JP2611194B2 - Aromatic polyamide film - Google Patents

Aromatic polyamide film

Info

Publication number
JP2611194B2
JP2611194B2 JP21069185A JP21069185A JP2611194B2 JP 2611194 B2 JP2611194 B2 JP 2611194B2 JP 21069185 A JP21069185 A JP 21069185A JP 21069185 A JP21069185 A JP 21069185A JP 2611194 B2 JP2611194 B2 JP 2611194B2
Authority
JP
Japan
Prior art keywords
film
stretching
temperature
solution
elastic modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21069185A
Other languages
Japanese (ja)
Other versions
JPS6270421A (en
Inventor
智幸 南
国義 糸山
尚武 柏倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP21069185A priority Critical patent/JP2611194B2/en
Publication of JPS6270421A publication Critical patent/JPS6270421A/en
Application granted granted Critical
Publication of JP2611194B2 publication Critical patent/JP2611194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Polyamides (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,機械的特性にすぐれた芳香族系ポリアミド
フィルムに関する。
Description: TECHNICAL FIELD The present invention relates to an aromatic polyamide film having excellent mechanical properties.

〔従来の技術〕[Conventional technology]

従来,芳香族ポリアミドは,光学異方性ドープの空中
吐出湿式紡糸をしたままで,すなわち延伸または熱処理
を行なわないままで極めて高い強度・弾性率を有する繊
維としてポリp−フエニレンテレフタラミド,ポリp−
ベンザミド等の組成物が知られている。しかし,これら
は液晶異方性を示し,一次元成形体である繊維としては
実用的に有用であるが,二次元成形体であるフイルムに
おいては,特にp結合を主体とするものは溶解性が悪
く,有機溶媒系の溶液から,二次元状にすぐれた特性を
有するフイルムを得ることは困難であつた。
Conventionally, aromatic polyamide has been used as a fiber having extremely high strength and elastic modulus without being subjected to drawing or heat treatment while air-jetting wet spinning of optically anisotropic dope, poly-p-phenylene terephthalamide, Poly p-
Compositions such as benzamide are known. However, they exhibit liquid crystal anisotropy and are practically useful as fibers which are one-dimensionally formed. However, in the case of films which are two-dimensionally formed, especially those mainly containing p-bonds have poor solubility. It was difficult to obtain a film having excellent two-dimensional properties from an organic solvent-based solution.

かかる欠点に鑑み,p結合主体の芳香族ポリアミドにお
いて塩素置換基を有する成分を主成分とし,さらに核に
置換基を有さない共重合成分を加えると有機溶媒に溶解
しやすくなり,通常の溶液製膜法を適用でき,ある程度
の高弾性率フイルムが得られることは知られている。
In view of these drawbacks, the addition of a copolymer component having a chlorine substituent as the main component in an aromatic polyamide mainly composed of p-bonding and further adding a copolymer component having no substituent in the nucleus makes it easier to dissolve in an organic solvent. It is known that a film forming method can be applied to obtain a film having a high elastic modulus to some extent.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし,近年になり各種の記録・情報機器の小型化,
大容量化の要望に伴い,機械的性質,特に弾性率が,は
るかに向上したフイルムが望まれている。一方,ポリア
ミド系のフイルムは,その分子中にアミド結合を有し水
分に対して物性がかなり大きく変動する欠点があつた。
例えば,数%〜10数%の吸水率を示すことがあるため,
吸水による寸法変化,強度やヤング率の低下,電気的な
特性(例えば誘電率,誘電力率など)の変動をひき起こ
す。また,熱による寸法変化も大きかつた。これらの欠
点の故に,記録・情報材料用途での支持体フイルムとし
て使用できる高剛性,耐熱性,および温度,湿度に対す
る寸法安定性を兼備したフイルムは提供されていない。
However, in recent years, miniaturization of various recording and information devices,
Along with the demand for a large capacity, a film having much improved mechanical properties, especially elastic modulus, is desired. On the other hand, the polyamide-based film has an amide bond in its molecule, and has a disadvantage that its physical properties vary considerably with respect to moisture.
For example, water absorption of several percent to several ten percent may be shown.
It causes dimensional changes due to water absorption, decreases in strength and Young's modulus, and fluctuations in electrical characteristics (such as dielectric constant and dielectric power factor). Also, the dimensional change due to heat was large. Due to these drawbacks, no film has been provided which has both high rigidity, heat resistance, and dimensional stability against temperature and humidity, which can be used as a support film in recording / information materials.

本発明は,上記のような欠点を解消せしめ,記録材料
用途,情報関連用途,電気電子材料用途などに有用な芳
香族ポリアミドフイルムを提供せんとするものである。
An object of the present invention is to provide an aromatic polyamide film useful in recording material applications, information-related applications, electric / electronic material applications, etc. by solving the above-mentioned drawbacks.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明は,実質的に一般式 を構成成分単位(ここでm,nは0〜3の整数であり同時
には0にはならない)として40モル%以上90モル%未満
含み,残りは芳香核に置換基をもたないアミド結合成分
単位を構成成分単位とする芳香族共重合ポリアミドで構
成されたフィルムであって、該フィルムは多段延伸を含
む工程を経て製膜されたものであり、延伸されたフイル
ムの状態で少なくとも一方向の引張弾性率が1800kg/mm2
以上,湿度膨張係数が8×10-6mm/mm・%RH以下である
ことを特徴とする高弾性率芳香族ポリアミドフイルムで
ある。
The present invention has substantially the general formula As a constituent unit (where m and n are integers from 0 to 3 and not simultaneously 0), and the remainder is an amide bond component having no substituent on the aromatic nucleus. A film composed of an aromatic copolymer polyamide having a unit as a constituent unit, wherein the film is formed through a process including multi-stage stretching, and in at least one direction in a stretched film state. Tensile modulus is 1800kg / mm 2
As described above, the present invention provides a high elastic modulus aromatic polyamide film having a humidity expansion coefficient of 8 × 10 −6 mm / mm ·% RH or less.

次に本発明のフイルムの製造法について述べる。従
来,芳香族ポリアミドの特定の組成を選択することによ
り,溶液製膜したまま,すなわち延伸または熱処理を行
なわないままでも,溶融製膜法によるプラスチツクフイ
ルムに比べて異例に引張強度や弾性率の高いフイルムが
得られることが知られている。このように芳香族ポリア
ミドフイルムは,その分子構造や分子間引力等から,期
待されるように高い引張強度,弾性率,すぐれた耐熱性
により特徴づけられる。さらに弾性率向上のために,比
較的低温で低倍率延伸する方法,比較的高温度で一段熱
処理あるいは多段熱処理することが教示されている。し
かしながら,アルミ箔が7000kg/mm2程度の弾性率を有す
るのに比べてかなり低く,また,湿度変化に対して寸法
が変化するという重大な欠点があつた。
Next, a method for producing the film of the present invention will be described. Conventionally, by selecting a specific composition of aromatic polyamide, even if the solution film is formed, that is, without stretching or heat treatment, the tensile strength and elastic modulus are unusually higher than the plastic film by the melt film forming method. It is known that a film can be obtained. As described above, the aromatic polyamide film is characterized by high tensile strength, elastic modulus, and excellent heat resistance as expected due to its molecular structure, intermolecular attractive force, and the like. Further, in order to improve the elastic modulus, a method of stretching at a relatively low temperature and a low magnification, and a one-step heat treatment or a multi-step heat treatment at a relatively high temperature are taught. However, aluminum foil has a significant disadvantage compared to an elastic modulus of about 7000 kg / mm 2, and has a serious disadvantage that its dimensions change with changes in humidity.

本発明者らは,鋭意検討の結果,選ばれた組成のポリ
アミドフイルムを比較的低温で湿潤状態で延伸する工程
および,300〜600℃の高温延伸する工程を含む多段延伸
工程を採用し,上記の問題点がなく,高弾性率で湿度寸
法安定性のよい本発明のフイルムを得たものである。
As a result of intensive studies, the present inventors have adopted a multi-stage stretching process including a process of stretching a polyamide film having a selected composition in a wet state at a relatively low temperature and a process of stretching at a high temperature of 300 to 600 ° C. The film of the present invention has no problem of high elastic modulus and good humidity dimensional stability.

すなわち,本発明の芳香族ポリアミドフイルムは,パ
ラ配向塩素核置換ポリアミドを主成分とする特定組成物
を選択し,さらに溶媒に溶解した等方性ドープを,一旦
空気中に吐出シート化し,走行しながら乾燥した後,湿
潤状態で延伸する工程と,少なくとも300〜600℃,好ま
しくは350〜550℃の温度範囲で延伸する工程を含む多段
延伸を行ない,延伸全面積倍率が2.5〜40倍,好ましく
は3〜30倍になるように縦,横延伸を行なつて得たもの
である。
That is, the aromatic polyamide film of the present invention selects a specific composition containing a para-oriented chlorine nucleus-substituted polyamide as a main component, further discharges an isotropic dope dissolved in a solvent into air once, forms a sheet, and runs. After drying, multi-stage stretching including a step of stretching in a wet state and a step of stretching in a temperature range of at least 300 to 600 ° C., preferably 350 to 550 ° C. is performed, and the total stretching area ratio is 2.5 to 40 times, preferably Is obtained by stretching vertically and horizontally so that the magnification becomes 3 to 30 times.

従来の技術では,フイルムの延伸を300℃以上の高温
で延伸することは機械設備面で採用されていなかつた
が,本発明のフイルムを得るため設備の改善を行ない,3
00℃以上の温度で多段延伸を行なうとともに,湿潤延伸
との組み合わせで,高倍率延伸が可能になることを見出
し,本発明のフイルムを得るに至つたものである。本発
明の芳香族ポリアミドフイルムの転移点は,本質的に高
い(250℃以上)ため,300℃以下の低温延伸では,湿潤
延伸と組み合わせても,延伸時にフイルムにクラツクが
入り,低延伸倍率で破断してしまう。
In the prior art, stretching of a film at a high temperature of 300 ° C. or higher has not been adopted in terms of mechanical equipment, but equipment has been improved to obtain the film of the present invention.
In addition to performing multi-stage stretching at a temperature of 00 ° C. or higher, the inventors have found that high-magnification stretching can be performed in combination with wet stretching, and have obtained the film of the present invention. The transition point of the aromatic polyamide film of the present invention is inherently high (250 ° C. or higher). Therefore, when the film is drawn at a low temperature of 300 ° C. or lower, even if it is combined with wet drawing, the film enters the film at the time of drawing, and the draw ratio is low. It will break.

本発明の上記一般式 (ここでm,nは0〜3の整数であり,同時には0になら
ない)単位は40モル%以上90モル%未満含む主構成成分
であつて,かかる構造を構成する単量体としてはテレフ
タル酸クロリド,2−クロロテレフタル酸クロリド,2,5−
ジクロロテレフタル酸クロリド,2,6−ジクロルテレフタ
ル酸クロリド等やp−フエニレンジアミン,2−クロロ−
p−フエニレンジアミン,2,5−ジクロロ−p−フエニレ
ンジアミン,2,6−ジクロロ−p−フエニレンジアミンな
どが挙げられる。かかる単量体において塩素含有量が少
ない時や対称性のよい場合で,かつ上記成分のみを含む
単独重合体の場合には有機溶媒系溶液の高濃度のものは
異方性を示すなど,フイルム化は困難なものとなる。上
記一般式で示される単量体は本発明で使用するポリマ中
40モル%以上90モル%未満でなければ本発明の目的を達
成することはできない。すなわち該単量体が40モル%よ
り少ない場合は機械的に高強力なフイルムは得られない
し,90モル%以上となると析出を防止することが非常に
困難となる。
The above general formula of the present invention (Where m and n are integers from 0 to 3 and are not 0 at the same time). The unit is a main component containing 40 mol% or more and less than 90 mol%, and the monomer constituting such a structure is terephthalic acid. Acid chloride, 2-chloroterephthalic acid chloride, 2,5-
Dichloroterephthalic acid chloride, 2,6-dichloroterephthalic acid chloride, p-phenylenediamine, 2-chloro-
Examples include p-phenylenediamine, 2,5-dichloro-p-phenylenediamine, and 2,6-dichloro-p-phenylenediamine. When the chlorine content of the monomer is low or when the symmetry is good, and in the case of a homopolymer containing only the above-mentioned components, a high concentration of the organic solvent solution shows anisotropy. It becomes difficult. The monomer represented by the above general formula is used in the polymer used in the present invention.
The object of the present invention cannot be achieved unless it is 40 mol% or more and less than 90 mol%. That is, if the amount of the monomer is less than 40 mol%, a mechanically high-strength film cannot be obtained, and if it is more than 90 mol%, it becomes very difficult to prevent the precipitation.

しかしこのような成分を主体としても本発明のように
共重合体とすることにより等方性溶液を提供することが
でき均一な物性を有するフイルムを得ることができる。
このような目的のために選ばれる共重合成分としては,
核に置換基を持たないアミド結合成分単位を上記共重合
成分と定義するものであり,かかる共重合成分単位には
例えば次のような構造単位が挙げられる。
However, even when such a component is used as a main component, a copolymer having uniform properties can be obtained by forming a copolymer as in the present invention and providing an isotropic solution.
Copolymer components selected for such purposes include:
An amide bond component unit having no substituent in the nucleus is defined as the above-mentioned copolymer component. The copolymer component unit includes, for example, the following structural units.

かかる共重合単位は全ポリマ中に10モル%以上60モル
%未満の範囲に含まれていることが肝要である。すなわ
ち,かかる単位が10モル%未満の場合には前記したよう
に有機溶媒に溶解しにくく,かつ溶液の安定性に欠け,
安全に製膜することができないし,さらに60モル%以上
では強力および耐熱性の点で著しく劣るものとなる。
It is important that such copolymerized units be contained in the range of 10 mol% or more and less than 60 mol% in the whole polymer. That is, when such a unit is less than 10 mol%, it is difficult to dissolve in an organic solvent as described above, and the solution lacks stability,
It is not possible to form a film safely, and if it is more than 60 mol%, the strength and heat resistance are extremely poor.

実用的な強度をもつフイルムを得るためのポリマとし
ては極限粘度(0.5g/100mlの濃硫酸溶液中30℃で測定し
た値)で1.0以上が必要であるが,このようなポリマを
使用した場合溶液中のポリマ濃度は2〜40%程度が好ま
しい。
In order to obtain a film with practical strength, the polymer must have an intrinsic viscosity of 1.0 or more (measured in a 0.5 g / 100 ml concentrated sulfuric acid solution at 30 ° C). If such a polymer is used The polymer concentration in the solution is preferably about 2 to 40%.

かかる構成成分からなる共重合体は通常の低温溶液重
合法,界面重合法などによつて製造することができる
が,有機溶媒中での重合の方が重合溶液がそのまま製膜
に使用できる点で便利である。
Copolymers comprising such components can be produced by ordinary low-temperature solution polymerization, interfacial polymerization, and the like, but polymerization in an organic solvent is more advantageous in that the polymerization solution can be used as it is for film formation. It is convenient.

上記本発明の構成成分からなるポリマはそれだけでも
製膜し得る溶液を形成するが,さらに該溶液の安定性の
面から無機塩を添加すると,著しく溶液安定性を向上さ
せることができ,本発明の目的を安全に達成することが
可能である。
The polymer composed of the above-mentioned components of the present invention alone forms a solution capable of forming a film. However, from the viewpoint of the stability of the solution, the addition of an inorganic salt can significantly improve the solution stability. Can be safely achieved.

該無機塩としてはポリマ当り20〜150重量%が適当で
あり,少なすぎればゲル状物の増加,多すぎると未溶解
無機塩の析出など不都合な問題が起きる。
The inorganic salt is suitably used in an amount of 20 to 150% by weight per polymer. If the amount is too small, gel-like substances increase, and if it is too large, undesired problems such as precipitation of undissolved inorganic salts occur.

かかる無機塩としてはアルカリあるいはアルカリ土類
金属のハロゲン化物,水酸化物などが適当であり,例え
ばLiCl,CaCl2,MgCl2などがある。
Suitable inorganic salts include halides and hydroxides of alkali or alkaline earth metals, such as LiCl, CaCl 2 , and MgCl 2 .

本発明に使用される有機溶媒としては極性非プロトン
系,特にアミド系の溶媒がすぐれており,例えばN−メ
チルピロリドン,N−エチルピロリドン,ヘキサメチルホ
スホルアミド,ジメチルアセトアミド,ジメチルホルム
アミド,テトラメチル尿素,γ−ブチロラクトンなどが
挙げられるが,混合溶媒系にしてももちろん差しつかえ
ない。
As the organic solvent used in the present invention, polar aprotic solvents, particularly amide solvents, are excellent, such as N-methylpyrrolidone, N-ethylpyrrolidone, hexamethylphosphoramide, dimethylacetamide, dimethylformamide, and tetramethyl. Urea, γ-butyrolactone and the like can be mentioned, but a mixed solvent system can of course be used.

また本発明のフイルムには物性を損れない程度に,滑
剤,帯電防止剤,カーボンブラツク,酸化チタン,アル
ミナなどの微粒子がブレンドされていてもかまわない。
The film of the present invention may be blended with fine particles such as a lubricant, an antistatic agent, carbon black, titanium oxide, and alumina to such an extent that physical properties are not impaired.

上記のように調整された製膜原液は,一旦空気層中に
吐出され,走行乾燥し,次いで凝固液中に導いて凝固抽
出されるいわゆる乾湿式法で製膜されるか,該原液を直
接凝固液中に押し出すいわゆる湿式法で製膜される。
The stock solution prepared as described above is discharged into an air layer, then dried by running, and then introduced into a coagulation solution to form a film by a so-called dry-wet method in which coagulation is extracted, or the stock solution is directly used. The film is formed by a so-called wet method of extruding into a coagulating liquid.

この液は一般に水系媒体からなるものであり,水の他
の有機溶媒や無機塩等を含有していてもよい。しかし一
般には水分量は30wt%以上好ましくは50wt%以上含有さ
れているものであり,該浴温度は通常0〜100℃で使用
され,フイルム中に含有された塩類および有機溶媒の抽
出が行なわれる。
This liquid is generally composed of an aqueous medium, and may contain other organic solvents or inorganic salts other than water. However, in general, the water content is 30% by weight or more, preferably 50% by weight or more, and the bath temperature is usually used at 0 to 100 ° C to extract salts and organic solvents contained in the film. .

乾湿式製膜法はフイルムでのボイド発生を抑制し,厚
みムラを少なくする利点があり,より好ましく使用され
る。
The dry-wet film forming method has the advantages of suppressing the generation of voids in the film and reducing unevenness in thickness, and is more preferably used.

乾湿式法で製膜する場合をより詳しく述べるならば,
該原液はオリフイスから適当なロール,ベルト,ドラム
等の支持体上に押出し被膜に形成される。
To describe in more detail the case of film formation by the dry-wet method,
The stock solution is extruded from an orifice onto a suitable support such as a roll, belt, drum or the like to form a coating film.

かかる支持体は溶媒沸点+100℃以下の温度でかつ製
膜用原液温度以上に加熱保持された場合,製膜性の点で
好ましい。また被膜形成方法としては上記のオリフイス
の他のロールコーテイング法,ナイフコーテイング法,
アプリケータによる方法およびこれらを併合した方法等
がある。
Such a support is preferable from the viewpoint of film-forming properties when it is heated and maintained at a temperature of not higher than the solvent boiling point + 100 ° C. and at a temperature not lower than the stock solution temperature. In addition, as a method of forming a film, other than the above-mentioned orifice, a roll coating method, a knife coating method,
There are a method using an applicator and a method combining these methods.

乾式工程では支持体上の被膜層から溶媒を飛散させて
濃縮し,被膜を自己支持性のものにする。この場合フイ
ルム表面から急激に溶媒が飛散しないように調節する必
要がある。通常室温以上で溶媒の沸点+100℃以下の温
度にて処理されるが,減圧〜常圧までの雰囲気下で溶媒
の沸点を大きくは越えない温度領域で行なえばよく,一
般に室温〜300℃である。均質なフイルムはフイルム厚
さが大きくなるほど困難になるが,かかる場合には上記
溶媒飛散速度を小さくすれば改善される。すなわち低温
で長時間乾燥するのである。
In the dry process, the solvent is scattered from the coating layer on the support and concentrated to make the coating self-supporting. In this case, it is necessary to adjust the solvent so that the solvent does not suddenly scatter from the film surface. Usually, the treatment is carried out at a temperature above room temperature and below the boiling point of the solvent + 100 ° C, but it is sufficient that the treatment is carried out in an atmosphere from reduced pressure to normal pressure and in a temperature range not exceeding the boiling point of the solvent. . A homogeneous film becomes more difficult as the film thickness increases, but in such a case, it can be improved by reducing the solvent scattering speed. That is, it is dried at a low temperature for a long time.

上記乾式過程を終えたフイルムは支持体から剥離され
て,湿式過程に導入される。ここでフイルム中に含有さ
れている無機塩が除去される。湿式浴は前記湿式製膜用
浴と同じ組成よりなるものであつて,さらにかかる脱塩
操作における脱塩速度を調整するために水溶性の有機溶
媒や無機塩等を添加することも前記同様である。脱塩速
度は該浴温度に依存し,温度が高いほど速くなり,通常
は室温〜100℃で操業する。
The film after the dry process is peeled from the support and introduced into the wet process. Here, the inorganic salt contained in the film is removed. The wet bath has the same composition as that of the wet film forming bath, and a water-soluble organic solvent or inorganic salt is added in the same manner as described above in order to adjust the desalting rate in the desalting operation. is there. The desalination rate depends on the bath temperature, the higher the temperature, the faster it usually operates between room temperature and 100 ° C.

本発明のフイルムを得るには,この湿式過程で,フイ
ルムを該浴中の湿潤状態で1.02倍以上1.5倍未満に延伸
させることである。この状態で,1.05倍以上に延伸する
ことは,後に続く高温延伸工程での延伸を容易にする。
しかし,該浴中での延伸は低温度での延伸のため,高倍
率に延伸することはできない。
In order to obtain the film of the present invention, in the wet process, the film is stretched to 1.02 times or more and less than 1.5 times in the wet state in the bath. Stretching 1.05 times or more in this state facilitates stretching in the subsequent high-temperature stretching step.
However, stretching in the bath cannot be performed at a high magnification because of stretching at a low temperature.

湿潤状態での延伸に引き続いて,高温延伸工程を含む
不活性気体中での延伸を行なう。この高面積延伸倍率
は,多段延伸工程をとることにより達成でき,しかも,
少なくとも延伸工程のうちの一工程は,300〜600℃,好
ましくに350〜550℃の高温延伸工程を含むことである。
延伸工程としては,例えば,縦−横,横−縦,縦−横−
縦,多段縦−横,多段縦−横−縦,縦−同時二軸,同時
二軸−縦,同時二軸−同時二軸,縦−横−同時二軸,縦
−横−縦−横工程などが含まれる。好ましくは,これら
の多段工程の最後の工程で高温延伸工程をとり入れるの
が好ましい。本発明の重合体溶溶を流延乾燥または凝固
するだけでは本発明の高剛性フイルムは得られない。ま
た通常採用される300℃以下の温度における延伸配向の
みでは,延伸時に破断して,延伸倍率が上昇しなく,高
剛性フイルムは得られない。また一段の高温延伸工程の
みでは,不均一な延伸になり,破れが多発し,延伸がで
きても,弾性率が向上しない。300℃以下の延伸では,
面積延伸倍率が2.5倍以上に達しない。
Subsequent to the stretching in the wet state, stretching in an inert gas including a high-temperature stretching step is performed. This high area stretching ratio can be achieved by taking a multi-stage stretching process.
At least one of the stretching steps includes a high-temperature stretching step at 300 to 600 ° C, preferably 350 to 550 ° C.
As the stretching process, for example, vertical-horizontal, horizontal-vertical, vertical-horizontal-
Vertical, multi-stage vertical-horizontal, multi-stage vertical-horizontal-vertical, vertical-simultaneous biaxial, simultaneous biaxial-vertical, simultaneous biaxial-simultaneous biaxial, vertical-horizontal-simultaneous biaxial, vertical-horizontal-vertical-horizontal process And so on. Preferably, a high-temperature stretching step is incorporated in the last step of these multi-step steps. The high-rigidity film of the present invention cannot be obtained simply by casting or solidifying the polymer solution of the present invention. In addition, if only the stretching orientation at a temperature of 300 ° C. or less, which is usually adopted, the film is broken at the time of stretching, the stretching ratio does not increase, and a high-rigidity film cannot be obtained. In addition, in a single-stage high-temperature stretching step, uneven stretching occurs, tearing frequently occurs, and even if stretching can be performed, the elastic modulus does not improve. For stretching below 300 ° C,
The area stretching ratio does not reach 2.5 times or more.

加熱は,空気,窒素,アルゴン,ヘリウムの如き不活
性ガス雰囲気で処理されるが,加熱方式はこれらの不活
性ガスが加熱されて循環しているガスオーブン中を貫通
走行させる方法の他,これらの不活性ガス雰囲気中に,
熱板,熱ピン,赤外線ランプ,集光型赤外線ヒータ等の
熱線により加熱する方法,また高周波加熱,電磁誘導加
熱等の諸手段を任意に用いてもよい。好ましくは,高温
熱風炉中で,加熱ロールに接触させて,短区間延伸させ
るのがよい。
Heating is performed in an atmosphere of an inert gas such as air, nitrogen, argon, or helium. The heating method uses a method in which these inert gases are heated and circulated through a circulating gas oven. In an inert gas atmosphere of
A method of heating by a hot wire such as a hot plate, a hot pin, an infrared lamp, and a condensing infrared heater, or various means such as high frequency heating and electromagnetic induction heating may be used. Preferably, in a high-temperature hot blast stove, it is good to make a short section stretch by contacting with a heating roll.

全面積延伸倍率は2.5倍〜40倍,好ましくは3〜30倍
になるように多段延伸工程を採用して高延伸倍率を達成
することにより,フイルム状態で少なくとも一方向の引
張弾性率を1800kg/mm2以上に発現し得る。例えば,第1
段目の縦延伸で1.3倍,第2段目の横延伸で1.6倍,第3
段目に350℃以上の高温再縦延伸で6.0倍により,全面積
延伸倍率は12.5倍になる。あるいは,上述において,第
3段目の350℃以上の高温延伸で,縦,横にそれぞれ3.0
倍ずつの同時二軸延伸を採用すれば,全面積倍率は18.7
倍になる。なお,引張弾性率の上限値は特に限定されな
いが,9000kg/mm2程度が好ましい。
By adopting a multi-stage stretching process to achieve a high stretching ratio so that the total area stretching ratio is 2.5 to 40 times, preferably 3 to 30 times, the tensile elastic modulus in at least one direction in the film state is 1800 kg / mm 2 or more can be expressed. For example, the first
1.3 times for longitudinal stretching in the first stage, 1.6 times for horizontal stretching in the second stage, 3rd
At the stage, the vertical stretching at 350 ° C or more is 6.0 times, and the total area stretching ratio is 12.5 times. Alternatively, in the above, in the third stage, high-temperature stretching at 350 ° C. or more, 3.0
If simultaneous biaxial stretching is adopted twice, the total area magnification is 18.7.
Double. The upper limit of the tensile modulus is not particularly limited, but is preferably about 9000 kg / mm 2 .

本発明における少なくとも一方向の湿度膨張係数を8
×10-6mm/mm・%RH以下に小さくすることは,高温下に
多段延伸を行ない,延伸倍率を従来より大幅に上げるこ
とにより達成できる。なお,湿度膨張係数の下限値は特
に限定されないが−1×10-5mm/mm・%RHが好ましい。
In the present invention, the coefficient of humidity expansion in at least one direction is 8
The reduction to × 10 −6 mm / mm ·% RH or less can be achieved by performing multi-stage stretching at a high temperature and increasing the stretching ratio much more than before. The lower limit of the humidity expansion coefficient is not particularly limited, but is preferably -1 × 10 −5 mm / mm ·% RH.

フイルム厚みは特に限定されないが,0.5μ以下ではフ
イルム単体として取扱いが困難である。250μ以上で
は,溶媒の蒸散に時間がかかり,生産性の面から好まし
くない。より好ましい厚さは1〜100μである。
The thickness of the film is not particularly limited, but if it is less than 0.5 μm, it is difficult to handle the film alone. If it is 250 μm or more, it takes time to evaporate the solvent, which is not preferable in terms of productivity. A more preferred thickness is 1 to 100 μ.

〔本発明の効果〕(Effect of the present invention)

上述した本発明の芳香族ポリアミドフイルムは,アル
ミ箔に匹敵する高弾性率と良好な寸法安定性を示す。し
たがつて,該フイルムは,記録材料支持体,キヤパシタ
ー誘電体,プリント基盤,感熱転写リボン等の情報記録
材料,工業材料の分野で有効に利用できる。
The above-mentioned aromatic polyamide film of the present invention exhibits a high elastic modulus comparable to aluminum foil and good dimensional stability. Therefore, the film can be effectively used in the fields of information recording materials such as recording material supports, capacitor dielectrics, printed boards, and thermal transfer ribbons, and industrial materials.

以下,実施例により本発明をさらに説明する。 Hereinafter, the present invention will be further described with reference to examples.

実施例1 乾燥したN−メチルピロリドン500mlに2−クロル−
p−フエニレンジアミン9.72g,4,4′−ジアミノジフエ
ニルスルホン1.98g,無水塩化リチウム10gを窒素気流下
に撹拌溶解させる。0℃に冷却したこの溶液中へテレフ
タル酸クロリド15.45gを一時に添加し撹拌を続けると内
容物は次第に粘稠になつてくる。添加後そのまま2時間
撹拌を続けた後室温まで昇温し4.8gの固体状水酸化リチ
ウムを加え発生する塩化水素を中和した。この原液をミ
キサー中で多量の水とともに撹拌しポリマを再沈させ減
圧下に乾燥した。このポリマは濃硫酸中,25℃で3.5の極
限粘度を有していた。
Example 1 2-Chloro- was added to 500 ml of dried N-methylpyrrolidone.
9.72 g of p-phenylenediamine, 1.98 g of 4,4'-diaminodiphenylsulfone and 10 g of anhydrous lithium chloride are stirred and dissolved under a nitrogen stream. 15.45 g of terephthalic acid chloride is added at once to this solution cooled to 0 ° C., and the contents gradually become viscous when stirring is continued. After the addition, stirring was continued for 2 hours, and then the temperature was raised to room temperature, and 4.8 g of solid lithium hydroxide was added to neutralize the generated hydrogen chloride. This stock solution was stirred with a large amount of water in a mixer to reprecipitate the polymer and dried under reduced pressure. The polymer had an intrinsic viscosity of 3.5 in concentrated sulfuric acid at 25 ° C.

ポリマ5g,塩化リチウム5g,N−メチルピロリドン95gを
室温下に撹拌し均一溶液とした。この溶液を150℃にて
2時間加熱したところ,濁度の変化はまつたくなかつ
た。次にこの溶液をガラス板上へ200μの厚みに均一に
流延し120℃にて30分間加熱しN−メチルピロリドンの8
5%を飛散させた後もフイルム中には濁度測定で有意差
のあるほどの曇りは見られなかつた。このフイルムをガ
ラス板より剥離し室温の流水中へ10分浸漬し,湿潤状態
で縦方向に1.2倍延伸した。次いで280℃の熱風オーブン
中で横方向に1.2倍延伸し,300℃の熱風オーブン中で5
分間緊張下で保持した。得られたフイルムの厚みは17μ
であり,縦方向と横方向の引張弾性率はそれぞれ1310kg
/mm2,1200kg/mm2であつた。縦方向の湿度膨張係数は12.
5×10-6mm/mm・%RHであつた。
5 g of polymer, 5 g of lithium chloride and 95 g of N-methylpyrrolidone were stirred at room temperature to obtain a homogeneous solution. When this solution was heated at 150 ° C. for 2 hours, the change in turbidity was not noticeable. Next, this solution was uniformly cast on a glass plate to a thickness of 200 μm, and heated at 120 ° C. for 30 minutes to obtain N-methylpyrrolidone 8
Even after 5% of the film had been scattered, no significant clouding was observed in the film as measured by turbidity. This film was peeled off from the glass plate, immersed in running water at room temperature for 10 minutes, and stretched 1.2 times in the longitudinal direction in a wet state. Subsequently, the film is stretched 1.2 times in the transverse direction in a hot air oven at 280 ° C.
Hold under tension for minutes. The thickness of the obtained film is 17μ
The tensile modulus in the longitudinal and transverse directions is 1310 kg each.
/ mm 2 , 1200 kg / mm 2 . The longitudinal humidity expansion coefficient is 12.
It was 5 × 10 −6 mm / mm ·% RH.

サンプル幅5mmに切断し,熱風と集束型赤外線ヒータ
の併用により,420℃に昇温された加熱バーにポリアミド
フイルムを接触させ,表1の再縦延伸倍率,延伸張力で
再縦延伸を行なつた。再縦延伸倍率は6倍まで可能であ
つた。得られたフイルムは厚さ9〜11μであつた。
The sample film was cut to a width of 5 mm, and the polyamide film was brought into contact with a heating bar heated to 420 ° C. by using both hot air and a focused infrared heater. Was. The longitudinal stretching ratio was up to 6 times. The resulting film had a thickness of 9-11 μm.

引張弾性率は,東洋測器(株)製“テンシロン”によ
り25℃,65%RHにおける歪・応力曲線の伸度2%の位置
における接線の勾配から求めた。サンプルは幅10mm,長
さ(クランプ間隔)100mmとし,引張速度は500mm/分で
行なつた。
The tensile modulus was determined from the gradient of the tangent line at the position of 2% elongation of the strain / stress curve at 25 ° C. and 65% RH using “Tensilon” manufactured by Toyo Sokki Co., Ltd. The sample was 10 mm in width and 100 mm in length (clamp interval), and the tensile speed was 500 mm / min.

湿度膨張係数の測定方法としては,10mm幅,約400mm長
さのフイルムサンプルの上下端近くに標点を付したもの
を温湿度調節が可能なガラス窓付セル内で100g/mm2の重
力をかけて吊下げ,温度を25℃一定のまま,24時間50%R
Hに調湿後,セル内の湿度を平均0.5%RH/分の割合で徐
々に50%RHから80%RHまで増加したときの標点間長さの
増加をカセツトメータまたは差動トランスで追跡し,サ
ンプルの初期長さに対する増分の比を相対湿度の変化に
対して求めたものである。
As a method for measuring the humidity expansion coefficient, a film sample with a width of 10 mm and a length of about 400 mm with a mark near the upper and lower ends was subjected to a gravity of 100 g / mm 2 in a cell with a glass window capable of adjusting the temperature and humidity. 50% R for 24 hours at a constant temperature of 25 ° C
After adjusting the humidity to H, track the increase in gauge length when the humidity inside the cell gradually increases from 50% RH to 80% RH at an average rate of 0.5% RH / min using a cassette meter or differential transformer. Then, the ratio of the increment to the initial length of the sample was obtained for the change in relative humidity.

表1に示すように,高温再縦延伸により弾性率が飛散
的に向上し,また湿度膨張係数が,高温再縦延伸により
充分下げられることがわかる。
As shown in Table 1, it can be seen that the elastic modulus is scatteredly improved by the high temperature re-longitudinal stretching, and the humidity expansion coefficient is sufficiently reduced by the high temperature re-longitudinal stretching.

実施例2 実施例1において湿潤下での縦方向の延伸倍率を1.05
倍に,280℃の熱風中での横方向の延伸倍率を1.05倍にす
る以外は,同様の操作でフイルムを作成した。得られた
フイルムの縦方向の引張弾性率は820kg/mm2であつた。
次いで5mm幅の短冊状サンプルを高温再縦延伸に供し
た。延伸温度400℃では,延伸倍率4.7倍まで延伸でき,
得られたフイルムの縦方向の引張弾性率は4790kg/mm2
あつた。延伸温度410℃に上昇すると,延伸倍率5.2倍ま
で延伸でき,フイルムの縦方向の引張弾性率は4860kg/m
m2であつた。さらに延伸温度を420℃に上昇すると延伸
倍率6.0倍まで延伸でき,フイルムの引張弾性率は8780k
g/mm2と飛躍的に向上した。
Example 2 In Example 1, the stretching ratio in the machine direction under wet conditions was changed to 1.05.
A film was prepared in the same manner except that the transverse stretching ratio in hot air at 280 ° C. was changed to 1.05 times. The tensile modulus in the machine direction of the obtained film was 820 kg / mm 2 .
Next, a strip sample having a width of 5 mm was subjected to high-temperature vertical re-stretching. At a stretching temperature of 400 ° C, stretching can be performed up to 4.7 times the stretching ratio.
The tensile elastic modulus in the machine direction of the obtained film was 4790 kg / mm 2 . When the stretching temperature is raised to 410 ° C, the film can be stretched up to a stretching ratio of 5.2, and the tensile modulus in the machine direction of the film is 4860 kg / m.
Atsuta in m 2. When the stretching temperature is further increased to 420 ° C, the film can be stretched to a stretch ratio of 6.0 times, and the tensile modulus of the film is 8780k.
It was dramatically improved with the g / mm 2.

図は,高温延伸前のフイルムと420℃で延伸倍率6倍
に高温延伸したフイルムについて,動的弾性率およびta
nδを表示している。動的粘弾性測定は,東洋ボルドウ
イン(株)製のRHEOVIBRON DDV−II−EA型を使用し,周
波数110Hz,昇温速度2℃/分で測定した。高温再縦延伸
により,充分にフイルムの弾性率が向上していることが
わかる。高温再縦延伸フイルムの200℃の動的弾性率を
E(200℃),25℃の動的弾性率をE(25℃)としたと
き,200℃と25℃の動的弾性率の保持率h (ただし, は,図から各値を読みとり計算すると57.1%となる。ま
た,図から300℃以上の高温側でも,弾性率の保持率が
高く,耐熱性にすぐれていることがわかる。
The figure shows the dynamic elastic modulus and ta of the film before hot stretching and the film stretched at 420 ° C by 6 times the stretching ratio.
nδ is displayed. The dynamic viscoelasticity was measured using a RHEOVIBRON DDV-II-EA manufactured by Toyo Boldouin Co., Ltd. at a frequency of 110 Hz and a heating rate of 2 ° C./min. It can be seen that the elastic modulus of the film is sufficiently improved by the high-temperature re-longitudinal stretching. When the dynamic elastic modulus at 200 ° C of the high-temperature re-stretched film is E (200 ° C) and the dynamic elastic modulus at 25 ° C is E (25 ° C), the retention of the dynamic elastic modulus at 200 ° C and 25 ° C h (however, Is calculated as 57.1% by reading each value from the figure. In addition, it can be seen from the figure that even at a high temperature side of 300 ° C. or higher, the elastic modulus retention rate is high and the heat resistance is excellent.

比較実施例1 本例は実施例1と同一結合型式のポリアミドであるが
核無置換ポリアミドの例を示したものである。実施例1
と同様に乾燥したN−メチルピロリドン500mlにp−フ
エニレンジアミン8.64g,4,4′−ジアミノジフエニルメ
タン3.96g,無水塩化リチウム10gを溶解させ,0℃にてテ
レフタル酸クロリド20.30gを加え撹拌した。
Comparative Example 1 This example is an example of a polyamide of the same bond type as in Example 1, but a non-nucleated polyamide. Example 1
8.64 g of p-phenylenediamine, 3.96 g of 4,4'-diaminodiphenylmethane and 10 g of anhydrous lithium chloride were dissolved in 500 ml of N-methylpyrrolidone dried in the same manner as described above, and 20.30 g of terephthalic acid chloride was added at 0 ° C. Stirred.

酸クロリドの添加と同時に系は白濁しポリマが析出し
てくる。このため製膜原液としてこのままでは使用でき
ない。ポリマ5gを水により再沈乾燥後,塩化リチウム5
g,ヘキサメチルホスホルアミド95gを混合し室温下に撹
拌したがポリマは大部分不溶であり,この混合液からの
フイルム化は不可能であつた。なお得られたポリマは濃
硫酸中0.5g/100mlにて2.3の極限粘度を示した。
Simultaneously with the addition of the acid chloride, the system becomes cloudy and a polymer precipitates. Therefore, it cannot be used as it is as a stock solution for film formation. 5 g of the polymer is reprecipitated and dried with water.
g and 95 g of hexamethylphosphoramide were mixed and stirred at room temperature. However, the polymer was mostly insoluble, and film formation from this mixture was not possible. The polymer obtained had an intrinsic viscosity of 2.3 at 0.5 g / 100 ml in concentrated sulfuric acid.

比較実施例2 本例は核に塩素置換基をもつが単独重合体であり非常
に析出しやすい例を示したものである。
Comparative Example 2 This example shows an example in which a nucleus has a chlorine substituent but is a homopolymer and is very easily precipitated.

乾燥したN−メチルピロリドン500ml中へ2,6−ジクロ
ロ−p−フエニレンジアミン17.70g,塩化リチウム15gを
溶解し,−5℃にてテレフタル酸クロリド20.30gを一時
に添加し,そのまま1.5時間撹拌を続けたところ均一な
粘稠溶液が得られた。次いでこの溶液をガラス板へ200
μに均一に流延し80℃のオーブン中へ2分間入れたとこ
ろフイルムは白濁し曇価で表わすと熱履歴を受けてない
原液の6.5倍となつた。この白濁したフイルムを大量の
5℃の水中へ5分間浸漬,さらに室温の流水中へ10分間
浸漬して脱塩を行なつた。次に300℃にて5分間定長下
に加熱して11.5μのフイルムを得たが白濁したフイルム
であつた。このフイルムは450kg/mm2の引張弾性率を示
したが脆いフイルムであつた。
17.70 g of 2,6-dichloro-p-phenylenediamine and 15 g of lithium chloride are dissolved in 500 ml of dried N-methylpyrrolidone, and 20.30 g of terephthalic acid chloride is added at -5 ° C. at once, followed by stirring for 1.5 hours. Was continued to obtain a uniform viscous solution. This solution is then applied to a glass plate for 200
When the film was uniformly cast into μ and placed in an oven at 80 ° C. for 2 minutes, the film became cloudy and showed 6.5 times that of the stock solution which had not received a heat history in terms of haze. The cloudy film was immersed in a large amount of water at 5 ° C. for 5 minutes, and further immersed in running water at room temperature for 10 minutes to perform desalting. Next, the film was heated at 300 ° C. for 5 minutes under a constant length to obtain a 11.5 μm film, which was a cloudy film. This film showed a tensile modulus of 450 kg / mm 2 , but was a brittle film.

【図面の簡単な説明】[Brief description of the drawings]

図は,芳香族ポリアミドフイルムの縦方向の動的弾性率
およびtanδを示すものである。図中●●●●●は高温
延伸をする前のフイルム,○○○○○は420℃で6.0倍の
高温再縦延伸を行なつたフイルムを表わす。
The figure shows the longitudinal dynamic modulus and tan δ of the aromatic polyamide film. In the figure, ●●●●● indicates a film before high-temperature stretching, and XXXXX indicates a film which was subjected to high-temperature re-longitudinal stretching at 420 ° C. and 6.0 times.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08L 77:10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Reference number in the agency FI Technical display location C08L 77:10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】実質的に一般式 を構成成分単位(ここでm,nは0〜3の整数であり同時
には0にはならない)として40モル%以上90モル%未満
含み、残りの芳香核に置換基をもたないアミド結合成分
単位を構成成分単位とする芳香族共重合ポリアミドで構
成されたフィルムであって、該フィルムは多段延伸を含
む工程を経て製膜されたものであり、延伸されたフィル
ムの状態で少なくとも一方向の引張弾性率が1800kg/mm2
以上,湿度膨張係数が8×10-6mm/mm・%RH以下である
ことを特徴とする芳香族ポリアミドフィルム。
(1) a substantially general formula An amide bond component containing 40 mol% or more and less than 90 mol% as a constituent unit (where m and n are integers of 0 to 3 and not simultaneously 0), and having no substituent in the remaining aromatic nucleus. A film composed of an aromatic copolymer polyamide having a unit as a constituent component unit, wherein the film is formed through a process including multi-stage stretching, and in at least one direction in a stretched film state. Tensile modulus is 1800kg / mm 2
An aromatic polyamide film having a humidity expansion coefficient of 8 × 10 −6 mm / mm ·% RH or less.
JP21069185A 1985-09-24 1985-09-24 Aromatic polyamide film Expired - Fee Related JP2611194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21069185A JP2611194B2 (en) 1985-09-24 1985-09-24 Aromatic polyamide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21069185A JP2611194B2 (en) 1985-09-24 1985-09-24 Aromatic polyamide film

Publications (2)

Publication Number Publication Date
JPS6270421A JPS6270421A (en) 1987-03-31
JP2611194B2 true JP2611194B2 (en) 1997-05-21

Family

ID=16593506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21069185A Expired - Fee Related JP2611194B2 (en) 1985-09-24 1985-09-24 Aromatic polyamide film

Country Status (1)

Country Link
JP (1) JP2611194B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101509426B1 (en) 2012-08-23 2015-04-07 코오롱인더스트리 주식회사 Method of manufacturing aramid fiber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040999A (en) * 2001-07-27 2003-02-13 Sumitomo Chem Co Ltd Fully aromatic polyamide, fully aromatic polyamide porous film and separator for nonaqueous electrolytic solution secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101509426B1 (en) 2012-08-23 2015-04-07 코오롱인더스트리 주식회사 Method of manufacturing aramid fiber

Also Published As

Publication number Publication date
JPS6270421A (en) 1987-03-31

Similar Documents

Publication Publication Date Title
JP5280889B2 (en) Method for producing aromatic polyamide
JP2611194B2 (en) Aromatic polyamide film
EP0198326A2 (en) Poly-p-phenylene-terephthalamide film and process for producing the same
US4857255A (en) Poly-p-phenylene-terephthalamide film and process for producing the same
JP2897312B2 (en) Heat resistant film
JP2564794B2 (en) Aromatic polyamide film
JP2991937B2 (en) Aromatic polyether sulfone solution composition and method for producing film
JP2936676B2 (en) Heat resistant film
JP2664965B2 (en) Highly slippery polyamide film and method for producing the same
JP3405022B2 (en) Aromatic polyamide composition
JPH06136156A (en) Aromatic polyamide film and its production
JP2979610B2 (en) Film production method
JP2853117B2 (en) Aromatic polymer film
JPH1149876A (en) Highly rigid heat-resistant aramide film
JPH08325388A (en) Film of aromatic polyether sulfone, its production and solution composition for producing the same
JPH03237155A (en) Aromatic polycarbonate/aromatic polyamide block copolymer composition
JP4048417B2 (en) Polybenzoazole film
JPH01281915A (en) Manufacture of film
JP2004231874A (en) Polybenzoxazole film and method for producing the same
US5097011A (en) Process for preparing acrylonitrile polymer film
JPH03417B2 (en)
JP2552332B2 (en) Film manufacturing method
JPH0352776B2 (en)
JP3242105B2 (en) Stretchable high tensile strength aramid polymer
JPH0616836A (en) Aromatic polyamide film and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees