JP2609956B2 - Pretreatment method for fuel cell material - Google Patents

Pretreatment method for fuel cell material

Info

Publication number
JP2609956B2
JP2609956B2 JP3063733A JP6373391A JP2609956B2 JP 2609956 B2 JP2609956 B2 JP 2609956B2 JP 3063733 A JP3063733 A JP 3063733A JP 6373391 A JP6373391 A JP 6373391A JP 2609956 B2 JP2609956 B2 JP 2609956B2
Authority
JP
Japan
Prior art keywords
temperature steam
gas
steam reforming
fuel cell
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3063733A
Other languages
Japanese (ja)
Other versions
JPH04280080A (en
Inventor
伸広 山田
和男 薬師神
努 戸井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP3063733A priority Critical patent/JP2609956B2/en
Publication of JPH04280080A publication Critical patent/JPH04280080A/en
Application granted granted Critical
Publication of JP2609956B2 publication Critical patent/JP2609956B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、天然ガス、LPG、ナ
フサ、灯油等の炭化水素を原料として燃料電池発電を行
い、電気または電気と熱エネルギーを供給する燃料電池
発電システムに供給する原料の前処理方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generation system using natural gas, LPG, naphtha, kerosene, and other hydrocarbons as a raw material to generate electricity or a fuel cell power supply system for supplying electricity and heat energy. It relates to a pre-processing method.

【0002】[0002]

【従来の技術】燃料電池発電システムでは、天然ガス、
LPG、ナフサ、灯油等の炭化水素原料を水添脱硫して
精製した後、高温改質して高水素濃度としたガスを燃料
電池に供給している。
2. Description of the Related Art In a fuel cell power generation system, natural gas,
Hydrocarbon desulfurization such as LPG, naphtha, and kerosene is hydrodesulfurized, refined, and then reformed at a high temperature to supply a gas having a high hydrogen concentration to the fuel cell.

【0003】燃料電池には、リン酸型燃料電池、溶融塩
型燃料電池、固体電解質型燃料電池があるが、溶融塩型
又は固体電解質型燃料電池では高温水蒸気改質反応触媒
を内蔵(内部高温改質型燃料電池)させ高温下で原料の
改質と発電反応とを並行して進めることができるので種
々合理的な面がある。その一つに、高温下、高濃度水素
ガス雰囲気なので、水蒸気改質触媒、発電用触媒が硫黄
被毒を受け難いので硫黄分を含む石炭ガス化ガスをも原
料として利用できると言われている。しかし800℃の
高温でも高温水蒸気改質触媒は硫黄により活性の一部又
は多くを失ってしまうことを考えると、内部高温改質型
燃料電池においても炭化水素原料の脱硫は充分行われな
ければならない課題である。
[0003] Fuel cells include phosphoric acid type fuel cells, molten salt type fuel cells, and solid electrolyte type fuel cells, and the molten salt type or solid electrolyte type fuel cells incorporate a high temperature steam reforming reaction catalyst (internal high temperature type). In this case, the reforming of the raw material and the power generation reaction can proceed in parallel at a high temperature, so that there are various rational aspects. One of the reasons is that steam reforming catalysts and power generation catalysts are less susceptible to sulfur poisoning under high temperature and high concentration hydrogen gas atmosphere, so it is said that coal gasification gas containing sulfur can be used as a raw material. . However, considering that the high-temperature steam reforming catalyst loses part or much of its activity due to sulfur even at a high temperature of 800 ° C., desulfurization of the hydrocarbon raw material must be sufficiently performed even in the internal high-temperature reforming fuel cell. It is an issue.

【0004】リン酸型燃料電池の場合は内部改質型にす
ることが出来ないので、原料の高温水蒸気改質部を別に
設ける。溶融塩型又は固体電解質型のような高温型燃料
電池の場合でも必ずしも内部改質型にせず、改質部を別
に設ける場合がある。これら外部改質方式の場合でも、
高温水蒸気改質部に流入する硫黄分の一部は高温水蒸気
改質触媒の低温部の触媒を失活させ、残部は高温部を通
り抜け下流の触媒、燃料電池に悪影響を及ぼすことが考
えられる。
[0004] In the case of a phosphoric acid type fuel cell, since it cannot be an internal reforming type, a high temperature steam reforming section for a raw material is separately provided. Even in the case of a high-temperature type fuel cell such as a molten salt type or a solid electrolyte type, an internal reforming type is not always used, and a reforming section may be provided separately. Even in the case of these external reforming methods,
It is conceivable that part of the sulfur flowing into the high-temperature steam reforming section deactivates the catalyst in the low-temperature section of the high-temperature steam reforming catalyst, and the remaining part passes through the high-temperature section and adversely affects the downstream catalyst and the fuel cell.

【0005】燃料電池発電装置は、都市部の狭い敷地に
も設置できること、ビル内に設置されることを考慮し
て、規模が小さく、コンパクトに造られ、高温水蒸気改
質部も石油精製工場、化学工場に設けられる改質装置と
は違ってかなりコンパクトに造られるため、触媒交換等
の操作はしにくい構造になっている。従って、この場合
も炭化水素原料の脱硫を十分に行い、高温水蒸気改質部
及び下流の触媒や燃料電池に悪影響を与えない工夫が必
要である。
[0005] Considering that the fuel cell power generator can be installed on a narrow site in an urban area or installed in a building, the fuel cell power generator is made small and compact, and a high-temperature steam reforming unit is also installed in an oil refinery. Unlike a reformer installed in a chemical factory, it is made quite compact, so it has a structure that makes operation such as catalyst replacement difficult. Therefore, also in this case, it is necessary to devise sufficient desulfurization of the hydrocarbon raw material so as not to adversely affect the high-temperature steam reforming section, the downstream catalyst, and the fuel cell.

【0006】燃料電池の起電力はユニット当り1V前後
であるため数十、百数十ユニット積層し、スタックを構
成し高電圧を得たり、スタックを複数基組合わせ、大電
流、大電力を得る様に工夫されている。これを短期間の
定期整備ごとに解体して整備するのは大変なので、燃料
電池は40,000時間、即ち5年間は解体整備しなく
とも済む性能が要求されている。
Since the electromotive force of a fuel cell is about 1 V per unit, several tens, hundreds, and tens of units are stacked to form a stack to obtain a high voltage, or a plurality of stacks are combined to obtain a large current and a large power. It is devised like. Since it is difficult to disassemble and maintain this at regular short-term maintenance, the fuel cell is required to have a performance that does not require disassembly and maintenance for 40,000 hours, that is, five years.

【0007】化学工場の高温水蒸気改質装置では水添脱
硫用水素として酸化炭素を殆ど含まぬ高濃度にした水素
ガスを利用しているし、連続運転時間は8,000時間
で良い。更に、運転操作の誤りがあって炭素析出、硫黄
被毒のトラブルがあってもスティーミングによって炭素
除去、硫黄除去をして再生が可能である。触媒の活性が
低下し、再生を行わずに交換する場合でも、触媒抜きだ
しの為の作業空間を十分とっているので、比較的容易に
行える。
A high-temperature steam reforming apparatus in a chemical plant uses high-concentration hydrogen gas containing almost no carbon oxide as hydrogen for hydrodesulfurization, and the continuous operation time may be 8,000 hours. Furthermore, even if there is an error in the driving operation and there is a problem of carbon deposition and sulfur poisoning, it is possible to regenerate by removing carbon and sulfur by steaming. Even in the case where the activity of the catalyst is reduced and the catalyst is replaced without regeneration, the work space for removing the catalyst is sufficient, so that the replacement can be performed relatively easily.

【0008】燃料電池発電装置では、リン酸型に限ら
ず、水添脱硫用ガスとして酸化炭素を多量に含有する水
素ガスを利用しているので、そのガスを用いた高度脱硫
は難しい。そのうえ連続運転時間は40,000時間に
もなるので、硫黄分の蓄積は大きくなり、高温水蒸気改
質触媒の活性低下を招く。よって高度脱硫は従来の化学
工場の高温水蒸気改質の場合より強く求められる。改質
部を燃料電池の外部に設ける場合でも、コンパクトに造
られるため触媒交換等の操作がし難くなっているので、
炭素析出、硫黄被毒は化学工場の改質装置以上に避ける
べきことである。
In the fuel cell power generator, not only the phosphoric acid type but also a hydrogen gas containing a large amount of carbon oxide is used as a gas for hydrodesulfurization, so that advanced desulfurization using the gas is difficult. In addition, since the continuous operation time is as long as 40,000 hours, the accumulation of sulfur increases, leading to a decrease in the activity of the high-temperature steam reforming catalyst. Therefore, advanced desulfurization is more strongly required than in the case of high-temperature steam reforming in a conventional chemical plant. Even when the reforming unit is provided outside the fuel cell, it is difficult to perform operations such as catalyst replacement because it is made compact,
Carbon deposition and sulfur poisoning should be avoided more than chemical plant reformers.

【0009】[0009]

【発明が解決しようとする課題】本発明は、燃料電池発
電システムにおける高温水蒸気改質の触媒を硫黄被毒、
炭素析出から守り長期間連続運転を可能にすることを目
的とするものである。
SUMMARY OF THE INVENTION The present invention provides a catalyst for high temperature steam reforming in a fuel cell power generation system,
The purpose is to enable continuous operation for a long period of time while protecting from carbon deposition.

【0010】[0010]

【課題を解決するための手段】本発明にかかわる燃料電
池原料の前処理方法は、硫黄化合物を含有する炭化水素
原料を水添脱硫用ガスと混合し水添反応器で硫黄化合物
の大部分を硫化水素に転換し吸着脱硫反応器で硫化水素
を除去した炭化水素原料を、水蒸気と混合し低温水蒸気
改質反応器で処理してから、高温水蒸気改質部を内蔵又
は外部に設けてある燃料電池発電システムの高温水蒸気
改質部に供給することを特徴とする。
Means for Solving the Problems] pretreatment method of a fuel cell material according to the present invention, hydrocarbons containing sulfur compounds
The raw material is mixed with a gas for hydrodesulfurization, and sulfur compounds are
Is converted to hydrogen sulfide and converted to hydrogen sulfide in an adsorption desulfurization reactor.
Is mixed with steam to remove low temperature steam
After treatment with the reforming reactor, high temperature steam of the fuel cell power generation system is provided in the internal or external high-temperature steam reforming unit
It is characterized in that it is supplied to the reforming section .

【0011】図1は本発明を実施するための具体的な装
置構成の一例を示し、原料の水添脱硫反応器1、低温水
蒸気改質反応器2、高温水蒸気改質部を内蔵する固体電
解質型又は溶融炭酸塩型撚料電池部3とから成ってい
る。原料の天然ガス、LPG、ナフサ、灯油はライン4
を通じて供給され、外部からの水添用ガス5又は内部循
環水添用ガス5’と混合されて水添脱硫反応器1内の水
添反応器1Aに送られ、硫黄化合物の大部分は硫化水素
に転換され、吸着脱硫反応器1Bで硫化水素が除去され
る。次いでライン6からの水蒸気と混合して低温水蒸気
改質反応器2に供給され、原料炭化水素はすべてメタ
ン、水素、二酸化炭素、一酸化炭素と過剰の水蒸気との
混合ガスに転換される。低温水蒸気改質されたガスは、
高温水蒸気改質反応器へ供結し高濃度水素含有ガスと.
る。図1では高温水蒸気改質反応器部3Aが固体電解質
型又は溶融炭酸塩型燃料電池部3に内蔵されている場合
を示しているが、高温水蒸気改質反応器は燃料電池の外
部に設けられていても良い。
FIG. 1 shows an example of a specific apparatus configuration for carrying out the present invention, in which a raw material hydrodesulfurization reactor 1, a low temperature steam reforming reactor 2, and a solid electrolyte containing a high temperature steam reforming section are incorporated. And a molten carbonate type twisted-charge battery section 3. Raw natural gas, LPG, naphtha, kerosene is line 4
And supplied from the outside through the hydrogenation gas 5 or the internal circulation.
It is mixed with the ring hydrogenation gas 5 ' and sent to the hydrogenation reactor 1A in the hydrodesulfurization reactor 1, where most of the sulfur compounds are converted to hydrogen sulfide, and the adsorption and desulfurization reactor 1B removes hydrogen sulfide. Is done. Then, the mixture with the steam from the line 6 is supplied to the low-temperature steam reforming reactor 2, and the raw material hydrocarbons are all converted into a mixed gas of methane, hydrogen, carbon dioxide, carbon monoxide and excess steam. The low temperature steam reformed gas is
High-concentration hydrogen-containing gas supplied to a high-temperature steam reforming reactor.
You. FIG. 1 shows a case where the high-temperature steam reforming reactor unit 3A is incorporated in the solid electrolyte type or molten carbonate type fuel cell unit 3, but the high-temperature steam reforming reactor unit is provided outside the fuel cell. May be.

【0012】高温水蒸気改質反応器における炭素析出に
ついて述べると、LPG,ナフサ,灯油の高温水蒸気改
質の場合、天然ガスの高温水蒸気改質に比べ、水蒸気比
の低下等により炭素析出が起き易いが、低温水蒸気改質
反応器で改質した後のガスであればガス中にはCH
外の炭化水素がないので、高温水蒸気改質反応器内での
炭素析出は起きにくい。よって極端な水蒸気比の低下で
炭素析出する場合でも低温水蒸気改質触媒上で起きるの
で、高温水蒸気改質反応触媒を炭素析出から守ることが
出来る。
Regarding carbon deposition in a high-temperature steam reforming reactor, in the case of high-temperature steam reforming of LPG, naphtha and kerosene, carbon deposition is more likely to occur due to a decrease in steam ratio and the like than in the case of high-temperature steam reforming of natural gas. However, if the gas has been reformed in the low-temperature steam reforming reactor, there is no hydrocarbon other than CH 4 in the gas, so that carbon deposition in the high-temperature steam reforming reactor hardly occurs. Therefore, even when carbon is precipitated due to an extremely low steam ratio, the precipitation occurs on the low-temperature steam reforming catalyst, so that the high-temperature steam reforming reaction catalyst can be protected from carbon deposition.

【0013】脱硫用水素源を自己システム内から得るた
め、外部に高温水蒸気改質反応器を設けた燃料電池発電
システムにおける高温水蒸気改質反応器の出口ガス、又
は高温水蒸気改質反応部を内蔵する溶融塩型燃料電池又
は固体電解質型燃料電池の出口ガスを水添脱硫用ガスと
して用いると、これらのガスには高濃度の一酸化炭素を
含んでいるので水添反応速度が遅くなり、脱硫が不十分
になる。
In order to obtain a desulfurization hydrogen source from within the self-system, an outlet gas of a high-temperature steam reforming reactor or a high-temperature steam reforming reaction section in a fuel cell power generation system having an external high-temperature steam reforming reactor is incorporated. If the outlet gas of a molten salt fuel cell or solid electrolyte fuel cell is used as a gas for hydrodesulfurization, these gases contain a high concentration of carbon monoxide, so that the hydrogenation reaction rate becomes slow, and Becomes insufficient.

【0014】低温水蒸気改質反応器を設置した場合に
は、低温水蒸気改質ガス中には酸化炭素として二酸化炭
素が主で一酸化炭素が少ないため反応阻害が比較的少な
いので低温水蒸気改質ガスを水添脱硫用ガスとして利用
することが可能である。即ち図1に示すように、低温水
蒸気改質反応器2と燃料電池部3との中間より低温水蒸
気改質ガスの一部を抜き出し、冷却器7で冷却して水蒸
気を凝縮し、分離器8で水分を除去した後、圧縮機9で
昇圧して水添脱硫用ガス5として供給する。
When a low-temperature steam reforming reactor is installed, the low-temperature steam reforming gas contains mainly carbon dioxide as carbon oxide and little carbon monoxide, so that reaction inhibition is relatively small. Can be used as a gas for hydrodesulfurization. That is, as shown in FIG. 1, a part of the low-temperature steam reforming gas is extracted from the middle between the low-temperature steam reforming reactor 2 and the fuel cell unit 3, cooled by the cooler 7 to condense the steam, and After removing water, the pressure is increased by the compressor 9 and supplied as hydrodesulfurization gas 5 ' .

【0015】低温水蒸気改質反応器内では次の反応がほ
ぼ平衡に達している。
In the low-temperature steam reforming reactor, the next reaction has almost reached equilibrium.

【0016】低温水蒸気改質反応の温度条件(350℃
〜550℃)では、(1)の反応は左、(2)の反応は
右に偏っているため、低温水蒸気改質ガス中の一酸化炭
素濃度は高温水蒸気改質ガスの場合に比べて大幅に低く
なる。このように、低温水蒸気改質ガスは水添脱硫反応
の触媒(CoMo系,NiMo系)に強吸着して硫黄化
合物の水添反応を阻害する一酸化炭素が低濃度であるた
め、水添脱硫用水素源として使用することができる。
The temperature condition of the low-temperature steam reforming reaction (350 ° C.)
(550 ° C), the reaction of (1) is biased to the left and the reaction of (2) is biased to the right, so the carbon monoxide concentration in the low-temperature steam reformed gas is larger than that in the case of the high-temperature steam reformed gas. Lower. As described above, since the low-temperature steam reforming gas has a low concentration of carbon monoxide which strongly adsorbs to the catalyst (CoMo system, NiMo system) for the hydrodesulfurization reaction and inhibits the hydrogenation reaction of the sulfur compound, the hydrodesulfurization gas has a low concentration. It can be used as a source of hydrogen for use.

【0017】水添脱硫用ガスとして純水素ではなく酸化
炭素を含有する低温水蒸気改質ガスを使用した場合水添
脱硫反応器で完全に脱硫することは困難であるが、水添
脱硫反応器で完全に脱硫出来なかった硫黄化合物は低温
水蒸気改質反応器で分解し、硫黄は低温水蒸気改質触媒
と結合して除去される。その結果低温水蒸気改質触媒の
活性は低下するが、活性低下分を見込んで十分な触媒量
を充填しておけば問題はない。
When a low-temperature steam reforming gas containing carbon oxide is used instead of pure hydrogen as the hydrodesulfurization gas, it is difficult to completely desulfurize with the hydrodesulfurization reactor. The sulfur compounds that cannot be completely desulfurized are decomposed in the low-temperature steam reforming reactor, and the sulfur is removed by combining with the low-temperature steam reforming catalyst. As a result, the activity of the low-temperature steam reforming catalyst decreases, but there is no problem if a sufficient amount of the catalyst is filled in consideration of the decrease in the activity.

【0018】高温水蒸気改質反応器部を内蔵している燃
料電池(内部高温改質型燃料電池)の出口ガスは、高温
改質ガス中の水素ガスの一部が発電反応に消費されては
いるものの、低温水蒸気改質ガスより水素濃度が高いの
で水添脱硫用ガスとして利用したいが、高温下では前記
(2)式の反応が左に偏っているため一酸化炭素濃度も
高いので、水添反応が阻害されると言う欠点がある。そ
こで、図2に示した如くCO変成反応器10を設け、燃
料電池出口ガスの一部を導き200℃〜450℃程度で
CO変成反応を行い(2)式の反応を右に進行させ、一
酸化炭素濃度を減少させて水素濃度を向上させた後、冷
却して水蒸気を凝縮除去して、圧縮機9で昇圧して水添
脱硫用ガス5として供給する。これによって、水素濃
度が比較的高く、一酸化炭素濃度の低い、水添用ガスが
得られるのでこのガスを用いて脱硫を行うことができ
る。
The outlet gas of a fuel cell (internal high-temperature reforming type fuel cell) having a high-temperature steam reforming reactor built therein is one in which a part of hydrogen gas in the high-temperature reforming gas is consumed for power generation reaction. Although the hydrogen concentration is higher than that of the low-temperature steam reformed gas, it is desirable to use it as a gas for hydrodesulfurization. However, at high temperatures, the reaction of the above formula (2) is biased to the left, and the carbon monoxide concentration is high. There is a disadvantage that the addition reaction is inhibited. Therefore, a CO shift reactor 10 is provided as shown in FIG. 2 and a part of the outlet gas of the fuel cell is guided to perform a CO shift reaction at about 200 ° C. to 450 ° C., and the reaction of equation (2) proceeds to the right. After reducing the carbon oxide concentration to improve the hydrogen concentration, the mixture is cooled to condense and remove the steam, and the pressure is increased by the compressor 9 to be supplied as the hydrodesulfurization gas 5 ' . As a result, a hydrogenation gas having a relatively high hydrogen concentration and a low carbon monoxide concentration is obtained, and desulfurization can be performed using this gas.

【0019】本発明の実施態様は図1及び図2に例示し
たものに限られるものではなく、例えば一系列の前処理
系で複数の燃料電池系の炭化水素原料の前処理を行うと
か、前処理系に複数の低温水蒸気改質反応器を設け、運
転中に低温水蒸気改質反応器を切り替え出来るようにす
ることもできる。
The embodiment of the present invention is not limited to those illustrated in FIGS. 1 and 2. For example, a pretreatment system for a plurality of fuel cells in a series of pretreatment systems may be used. A plurality of low-temperature steam reforming reactors can be provided in the treatment system so that the low-temperature steam reforming reactor can be switched during operation.

【0020】[0020]

【実施例1】原料ナフサ(EP=180℃)2L(リッ
ター)/Hr(1.4Kg/Hr)に、水添脱硫用ガス
として、 の組成の低温水蒸気改質ガス57.7NL/Hrを加え
て、NiMo系/ZnO触媒を用いてLHSV=1.0
L/Hr、P=8Kg/cmG、T=360℃で脱硫
精製し、次いで脱硫精製ナフサに水蒸気を4.4Kg/
Hr加えて、Ni系の低温水蒸気改質触媒1.0Kgを
充填した低温水蒸気改質反応器に供給してP=7Kg/
cmG、T=500℃で水蒸気改質して、 の組成(水蒸気除去後)の低温水蒸気改質ガス3.3N
/Hrを得た。この時原料ナフサおよび脱硫精製ナ
フサ中の硫黄分はそれぞれ130ppm、0.2ppm
であった。また低温水蒸気改質ガス中には硫化水素は検
出できなかった。この結果より、(1)低温水蒸気改質
ガスを水添脱硫用ガスとして用いても原料ナフサ中の硫
黄を0.2ppmまで脱硫できること及び(2)精製脱
硫ナフサ中の0.2ppmと言う低濃度の硫黄も低温水
蒸気改質触媒と結合して下流(燃料電池システムへの供
始ガス)に流失してこないことがわかった。即ち、燃料
電池発電システムに供給する炭化水素原料を水添脱硫し
た後、低温水蒸気改質反応器で処理すると下流の触媒は
硫黄被毒から保護されることがわかる。
Example 1 Raw naphtha (EP = 180 ° C.) 2 L (liter) / Hr (1.4 kg / Hr) was used as a hydrodesulfurization gas. Of low-temperature steam reforming gas having a composition of 57.7 NL / Hr, and LHSV = 1.0 using a NiMo-based / ZnO catalyst.
L / Hr, P = 8 Kg / cm 2 G, T = 360 ° C. for desulfurization purification, and then 4.4 Kg / cm 2 of steam for the desulfurization purified naphtha.
H, and then supplied to a low-temperature steam reforming reactor filled with 1.0 kg of a Ni-based low-temperature steam reforming catalyst, and P = 7 kg /
cm 2 G, steam reforming at T = 500 ° C. Low-temperature steam reformed gas of 3.3N composition (after removing steam)
m 3 / Hr was obtained. At this time, the sulfur content in the raw naphtha and the desulfurized purified naphtha was 130 ppm and 0.2 ppm, respectively.
Met. Further, no hydrogen sulfide was detected in the low-temperature steam reformed gas. From these results, it can be seen that (1) sulfur in the raw material naphtha can be desulfurized to 0.2 ppm even when low-temperature steam reforming gas is used as the gas for hydrodesulfurization, and (2) low concentration of 0.2 ppm in the purified desulfurized naphtha. It was also found that the sulfur of the sulfur was not combined with the low-temperature steam reforming catalyst and flowed downstream (source gas to the fuel cell system). In other words, it can be seen that if the hydrocarbon feedstock supplied to the fuel cell power generation system is hydrodesulfurized and then treated in a low-temperature steam reforming reactor, the downstream catalyst is protected from sulfur poisoning.

【0021】[0021]

【実施例2】実施例1で用いたのと同じ原料ナフサ(E
P:180℃)2L/Hr(1.4Kg/Hr)に、水
添脱硫用ガスとして、 の組成の撚料電池出口模擬ガスから水蒸気を除去した の組成のガス(水蒸気除去後の組成)35.0NL/H
rを加えてNiMo系/ZnO触媒を用いて、LHSV
=1.0L/Hr,P=8Kg/cmG,T=360
℃で脱硫精製したところ精製ナフサ中の硫黄分は0.4
ppmであった。この精製脱硫ナフサに水蒸気を4.4
Kg/Hr加えて、Ni系の低温水蒸気改質触媒1.0
Kgを充填した反応器に供給して、P=7Kg/cm
G、T=500℃で水蒸気改質した後、Ni系の高温水
蒸気改質触媒を充填した反応器に導入しP=6.5Kg
/cmG、T=500℃〜800℃にて反応させ、 の組成(水蒸気除去後)の高温水蒸気改質ガス7.15
Nm/Hrを得た。50Hr反応実験した後高温水蒸
気改質触媒を取りだし観察したが、炭素析出は認められ
なかった。
Example 2 The same raw material naphtha (E) as used in Example 1 was used.
P: 180 ° C.) 2 L / Hr (1.4 Kg / Hr) as hydrodesulfurization gas Water vapor was removed from the simulated gas at the outlet of the twisting battery with the composition Gas (composition after removal of water vapor) of 35.0 NL / H
r, and using a NiMo / ZnO catalyst, the LHSV
= 1.0 L / Hr, P = 8 Kg / cm 2 G, T = 360
The sulfur content in the purified naphtha was 0.4%.
ppm. The purified desulfurized naphtha is steamed with 4.4.
Kg / Hr, Ni-based low temperature steam reforming catalyst 1.0
Pg is supplied to a reactor filled with Kg, and P = 7 Kg / cm 2
G, T = After steam reforming at 500 ° C, introduced into a reactor filled with a Ni-based high-temperature steam reforming catalyst, and P = 6.5Kg
/ Cm 2 G, T = 500 ° C. to 800 ° C., High temperature steam reformed gas 7.15 (after removing steam)
Nm 3 / Hr was obtained. After the 50 hour reaction experiment, the high temperature steam reforming catalyst was taken out and observed, but no carbon deposition was observed.

【0022】[0022]

【比較例1】同じ原料ナフサ及び水添脱硫用ガスと同じ
装置を用い、低温水蒸気改質器をバイパスし、脱硫精製
ナフサを直接高温水蒸気改質したところ、 の組成(水蒸気除去後)の高温水蒸気改質ガス7.14
Nm/Hrを得た。50Hr反応実験した後、高温水
蒸気改質触媒を取りだし観察したところ、550℃〜6
50℃の温度分布にある触媒層に炭素析出が認められ
た。
[Comparative Example 1] Using the same raw material naphtha and the same apparatus as the hydrodesulfurization gas, bypassing the low-temperature steam reformer and directly subjecting the desulfurized purified naphtha to high-temperature steam reforming, High temperature steam reformed gas 7.14 (after steam removal)
Nm 3 / Hr was obtained. After conducting a 50-hr reaction experiment, the high-temperature steam reforming catalyst was taken out and observed.
Carbon deposition was observed in the catalyst layer having a temperature distribution of 50 ° C.

【0023】実施例1、2及び比較例1から次の2点が
判る。(1)低温水蒸気改質ガスを水添脱硫用ガスとし
て使用した方(実施例1)が、燃料電池出口ガスをその
まま水添用ガスとして用いる(実施例2)より脱硫成績
が良い。(2)脱硫精製ナフサを直接高温水蒸気改質
(比較例1)すると炭素析出してしまう条件(原料種、
水蒸気比、温度、圧力)であっても、低温水蒸気改質反
応器で一旦改質してから高温水蒸気改質(実施例2)す
ると炭素析出が避けられる。
The following two points can be seen from Examples 1 and 2 and Comparative Example 1. (1) Using the low-temperature steam reforming gas as the hydrodesulfurization gas (Example 1) has better desulfurization results than using the fuel cell outlet gas as it is as the hydrogenation gas (Example 2). (2) Conditions for carbon deposition when desulfurized purified naphtha is directly subjected to high-temperature steam reforming (Comparative Example 1) (raw material type,
Even when the steam ratio, temperature, and pressure are the same, reforming in a low-temperature steam reforming reactor and then high-temperature steam reforming (Example 2) can avoid carbon deposition.

【0024】[0024]

【実施例3】実施例2で用いたのと同じ の組成の燃料電池出口模擬ガス(水蒸気込み)を、Fe
−Cr系触媒を充填したCO変成反応器に導き、P=2
Kg/cmG、T=350℃で反応させ、冷却して水
蒸気を凝縮除去して、 の組成のガスを得て、このガスを圧縮機で昇圧して水添
脱硫用ガスとして31.7NL/Hr供給した他は実施
例1と同様に水添脱硫を行った。その結果、精製ナフサ
中の硫黄分はS<0.1ppmまで脱硫出来ていた。次
いで脱硫精製ナフサを実施例1と同様にして低温水蒸気
改質したところ、 の組成(水蒸気除去後)の低温改質ガス3.28Nm
/Hrを得た。また、改質ガス中の硫黄分は検出できな
かった。本実施例より、燃料電池出口ガスでも、CO変
成反応器でCOをCOに変換し、水添反応阻害効果を
小さくすることにより、水添脱硫成績を向上させうるこ
とがわかる。
Example 3 Same as used in Example 2. The fuel cell outlet simulated gas (including water vapor) having the composition of
-Led to a CO shift reactor filled with a Cr-based catalyst, P = 2
Kg / cm 2 G, reaction at T = 350 ° C., cooling to condense and remove water vapor, Was obtained in the same manner as in Example 1 except that the gas was pressurized by a compressor and supplied as 31.7 NL / Hr as a gas for hydrodesulfurization. As a result, the sulfur content in the purified naphtha could be desulfurized to S <0.1 ppm. Next, when the desulfurized purified naphtha was subjected to low-temperature steam reforming in the same manner as in Example 1, Low-temperature reformed gas having a composition of (after removing water vapor) 3.28 Nm 3
/ Hr. Further, the sulfur content in the reformed gas could not be detected. From this example, it can be seen that even at the outlet gas of the fuel cell, the performance of hydrodesulfurization can be improved by converting CO into CO 2 in the CO shift reactor and reducing the effect of inhibiting the hydrogenation reaction.

【0025】[0025]

【発明の効果】燃料電池発電システムにおける高温水蒸
気改質触媒を硫黄被毒、炭素析出から守り長期間連続運
転を可能にする。
As described above, the high-temperature steam reforming catalyst in the fuel cell power generation system is protected from sulfur poisoning and carbon deposition, thereby enabling long-term continuous operation.

【0026】[0026]

【図面の簡単な説明】[Brief description of the drawings]

【図1】は本発明を実施するための具体的な装置構成の
一例
FIG. 1 is an example of a specific device configuration for carrying out the present invention.

【図2】は他の装置構成の例FIG. 2 is an example of another device configuration.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 硫黄化合物を含有する炭化水素原料を水
添脱硫用ガスと混合し水添反応器で硫黄化合物の大部分
を硫化水素に転換し吸着脱硫反応器で硫化水素を除去し
た炭化水素原料を、水蒸気と混合し低温水蒸気改質反応
器で処理してから、高温水蒸気改質部を内蔵又は外部に
設けてある燃料電池発電システムの高温水蒸気改質部
供給することを特徴とする燃料電池原料の前処理方法。
1. A hydrocarbon raw material containing a sulfur compound is treated with water.
Most of the sulfur compounds are mixed with the gas for hydrodesulfurization and
Is converted to hydrogen sulfide and hydrogen sulfide is removed by an adsorption desulfurization reactor.
Low temperature steam reforming reaction
A method for pretreating fuel cell raw materials, comprising: supplying a high-temperature steam reforming section to a high-temperature steam reforming section of a fuel cell power generation system having a built-in or external high-temperature steam reforming section .
【請求項2】 水添反応器の水添脱硫用ガスとして低温
水蒸気改質反応器で処理したガスを使用する請求項1の
方法。
2. The method according to claim 1, wherein a gas treated in a low-temperature steam reforming reactor is used as a gas for hydrodesulfurization in the hydrogenation reactor .
【請求項3】 燃料電池が高温水蒸気改質部を内蔵して
いる内部高温改質型燃料電池の場合に、燃料電池出口ガ
スの一部を変性して一酸化炭素含有量を減少させたのち
水添反応器の水添脱硫用ガスとして用いる請求項1の方
法。
3. In the case where the fuel cell is an internal high temperature reforming type fuel cell incorporating a high temperature steam reforming section, after a part of the fuel cell outlet gas is denatured to reduce the carbon monoxide content.
The method according to claim 1, which is used as a gas for hydrodesulfurization in a hydrogenation reactor .
JP3063733A 1991-03-06 1991-03-06 Pretreatment method for fuel cell material Expired - Lifetime JP2609956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3063733A JP2609956B2 (en) 1991-03-06 1991-03-06 Pretreatment method for fuel cell material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3063733A JP2609956B2 (en) 1991-03-06 1991-03-06 Pretreatment method for fuel cell material

Publications (2)

Publication Number Publication Date
JPH04280080A JPH04280080A (en) 1992-10-06
JP2609956B2 true JP2609956B2 (en) 1997-05-14

Family

ID=13237904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3063733A Expired - Lifetime JP2609956B2 (en) 1991-03-06 1991-03-06 Pretreatment method for fuel cell material

Country Status (1)

Country Link
JP (1) JP2609956B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009061072A1 (en) * 2007-11-06 2009-05-14 Fuelcell Power, Inc. Fuel process apparatus of multiple desulfurizers and fuel cell system with the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053305A (en) * 2000-08-08 2002-02-19 Idemitsu Kosan Co Ltd Method for vaporizing kerosene fuel for fuel cell
AUPS014702A0 (en) * 2002-01-25 2002-02-14 Ceramic Fuel Cells Limited Desulfurisation of fuel
KR20070053727A (en) * 2004-08-02 2007-05-25 쉘 인터내셔날 리써취 마트샤피지 비.브이. Process for removing mercaptans from a gas stream comprising natural gas or an inert gas
CA2667429C (en) * 2006-10-24 2015-04-07 Shell Canada Limited Process for producing purified natural gas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813482A (en) * 1981-07-14 1983-01-25 Diesel Kiki Co Ltd Resistance welding method for sintered alloy material
JPH07112922B2 (en) * 1987-06-02 1995-12-06 日揮株式会社 Hydrogen production equipment for fuel cells
JPH0333191A (en) * 1989-03-17 1991-02-13 Fuji Electric Co Ltd Desulfurizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009061072A1 (en) * 2007-11-06 2009-05-14 Fuelcell Power, Inc. Fuel process apparatus of multiple desulfurizers and fuel cell system with the same
KR100968580B1 (en) * 2007-11-06 2010-07-08 (주)퓨얼셀 파워 Fuel Process Apparatus of Multiple Desulfurizing Type and Fuel Cell System with the Same

Also Published As

Publication number Publication date
JPH04280080A (en) 1992-10-06

Similar Documents

Publication Publication Date Title
US20020142198A1 (en) Process for air enrichment in producing hydrogen for use with fuel cells
EP3419929B1 (en) Carbon monoxide production process optimized by soec
KR20210086015A (en) A production method and system of blue hydrogen
WO2004076346A2 (en) Diesel steam reforming with co2 fixing
US9917320B2 (en) Sweep membrane separator and fuel processing systems
EP2657215B1 (en) Method and device for producing methanol
US20080237090A1 (en) Process and system for redcuing the olefin content of a hydrocarbon feed gas and production of a hydrogen-enriched gas therefrom
CN102633232B (en) Hydrogen generation process and system in float glass manufacturing
JP5138586B2 (en) Liquid fuel synthesis system
JP2609956B2 (en) Pretreatment method for fuel cell material
US6967063B2 (en) Autothermal hydrodesulfurizing reforming method and catalyst
JP2009037814A (en) Temperature decreasing method for high temperature region of solid-oxide fuel cell, and device for the same
JP3671040B2 (en) Hydrogen-based infrastructure system
US20100176346A1 (en) Process and system for conducting isothermal low-temperature shift reaction using a compact boiler
US10941359B2 (en) Fuel processing system and method for sulfur bearing fuels
CN117677686A (en) Apparatus and method for producing synthetic fuel without discharging carbon dioxide
EP2604673B1 (en) Biomass gasification gas purification method
JP5098073B2 (en) Energy station
JP4165818B2 (en) Hydrogen production hybrid system
JPH05182683A (en) Power generating method by fuel cell
JP4363969B2 (en) Hydrogen production equipment
KR20140104476A (en) Method and system for liquid fuel desulphurization for fuel cell application
JP7181105B2 (en) Fuel cell system and method for regenerating anode off-gas
JPS608273B2 (en) Method for producing high calorific value gas using coal gas as raw material
WO2023064089A1 (en) Processes and systems for producing hydrocarbon fuels having high carbon conversion efficiency

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961126