遅れて
前進させる一方加工終期にはこれら中間電極および端部
電極の電極面をほぼ連続させる電極送り機構とを備える
ことを特徴とする静翼の電解加工装置。
Wherein while flowing an electrolyte solution between the two ends and the conductive vanes having a blade end plate to the electrode of the wings, close to the direction substantially perpendicular to the electrode on the blade unit relative to the stationary blade In the electrostatic blade machining apparatus, the electrode is a plurality of end electrodes facing the blade end plate, and a surface substantially slidably adhered to each of the end electrodes on an inclined surface and substantially parallel to the blade portion. An intermediate electrode having a substantially inverted trapezoidal shape on the side cross-section at the time of machining, and the intermediate electrode is advanced relatively late with respect to the end electrode at the beginning and during machining, while the intermediate electrode and the end portion are advanced at the end of machining. An electrolytic processing apparatus for a stationary vane, comprising: an electrode feed mechanism for making an electrode surface of an electrode substantially continuous.
JP4148975A 1992-05-18 1992-05-18 Electrostatic machining method and apparatus for stationary blade Expired - Fee Related JP2613152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4148975A JP2613152B2 (en) 1992-05-18 1992-05-18 Electrostatic machining method and apparatus for stationary blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4148975A JP2613152B2 (en) 1992-05-18 1992-05-18 Electrostatic machining method and apparatus for stationary blade

Publications (2)

Publication Number Publication Date
JPH05318230A JPH05318230A (en) 1993-12-03
JP2613152B2 true JP2613152B2 (en) 1997-05-21

Family

ID=15464870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4148975A Expired - Fee Related JP2613152B2 (en) 1992-05-18 1992-05-18 Electrostatic machining method and apparatus for stationary blade

Country Status (1)

Country Link
JP (1) JP2613152B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1249612B1 (en) * 2001-03-15 2004-01-28 VARIAN S.p.A. Method of manufacturing a stator stage for a turbine pump
JP4726532B2 (en) * 2005-04-26 2011-07-20 エーピーシー エアロスペシャルティ株式会社 Electrochemical machining method, apparatus and electrode
JP5013568B2 (en) 2005-06-24 2012-08-29 エーピーシーエアロスペシャルティ株式会社 Electrolytic machining method, apparatus and electrode for turbine blade
JP4747920B2 (en) * 2006-04-07 2011-08-17 株式会社デンソー Electrolytic processing method and electrolytic processing apparatus
US8168913B2 (en) 2009-05-28 2012-05-01 General Electric Company Electric discharge machining die sinking device
DE102012201052A1 (en) * 2012-01-25 2013-07-25 Mtu Aero Engines Gmbh Multi-part electrode assembly and method of electrochemically machining vanes with shrouds
EP2786826B1 (en) * 2013-04-03 2018-02-28 MTU Aero Engines AG Electrochemical machining process for the production of cavities with and without undercuts
GB202106010D0 (en) * 2021-04-27 2021-06-09 Cummins Ltd Electrode assembly and method
CN113478029B (en) * 2021-05-26 2022-08-09 中国航空制造技术研究院 Precise electrolytic machining device and method for closed blade grid structure blade
CN113385760B (en) * 2021-06-12 2023-02-28 深圳市亚泽科技有限公司 Electrochemical machining method for porous structure with gradually-changed aperture, terminal and storage medium
CN113385761B (en) * 2021-06-12 2023-03-14 深圳市亚泽科技有限公司 Electrochemical machining device with gradually-changed aperture and porous structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501960A (en) * 1973-05-11 1975-01-10
JPS5091544A (en) * 1973-12-14 1975-07-22
JPS5833055A (en) * 1981-07-18 1983-02-26 Chubu Create Kogyo Kk Solar heat collecting system
JPS6161720A (en) * 1984-09-03 1986-03-29 Nissan Motor Co Ltd Method of fabricating turbine rotor

Also Published As

Publication number Publication date
JPH05318230A (en) 1993-12-03

Similar Documents

Publication Publication Date Title
JP2613152B2 (en) Electrostatic machining method and apparatus for stationary blade
AU602245B2 (en) Method and apparatus for electrochemically machining airfoil blades
EP0521598A1 (en) Turning machine with pivoted armature
US20040025761A1 (en) Machine tool and manipulator devise adapted to be mounted on such machine
US4772372A (en) Electrodes for electrochemically machining airfoil blades
DE102014218169B4 (en) Electrochemical processing of a workpiece
US5244548A (en) Multi-cathode ECM apparatus, method, and product therefrom
EP1900466B1 (en) Electrochemical machining method and electrochemical machining device
CN105682840A (en) Wire electro-discharge machining apparatus
JP4726532B2 (en) Electrochemical machining method, apparatus and electrode
CN1583360A (en) Feeder of permanent magnetic linear synchronous motor
CN113211416B (en) High-rigidity asymmetric three-translation redundant driving parallel mechanism
Zeng et al. Experimental study of microelectrode array and micro-hole array fabricated by ultrasonic enhanced micro-EDM
CN110039141B (en) Wedge-shaped expansion type rotary tool cathode for inner wall deep ring groove
CN213968775U (en) Cable high efficiency cutting equipment for thing networking
CN108279640B (en) A kind of error calculation method of complex-curved surface machining locus
CN209867601U (en) Electrolytic machining cathode for inner ring groove of metal material difficult to machine
CN214291233U (en) Electric spark forming machine tool
GB2319741A (en) Method and apparatus for forming recesses in a bearing surface
SU957510A1 (en) Orbital head to electrical-discharge machine
SU1535683A2 (en) Electrode-tool
SU979067A1 (en) Tool-electrode for electrochemical machining
ISHIDA et al. Hole Fabrication inside a Hole by Means of Electrical Discharge Machining---Expansion of Machinable Hole Diameter---
SU992155A2 (en) Apparatus for afterturning and fixing spindle
EP0091431A1 (en) Die forming method and machine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees