JP2611601B2 - Method for producing spherical corundum particles and composition containing spherical corundum particles - Google Patents

Method for producing spherical corundum particles and composition containing spherical corundum particles

Info

Publication number
JP2611601B2
JP2611601B2 JP4114986A JP11498692A JP2611601B2 JP 2611601 B2 JP2611601 B2 JP 2611601B2 JP 4114986 A JP4114986 A JP 4114986A JP 11498692 A JP11498692 A JP 11498692A JP 2611601 B2 JP2611601 B2 JP 2611601B2
Authority
JP
Japan
Prior art keywords
alumina
corundum particles
particles
spherical corundum
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4114986A
Other languages
Japanese (ja)
Other versions
JPH05310419A (en
Inventor
順 小川
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP4114986A priority Critical patent/JP2611601B2/en
Publication of JPH05310419A publication Critical patent/JPH05310419A/en
Application granted granted Critical
Publication of JP2611601B2 publication Critical patent/JP2611601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は球状コランダム粒子の製
造方法と前記球状コランダム粒子を用いた高熱伝導性、
低粘度および低熱膨脹率のゴム・プラスチック組成物と
に関する。
The present invention relates to a method for producing spherical corundum particles, and high thermal conductivity using the spherical corundum particles.
Low viscosity and low coefficient of thermal expansion rubber and plastic compositions.

【0002】[0002]

【従来の技術】近年電子部品が小型化高容量化するに伴
って放熱性の優れたゴム・プラスチック系の絶縁材料の
供給要求が増し、それの充填剤として熱伝導性が優れた
アルミナ特にコランダム(αアルミナ)が注目され、溶
融シリカまたは結晶性シリカに代わって使用されてい
る。一方、コランダム粒子はモ−ス硬度が大きく、プラ
スチックやゴムその他の材料に混合充填する際にまたは
アルミナ粒子を充填した複合材料を成形加工する際に、
混練・成形加工装置を著しく損傷することが知られてい
る。特にIC、LSI、VLSI等の電子部品の樹脂封
止材料の充填剤として、コランダム粒子として良く知ら
れている電融アルミナまたは焼結アルミナの粉砕品を利
用しようとすると、その鋭いカッティングエッジのため
研削または摩耗が激しく且つボンディングワイヤや半導
体素子を損傷する恐れがある。かかる欠点は前記樹脂封
止材料用に限らず、広く電子部品の電気絶縁用樹脂や構
造材料用エンジニアリングプラスチックにアルミナを充
填し熱伝導率と耐摩耗性等を改良する用途においても大
きな障害となる可能性がある。
2. Description of the Related Art In recent years, as electronic components have become smaller and have higher capacities, there has been an increasing demand for rubber-plastic based insulating materials having excellent heat dissipation properties, and alumina, particularly corundum, having excellent heat conductivity as a filler. (Α-alumina) has attracted attention and has been used in place of fused silica or crystalline silica. On the other hand, corundum particles have a high Mohs hardness, and are used when mixing and filling plastics, rubber, and other materials, or when molding a composite material filled with alumina particles.
It is known that the kneading / forming apparatus is significantly damaged. In particular, when attempting to use a pulverized product of fused alumina or sintered alumina, which is well known as corundum particles, as a filler for a resin sealing material for electronic components such as ICs, LSIs, and VLSIs, the sharp cutting edge is required. Grinding or abrasion is severe and may damage the bonding wires and semiconductor elements. Such a defect is not limited to the resin sealing material, but also becomes a major obstacle in applications in which alumina is widely filled into an electrical insulating resin of an electronic component or an engineering plastic for a structural material to improve thermal conductivity and wear resistance. there is a possibility.

【0003】そこで公知の方法で製造された電融アルミ
ナまたは焼結アルミナの粉砕品に、球状化促進剤として
水酸化アルミニウムを5〜100wt%(アルミナ換
算、電融アルミナまたは焼結アルミナに対する割合)単
独で、またはアルミナの結晶促進剤として公知の他の薬
剤を併用添加し、1000〜1550℃の温度において
加熱処理し、次いで解砕することを特徴とし、沈降法に
よる平均粒子径は5〜35μm、最大粒子径は150μ
mを超えないカッティングエッジを有しない形状が球状
化したコランダム粒子を製造する方法が提案されてい
る。(特開昭62−191420) また前記各種用途に利用する特開昭62−191420
に提案されている球状コランダム粒子を重量比80〜9
2%の範囲で含有する高熱伝導性ゴム・プラスチック組
成物が提案されている。(特開昭63−20340)
[0003] Therefore, in a pulverized product of fused alumina or sintered alumina produced by a known method, aluminum hydroxide is used as a sphering accelerator in an amount of 5 to 100% by weight (in terms of alumina, ratio to fused alumina or sintered alumina). It is characterized in that it is added alone or in combination with another agent known as a crystallization accelerator for alumina, is heated at a temperature of 1000 to 1550 ° C., and then is crushed, and has an average particle size of 5 to 35 μm by a sedimentation method. , Maximum particle size is 150μ
There has been proposed a method for producing corundum particles having a spherical shape having no cutting edge not exceeding m. (Japanese Patent Application Laid-Open No. 62-194420)
Weight ratio of 80 to 9
Highly thermally conductive rubber / plastic compositions containing up to 2% have been proposed. (JP-A-63-20340)

【0004】[0004]

【発明が解決しようとする課題】前記球状コランダムを
配合した高熱伝導性ゴム・プラスチック組成物において
は、下記の、およびにあるような問題点があるた
め、一段の高性能化が求められている。特開昭62−1
91420号公報に記載されており、最大粒子径は15
0μm以下、平均粒子径は5〜35μm、カッティング
エッジを有しない形状である球状コランダム粒子を用い
た場合は、これらの種々の問題点を解決するに到ってい
ない。これらの問題点はいずれも球状コランダム粒子の
粒度分布に大きく起因し、特に30μm以上の粒子が存
在すると発生し易い。したがって、粗粒の最大粒径を3
0μm以下にするため風力分級機または振動篩によって
粗粒をカットする方法を採用することは可能であるが、
流動性に富んだゴム・プラスチック組成物(以下液状ゴ
ム・プラスチック組成物という)では組成物の粘度が高
くなり易い、または樹脂封止剤用ではスパイラルフロー
に代表される流動特性が低下するという問題点がある。
The high thermal conductive rubber / plastic composition containing the spherical corundum described above has the following problems and is therefore required to have higher performance. . JP-A-62-1
No. 91420, and the maximum particle size is 15
When spherical corundum particles having a shape of 0 μm or less, an average particle diameter of 5 to 35 μm, and having no cutting edge are used, these various problems have not been solved. All of these problems are largely caused by the particle size distribution of the spherical corundum particles, and are particularly likely to occur when particles having a size of 30 μm or more are present. Therefore, the maximum particle size of the coarse particles is 3
Although it is possible to adopt a method of cutting coarse particles with an air classifier or a vibrating sieve in order to reduce the particle size to 0 μm or less,
The problem is that the viscosity of the rubber-plastic composition which is rich in fluidity (hereinafter referred to as a liquid rubber-plastic composition) tends to be high, or the flow characteristics represented by spiral flow deteriorate for resin sealants. There is a point.

【0005】液状のゴム・プラスチック組成物では、
製造終了後から使用するまでの保管中における沈降分離
が大きい為、使用前での再撹拌処理が必須となる。した
がって粘度が低く、作業性が良く、製造終了後から使用
するまでの保管中における沈降分離が少なく使用前の再
撹拌による均一化作業が省略出来、作業性に優れたもの
が求められているが、沈降分離しやすい。 電気絶縁材料として用いられるシ−ト状組成物では、
従来より放熱性を高めるため例えば数mmから約0.5
mmまで薄膜化しており、そのために密着性が劣化し、
放熱性が低下する。表面の平滑性が優れ、半導体素子と
の密着性が良好で放熱性に優れたものが求められてい
る。 半導体の絶縁封止材料用組成物では、従来より高集積
化が進み配線が細かくなるにつれ、成形時配線を損傷し
易くなっており、それが生じ難いものが求められてい
る。したがって本発明の課題は前記の種々の要望を解決
し得る球状コランダム粒子の製造方法と該球状コランダ
ム粒子を配合した高熱伝導性ゴム・プラスチック組成物
を提供することにある。
In a liquid rubber / plastic composition,
Since sedimentation during storage from the end of production until use is large, re-stirring treatment before use is essential. Therefore, low viscosity, good workability, less sedimentation during storage from the end of production to use, and the homogenization work by re-stirring before use can be omitted, and excellent workability is required. Easy to settle and separate. In a sheet-like composition used as an electrical insulating material,
For example, several mm to 0.5
mm, which reduces the adhesion,
Heat dissipation is reduced. What has excellent surface smoothness, good adhesiveness with a semiconductor element, and excellent heat dissipation is required. In the case of a composition for a semiconductor insulating sealing material, as the integration becomes higher and the wiring becomes finer than before, the wiring is likely to be damaged at the time of molding, and it is required that the composition hardly occur. Accordingly, an object of the present invention is to provide a method for producing spherical corundum particles which can solve the above various needs, and a highly heat-conductive rubber / plastic composition containing the spherical corundum particles.

【0006】[0006]

【課題を解決するための手段】本発明者等は上記した現
状に鑑み鋭意研究した結果、球状コランダム粒子の製造
方法を改良することにより解決し得ることを見出し本発
明を完成するに到った。すなわち、本発明の要旨は、 (1)電融アルミナおよび/または焼結アルミナの粉砕
品にハロゲン化合物、硼素化合物、およびアルミナ水和
物のうちの1種または2種以上を添加し、加熱処理し、
次いで解砕する球状コランダム粒子の製造方法におい
て、電融アルミナおよび/または焼結アルミナに対する
アルミナ水和物添加量がアルミナ換算値で100〜30
0wt%であることを特徴とする単一粒子で最大径35
μm以下、平均粒子径5〜15μmである球状コランダ
ム粒子の製造方法である。 (2)さらに(1)記載の球状コランダム粒子を、重量
比で80〜92%含有した高熱伝導性ゴム・プラスチッ
ク組成物とにある。以下本発明について詳述する。
Means for Solving the Problems The present inventors have conducted intensive studies in view of the above-mentioned situation, and as a result, have found that the problem can be solved by improving the method for producing spherical corundum particles, and have completed the present invention. . That is, the gist of the present invention is as follows: (1) One or more of a halogen compound, a boron compound, and an alumina hydrate are added to a pulverized product of fused alumina and / or sintered alumina, and heat treatment is performed. And
Next, in the method for producing spherical corundum particles to be crushed, the amount of alumina hydrate added to electrofused alumina and / or sintered alumina is 100 to 30 in terms of alumina.
0 wt%, the maximum diameter of a single particle is 35
This is a method for producing spherical corundum particles having an average particle diameter of 5 to 15 μm or less. (2) A highly thermally conductive rubber / plastic composition containing the spherical corundum particles described in (1) in an amount of 80 to 92% by weight. Hereinafter, the present invention will be described in detail.

【0007】本発明において出発原料として用いられる
アルミナ粗粒は、公知の方法で製造される電融アルミナ
あるいは焼結アルミナのいずれでも良く、電融あるいは
焼結アルミナの粉砕品の粒度分布は沈降法による平均粒
子径が5μmないし35μm、好ましくは10μmない
し25μmの範囲のもので最大粒子径は150μmを超
えず、好ましくは74μm以下である。平均径が5μm
以下の場合は、水酸化アルミニウムに結晶成長剤を添加
する公知の方法で丸味のある粒子形状のものが得られる
ため本発明を適用する必要がない。また、原料の平均径
が、35μm以上、あるいは150μmより大きな粒子
が増えると、粗粒のカッティングエッジの減少が不十分
になるため好ましくない。
The alumina coarse particles used as a starting material in the present invention may be either electrofused alumina or sintered alumina produced by a known method. Has a mean particle size of 5 μm to 35 μm, preferably 10 μm to 25 μm, and the maximum particle size does not exceed 150 μm, and is preferably 74 μm or less. Average diameter is 5μm
In the following cases, it is not necessary to apply the present invention since a rounded particle shape can be obtained by a known method of adding a crystal growth agent to aluminum hydroxide. Further, it is not preferable that the number of particles having an average diameter of the raw material of 35 μm or more or larger than 150 μm increases, because the cutting edge of coarse particles is insufficiently reduced.

【0008】また、粗粒の球状化を促進するために予め
アルミナ水和物特に水酸化アルミニウムやアルミナ・ゲ
ルあるいは熱反応性の良い微粒アルミナを電融アルミナ
あるいは焼結アルミナに混合して加熱処理することが有
効であることが見出された。経済的な観点からはバイヤ
ー法水酸化アルミニウム(ギブサイト結晶)が好ましく
その平均粒子径10μm以下のものが最適である。本発
明者等の観測によるとかかる球状化促進剤は、後述する
薬剤と相乗的に粗粒アルミナに作用し、不規則的な鋭い
カッティングエッジに選択的に吸収され球状化するとい
う驚くべき現象が認められた。さらに副次的な効果とし
て特に水酸化アルミニウムあるいはアルミナゲルのよう
なアルミナ水和物を添加することにより、熱処理物の集
塊の凝集力が弱くなり、一次粒子への解砕が容易になる
という特徴が認められた。
Further, in order to promote the spheroidization of coarse particles, alumina hydrate, particularly aluminum hydroxide, alumina gel or fine alumina having good thermal reactivity is mixed with electrofused alumina or sintered alumina in advance and heat-treated. Has been found to be effective. From the economical viewpoint, the Bayer method aluminum hydroxide (gibbsite crystal) is preferable, and the one having an average particle diameter of 10 μm or less is optimal. According to the observations of the present inventors, such a spheroidizing agent acts on the coarse-grained alumina synergistically with the below-described agent, and a surprising phenomenon that the spheroidizing agent is selectively absorbed by an irregular sharp cutting edge to be spheroidized. Admitted. As a secondary effect, the addition of alumina hydrate such as aluminum hydroxide or alumina gel in particular reduces the cohesive force of the agglomerates of the heat-treated product, making it easier to disintegrate it into primary particles. Features were observed.

【0009】かかる球状化促進剤の最適添加量は、電融
アルミナあるいは焼結アルミナの粉砕品の粒度により異
なるが水酸化アルミニウムを添加する場合、100wt
%乃至300wt%(アルミナ換算、電融アルミナおよ
び/または焼結アルミナに対する割合)が好ましい。1
00wt%以下では、殆どの水酸化アルミニウムが粗粒
アルミナに吸収されるため、細粒部を構成するアルミナ
の比率が小さく、粒度分布が狭いので、ゴム・プラスチ
ックに配合した場合その性能を劣化させる。また300
wt%を超えると、吸収されずに残る遊離した微粒アル
ミナの比率が大きすぎるため、液状組成物の粘度を高め
たり、ゴム組成物を硬くする作用があるので好ましくな
い。
The optimum amount of the sphering accelerator varies depending on the particle size of the pulverized product of fused alumina or sintered alumina, but when aluminum hydroxide is added, 100 wt.
% To 300 wt% (in terms of alumina, the ratio to fused alumina and / or sintered alumina) is preferred. 1
When the content is less than 00 wt%, most of the aluminum hydroxide is absorbed by the coarse-grained alumina, so that the ratio of the alumina constituting the fine-grained portion is small and the particle size distribution is narrow. . Also 300
If the content exceeds wt%, the ratio of free fine alumina remaining without being absorbed is too large, which is not preferable because it has the effect of increasing the viscosity of the liquid composition and hardening the rubber composition.

【0010】熱処理時に添加する薬剤としては、アルミ
ナの結晶成長促進剤として公知の単独または、併用され
たハロゲン化合物、特にNaF、CaF2 のごとき弗素
化合物及び/またはMgF2 、Na3 AlF6 、B2
3 、H3 BO3 、mNa2 O・nB23 、硼弗素化合
物などの硼素化合物が良く、特に弗化物と硼素化合物の
併用、もしくは硼弗素化合物が好ましい。薬剤の添加量
は、加熱温度、炉内の滞留時間、加熱炉の種類により異
なるが効果的な添加濃度は全アルミナ分に対して0.1
〜4.0重量%であることが認められた。加熱炉の種類
としては単窯、トンネル窯、ロータリーキルンのような
公知の手段でよく、加熱温度は水酸化アルミニウムなど
アルミナ水和物がα−アルミナに実質的に添加する温
度、すなわち約1150℃以上であれば発明の目的は達
成される。
The chemicals to be added at the time of heat treatment include halogen compounds known alone or in combination as alumina crystal growth promoters, especially fluorine compounds such as NaF and CaF 2 and / or MgF 2 , Na 3 AlF 6 , B 2 O
3, H 3 BO 3, mNa 2 O · nB 2 O 3, good boron compounds such硼弗containing compounds, especially the combination of fluoride and a boron compound, or硼弗containing compounds are preferred. The addition amount of the chemical varies depending on the heating temperature, the residence time in the furnace, and the type of the heating furnace, but the effective addition concentration is 0.1 to the total alumina content.
44.0% by weight. As the type of the heating furnace, known means such as a single kiln, a tunnel kiln, and a rotary kiln may be used, and the heating temperature is a temperature at which alumina hydrate such as aluminum hydroxide is substantially added to α-alumina, that is, about 1150 ° C or more. If so, the object of the invention is achieved.

【0011】特に好ましい加熱処理温度範囲は1350
℃以上、1550℃以下である。1550℃以上の温度
になると、水酸化アルミニウムの共存下で集塊の凝集力
が強くなり、一次粒子への解砕が容易に進まなくなる。
加熱炉の滞留時間は加熱温度によって異なるが粒径が球
状化するためには、30分以上、好ましくは1時間ない
し3時間程度の滞留時間が必要である。かかる方法によ
り、製造された球状アルミナ粒子は、二次凝集粒の形態
をとるため、公知の粉砕手段、例えばボールミル、振動
ミル、ジェット・ミルなどにより、短時間の解砕を経て
所望の粒度分布の球状コランダム粒子が得られる。
A particularly preferred heat treatment temperature range is 1350.
C. or more and 1550 ° C. or less. At a temperature of 1550 ° C. or higher, the agglomeration of the agglomerates becomes stronger in the presence of aluminum hydroxide, and crushing into primary particles does not proceed easily.
The residence time of the heating furnace varies depending on the heating temperature, but a residence time of at least 30 minutes, preferably about 1 to 3 hours is required for the particle diameter to be spherical. According to such a method, the spherical alumina particles produced are in the form of secondary aggregated particles, and are crushed for a short time by a known pulverizing means, for example, a ball mill, a vibration mill, a jet mill, or the like. Is obtained.

【0012】本発明で得られた球状アルミナは、実質的
には球状の単一粒子からなり、その粒度分布について
は、最大粒子径は35μmに制御される。これ以上の大
きさの粒子が混入するとゴム・プラスチックに充填した
場合、液状組成物では保管時等に沈降分離しやすく、シ
ート状組成物では表面の平滑性が劣るため、密着性が劣
化し結果として放熱性を低下させることから好ましくな
い。また、平均粒子径は、5〜15μmの範囲になるよ
うに管理される。15μmを超えるとコランダム粒子の
硬度が硬いため、組成物の成形加工機械の摩耗が激しく
なり、絶縁封止剤に用いる組成物では半導体素子の損傷
を大きくする。一方、5μm以下では、液状組成物の粘
度が高くなり、成形し難くなるので好ましくない。
The spherical alumina obtained in the present invention is composed of substantially spherical single particles, and the particle size distribution is controlled to a maximum particle size of 35 μm. When particles larger than this are mixed, when rubber and plastic are filled, the liquid composition tends to settle and separate during storage, etc., and the sheet-like composition has poor surface smoothness, resulting in poor adhesion. This is not preferable because it lowers the heat radiation. The average particle diameter is controlled so as to be in the range of 5 to 15 μm. If it exceeds 15 μm, the hardness of the corundum particles is too high, so that the molding machine for forming the composition wears hard, and the composition used for the insulating sealant increases the damage of the semiconductor element. On the other hand, when the particle size is 5 μm or less, the viscosity of the liquid composition becomes high and molding becomes difficult, which is not preferable.

【0013】さて、かかる球状コランダム粒子を配合す
る対象ポリマーとしては、ポリエチレン、ポリプロピレ
ン、ナイロン、ポリカーボネート、ポリフェニレン・サ
ルファイドのような熱可塑性エンジニアリングプラスチ
ックや、エポキシ樹脂、不飽和ポリエステル樹脂、フェ
ノール樹脂などの熱硬化性プラスチック、シリコーンゴ
ムなどのエラストマー等が適している。特に、IC、L
SIの封止に用いられているエポキシ樹脂、たとえばフ
ェノール・ノボラック型エポキシ、、クレゾール・ノボ
ラック型エポキシやシリコーン樹脂、あるいはヒート・
シンク用途のシリコーン・ゴムが好適のポリマーであ
る。
The polymer to be blended with the spherical corundum particles includes thermoplastic engineering plastics such as polyethylene, polypropylene, nylon, polycarbonate, and polyphenylene sulfide, and thermosetting resins such as epoxy resin, unsaturated polyester resin, and phenol resin. Curable plastics and elastomers such as silicone rubber are suitable. In particular, IC, L
Epoxy resin used for sealing the SI, such as phenol novolak epoxy, cresol novolak epoxy or silicone resin, or heat resin
Silicone rubber for sink applications is the preferred polymer.

【0014】上記球状アルミナの充填量の範囲は、重量
比で80〜92%までが望ましい。80%未満では、6
0×10-4cal /cm・sec ・℃以上の熱伝導率が得ら
れず、92%を超えると、配合物の可塑流動性が不足
し、成形が困難になるからである。なお配合物中には、
本発明の主旨を損なわない範囲で難燃剤、アルミナ以外
のフィラー、滑剤、離型剤、着色剤を添加することは自
由である。
The range of the filling amount of the spherical alumina is desirably up to 80 to 92% by weight. If less than 80%, 6
This is because a thermal conductivity of 0 × 10 −4 cal / cm · sec · ° C. or more cannot be obtained, and if it exceeds 92%, the plastic fluidity of the compound becomes insufficient and molding becomes difficult. In the formulation,
It is free to add a flame retardant, a filler other than alumina, a lubricant, a release agent, and a colorant within a range that does not impair the gist of the present invention.

【0015】[0015]

【実施例】次に実施例により本発明の内容を具体的に説
明するが、本発明はこれに限定されるものでない。 [実施例] 市販の焼結アルミナ粉砕品(昭和電工(株)製SRW−
1500F、平均粒子径10μm)1000gに微粒の
水酸化アルミ(昭和電工(株)製H−42M、平均粒子
径1μm)を3058g(アルミナ換算重量比、200
wt%)添加し、さらに無水弗化アルミニウムと、硼酸
をそれぞれ60g(全アルミナ分に対する重量比2wt
%)を添加しよく混合した後、1450℃で3時間焼成
し、焼成物を得た。これを振動ボールミル(川崎重工業
(株)製SM0.6アルミナボールとアルミナの比率1
0)にて30分解砕し、得られた解砕物の粒度を測定し
た。平均粒子径は8μmで、30μmより大きい粒子は
全体の0.03%であった。また、電子顕微鏡写真によ
り形状を観察したが鋭いカッティングエッジはなく球状
化していた。この粉砕粉をシリコーンオイル(信越化学
工業(株)製KF−96、50cp)100gに対し5
00gの割合で混合し、オイルコンパウンド(液状組成
物)を作成した。表1に示す通りこの時のコンパウンド
の粘度は、35poiseであった。また、このコンパ
ウンドをガラス容器に移しかえ、室温で20日保持した
が、最下部への沈降は認められなかった。
EXAMPLES Next, the contents of the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. [Example] Commercially available pulverized sintered alumina (SRW- manufactured by Showa Denko KK)
3058 g (weight ratio in terms of alumina, 200 μm in terms of alumina) of fine aluminum hydroxide (H-42M, manufactured by Showa Denko KK, average particle diameter: 1 μm) was added to 1000 g of 1500F (average particle diameter: 10 μm).
wt%), and 60 g each of anhydrous aluminum fluoride and boric acid (2 wt% relative to the total alumina content).
%), Mixed well, and baked at 1450 ° C. for 3 hours to obtain a baked product. This was shaken with a vibration ball mill (SM0.6 alumina ball manufactured by Kawasaki Heavy Industries, Ltd. and alumina in a ratio of 1).
0) crushed 30 times, the particle size of the obtained crushed product was measured. The average particle size was 8 μm, and particles larger than 30 μm accounted for 0.03% of the whole. In addition, the shape was observed by an electron micrograph, but there was no sharp cutting edge, and it was spherical. 5 g of this pulverized powder was added to 100 g of silicone oil (KF-96, 50 cp, manufactured by Shin-Etsu Chemical Co., Ltd.).
The mixture was mixed at a ratio of 00 g to prepare an oil compound (liquid composition). As shown in Table 1, the viscosity of the compound at this time was 35 poise. The compound was transferred to a glass container and kept at room temperature for 20 days, but no sedimentation at the bottom was observed.

【0016】[比較例1]実施例と同一の焼結アルミナ
1000gに実施例と同一の微粒水酸化アルミニウム5
10g(アルミナ換算重量比30wt%)を混合し、さ
らに実施例と同一の薬剤を27gづつ(全アルミナ分に
対する重量比2wt%)添加して同様の方法で、焼成、
解砕し粉末を得た。この粉末の平均粒子径は11μm
で、30μm以上の粒子の比率は2.5%であった。電
子顕微鏡写真により形状を観察したが、鋭いカッティン
グエッジはなく球状化していた。得た粉末を実施例と同
様にシリコーンオイルコンパウンドとし、コンパウンド
の粘度を測定し、また、ガラス容器に移しかえ室温で放
置し、最下部への沈降が発生するまでの日数を測定し
た。その結果は表1に示す通りである。
[Comparative Example 1] The same finely divided aluminum hydroxide 5 as in the example was added to 1000 g of the same sintered alumina as in the example.
10 g (weight ratio in terms of alumina: 30 wt%) were mixed, and the same chemicals as in the example were added in 27 g increments (weight ratio to total alumina content: 2 wt%), followed by firing in the same manner.
Crushed to obtain a powder. The average particle size of this powder is 11 μm
The ratio of particles having a particle size of 30 μm or more was 2.5%. The shape was observed by an electron micrograph, and it was found to be spherical without sharp cutting edges. The obtained powder was used as a silicone oil compound in the same manner as in the example, the viscosity of the compound was measured, and the compound was transferred to a glass container and allowed to stand at room temperature, and the number of days until sedimentation at the bottom occurred was measured. The results are as shown in Table 1.

【0017】[比較例2]比較例1で得た粉末をさらに
30分追加粉砕し粉末を得た。平均粒子径は7μmで3
0μm以上の粒子は全体の0.5%であったが、電子顕
微鏡写真により形状を観察するとカッティングエッジの
ある粒子が数多く見られた。得た粉末を実施例と同様に
シリコーンオイルコンパウンドとし、コンパウンドの粘
度を測定し、また、ガラス容器に移しかえ室温で放置
し、最下部への沈降が発生するまでの日数を測定した。
その結果は表1に示す通りである。
Comparative Example 2 The powder obtained in Comparative Example 1 was further pulverized for 30 minutes to obtain a powder. The average particle size is 7 μm and 3
0.5% or more of the particles having a particle size of 0 μm or more accounted for 0.5% of the whole. The obtained powder was used as a silicone oil compound in the same manner as in the example, the viscosity of the compound was measured, and the compound was transferred to a glass container and allowed to stand at room temperature, and the number of days until sedimentation at the bottom occurred was measured.
The results are as shown in Table 1.

【0018】[比較例3]実施例と同一の焼結アルミナ
1000gに実施例と同一の微粒水酸化アルミニウム8
000g(アルミナ換算重量比520wt%)と実施例
と同一の薬剤を125gづつ混合し、同一の条件で焼
成、解砕した。粉末の平均粒子径は3μmで、30μm
以上の粒子は全体の0.02%であった。得た粉末を実
施例と同様にシリコーンオイルコンパウンドとし、コン
パウンドの粘度を測定し、また、ガラス容器に移しかえ
室温で放置し、最下部への沈降が発生するまでの日数を
測定した。その結果は表1に示す通りである。
Comparative Example 3 The same finely divided aluminum hydroxide 8 as in the example was added to 1000 g of the same sintered alumina as in the example.
000 g (weight ratio in terms of alumina: 520 wt%) and 125 g of the same chemicals as in the example were mixed, baked and crushed under the same conditions. The average particle size of the powder is 3 μm and 30 μm
The above particles accounted for 0.02% of the whole. The obtained powder was used as a silicone oil compound in the same manner as in the example, the viscosity of the compound was measured, and the compound was transferred to a glass container and allowed to stand at room temperature, and the number of days until sedimentation at the bottom occurred was measured. The results are as shown in Table 1.

【0019】[比較例4] 比較例1で得た粉末を風力分級機(ターボクラッシファ
イヤー、日清エンジニアリング(株)製)を通し30μ
m以上の粒子を除く様に運転し粉末を得た。収得率は7
8%で、得られた粉末の平均粒子径は8μmであり、3
0μm以上の粒子の比率は、0.01%以下であった。
得た粉末を実施例と同様にシリコーンオイルコンパウン
ドとし、コンパウンドの粘度を測定し、また、ガラス容
器に移しかえ室温で放置し、最下部への沈降が発生する
までの日数を測定した。その結果は表1に示す通りであ
る。
Comparative Example 4 The powder obtained in Comparative Example 1 was passed through an air classifier (Turbo Classifier, manufactured by Nisshin Engineering Co., Ltd.) to 30 μm.
The operation was carried out to remove particles of m or more to obtain a powder. Profit rate is 7
8%, the average particle size of the obtained powder was 8 μm,
The ratio of particles having a size of 0 μm or more was 0.01% or less.
The obtained powder was used as a silicone oil compound in the same manner as in the example, the viscosity of the compound was measured, and the compound was transferred to a glass container and allowed to stand at room temperature, and the number of days until sedimentation at the bottom occurred was measured. The results are as shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】以上より明らかなように本発明の球状コ
ランダム粒子を配合することにより、液状のゴム・プラ
スチック組成物の沈降分離問題並びに薄いシ−ト状ゴム
・プラスチック組成物の放熱性低下問題が解消する等、
実用性に一段と優れたゴム・プラスチック組成物が得ら
れた。
As is evident from the above, the compounding of the spherical corundum particles of the present invention causes the problem of sedimentation and separation of the liquid rubber / plastic composition and the problem of lowering the heat radiation of the thin sheet-like rubber / plastic composition. Disappears,
A rubber / plastic composition which was much more practical was obtained.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電融アルミナおよび/または焼結アルミ
ナの粉砕品に、ハロゲン化合物、硼素化合物、およびア
ルミナ水和物のうちの1種または2種以上を添加し、温
度1000〜1550℃において加熱処理し、次いで解
砕する球状コランダム粒子の製造方法において、電融ア
ルミナおよび/または焼結アルミナに対するアルミナ水
和物添加量がアルミナ換算値で100〜300wt%で
あることを特徴とする球状コランダム粒子の製造方法。
1. A halogenated compound, a boron compound, and / or an alumina hydrate are added to a pulverized product of fused alumina and / or sintered alumina, and heated at a temperature of 1000 to 1550 ° C. A method for producing spherical corundum particles to be treated and then crushed, wherein the amount of alumina hydrate added to the fused alumina and / or sintered alumina is 100 to 300 wt% in terms of alumina. Manufacturing method.
【請求項2】 単一粒子で最大径35μm以下、平均粒
子径5〜15μmであり、カッティングエッジを有しな
い形状であり、かつ請求項1記載の球状コランダム粒子
を、重量比で80〜92%含有することを特徴とする高
熱伝導性ゴム・プラスチック組成物。
2. A single particle having a maximum diameter of 35 μm or less, an average particle diameter of 5 to 15 μm, a shape having no cutting edge, and the spherical corundum particles according to claim 1 in a weight ratio of 80 to 92%. Highly heat-conductive rubber / plastic composition characterized by containing.
JP4114986A 1992-05-07 1992-05-07 Method for producing spherical corundum particles and composition containing spherical corundum particles Expired - Lifetime JP2611601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4114986A JP2611601B2 (en) 1992-05-07 1992-05-07 Method for producing spherical corundum particles and composition containing spherical corundum particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4114986A JP2611601B2 (en) 1992-05-07 1992-05-07 Method for producing spherical corundum particles and composition containing spherical corundum particles

Publications (2)

Publication Number Publication Date
JPH05310419A JPH05310419A (en) 1993-11-22
JP2611601B2 true JP2611601B2 (en) 1997-05-21

Family

ID=14651519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4114986A Expired - Lifetime JP2611601B2 (en) 1992-05-07 1992-05-07 Method for producing spherical corundum particles and composition containing spherical corundum particles

Country Status (1)

Country Link
JP (1) JP2611601B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4526064B2 (en) * 2003-06-04 2010-08-18 昭和電工株式会社 Corundum for resin filling and resin composition
JP2005022963A (en) * 2003-06-12 2005-01-27 Showa Denko Kk Method of producing alumina particle, and composition
US7789330B2 (en) 2004-03-15 2010-09-07 Showa Denko K.K. Roundish fused alumina particles, production process thereof, and resin composition containing the particles

Also Published As

Publication number Publication date
JPH05310419A (en) 1993-11-22

Similar Documents

Publication Publication Date Title
US5340781A (en) Spherical corundum particles, process for preparation thereof and rubber or plastic composition having high thermal conductivity and having spherical corundum paticles incorporated therein
CA2740116C (en) Zinc oxide particle, method for producing it, exoergic filler, resin composition, exoergic grease and exoergic coating composition
EP2455339A1 (en) Magnesium oxide particles, method for producing same, heat dissipating filler, resin composition, heat dissipating grease, and heat dissipating coating composition
JPH1067883A (en) Inorganic filler, epoxy resin composition, and semiconductor device
WO2021200490A1 (en) Alumina powder, resin composition, and heat dissipation component
WO1988000573A1 (en) Spherical corundum particles, process for their production, and highly heat-conductive rubber or plastic composition containing them
KR102646023B1 (en) Spherical alumina particle mixture and method for producing the same, and resin composite composition and resin composite containing the spherical alumina particle mixture
KR20040071265A (en) Particulate alumina, method for producing particulate alumina and composition containing particulate alumina
WO2021200491A1 (en) Alumina powder, resin composition, and heat dissipation component
CN106103347B (en) The excellent low alkali alpha alumina powder of viscosity characteristics and its manufacture method
US20120291670A1 (en) Magnesium oxide particle, method for producing it, exoergic filler, resin composition, exoergic grease and exoergic coating composition
CN116235296A (en) Magnesium oxide powder, filler composition, resin composition, and heat-dissipating member
DE10297611T5 (en) Particulate alumina, process for producing particulate alumina and composition containing particulate alumina
JPH0674350B2 (en) High thermal conductivity rubber / plastic composition
WO2020194974A1 (en) Filler, molded body, heat dissipating material
JP2611601B2 (en) Method for producing spherical corundum particles and composition containing spherical corundum particles
JPS62191420A (en) Spherical corundum particle and production thereof
US6887811B2 (en) Spherical alumina particles and production process thereof
JP2624069B2 (en) Spherical corundum particles
KR20230066370A (en) Magnesium oxide powder, filler composition, resin composition and heat dissipation part
JP2002348115A (en) Alumina particle and method for producing the same
JPH02158637A (en) Silica filler and sealing resin composition using the same
WO2024203302A1 (en) Boron nitride powder and method for producing boron nitride powder
JP2023146761A (en) Spherical alumina particle, method for producing the same, surface treatment method for spherical alumina particle raw material, resin composite composition including spherical alumina particle, and resin composite composition
JPH07188579A (en) Coated magnesium oxide powder

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 16