JP2609881C - - Google Patents

Info

Publication number
JP2609881C
JP2609881C JP2609881C JP 2609881 C JP2609881 C JP 2609881C JP 2609881 C JP2609881 C JP 2609881C
Authority
JP
Japan
Prior art keywords
group
resin
atom
parts
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Other languages
Japanese (ja)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Publication date

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、硬化可能な樹脂組成物及びその硬化方法に関する。 従来の技術及びその問題点 従来、不飽和基を有する樹脂を加熱硬化させる場合、ラジカル重合触媒やポリ
チオールを添加することによりラジカル付加重合反応を起こさせて樹脂を架橋さ
せることが一般的に行なわれている。しかしながら、この方法では、硬化性樹脂
組成物の貯蔵安定性が悪く、また空気中の酸素によって樹脂表面の硬化が妨げら
れるという欠点を有している。上記の方法に代る方法として、塩基性触媒の存在
下、ミカエル付加によって活性水素を有する化合物を重合性不飽和基と反応させ
て硬化させる方法も開発されているが、この方法でも、樹脂組成物の貯蔵安定性
が乏しく、また硬化物中に塩基性触媒が残存して硬化物の耐水性を低下させると
いう欠点を有している。 問題点を解決するための手段 本発明の目的は、上記欠点のない硬化性樹脂組成物、即ち、貯蔵安定性に優れ
ていると共に、硬化性も良好であり、しかも硬化物に優れた耐水性を付与し得る
硬化可能な樹脂組成物及び該樹脂組成物の硬化方法を提供するものである。 本発明によれば、 (a) アクリル系樹脂、ポリエステル系樹脂及びエポキシ系樹脂からなる群より選
ばれた、分子中に重合性不飽和基を有する樹脂、及び (b) 分子中に下記式(I) 〔式中R1は、水酸基、アルコキシ基、エステル基もしくはハロゲン原子が置
換していてもよい炭素数1〜8の炭化水素基又は水素原子を示す。 を、Yは硫黄原子を示す。R2、R3及びR4は、同一又は異なって、炭素数1〜
14の有機基を示す。またこれらR2及びR3又はR2、R3及びR4は一緒になっ
て、これらが結合している窒素原子、リン原子もしくは硫黄原子と共に複素環基
を形成してもよい。〕 で表わされる非プロトン型オニウム塩含有基を有する樹脂 を含有してなる硬化可能な樹脂組成物、及び該樹脂組成物を80℃以上に加熱し
て硬化させることを特徴とする樹脂組成物の硬化方法が提供される。 本発明の硬化可能な樹脂組成物は、分子中に重合性不飽和基を有する樹脂(以
下「樹脂(a)」ということもある)と上記特定の非プロトン型オニウム塩含有基
を有する樹脂(以下「樹脂(b)」ということもある)とを含有するものである。 ここで重合性不飽和基を有する樹脂としては、重合性不飽和基を分子中に少な
くとも1個含有し且つ上記オニウム塩含有基を含有していない、アクリル系樹脂
、ポリエステル系樹脂及びエポキシ系樹脂からなる群より選ばれた樹脂である。
本発明では、一級の水酸基を有する樹脂が硬化性の観点から好適である。また該
樹脂の分子量も、特に制限されるものではないが、ゲルパ−ミユエーシヨンクロ
マトグラフイー(GPC)によるピーク分子量が250〜100000程度のも
のが好ましく、500〜20000程度のものがより好ましい。樹脂の分子量が
上記範囲を越えると、塗装作業性が低下してくる傾向となるので好ましくない。 上記重合性不飽和基としては、例えばアクリロイル基、メタクリロイル基、イ
タコネート基、マレエート基、フマレート基、クロトネート基、アクリルアミド
基、メタクリルアミド基、桂皮酸基、ビニル基、アリル基、乾性油脂肪酸の不飽
和基、等が挙げられる。 上記重合性不飽和基は、1分子当り少なくとも1個必要であり、硬化性の観点
から樹脂固形分1kg当り0.1〜10モルの範囲にあるのが好ましく、0.5〜
5モルの範囲にあるのがより好ましい。0.1モルより少なくなると、樹脂の硬
化が不充分となり、一方逆に10モルより多くなると、硬化物の機械的物性が低
下する傾向となるので、いずれも好ましくない。 上記樹脂中への重合性不飽和基の導入は、従来公知の手段を採用することによ
り行ない得る。例えば(i)カルボキシル基とエポキシ基との付加反応、(ii)
水酸基とエポキシ基との付加反応、(iii)水酸基とカルボキシル基とのエステ
ル化反応、(iv)イソシアネート基と水酸基との付加反応、(v)水酸基と酸無
水物のハーフエステル化反応、(vi)水酸基とエステル基とのエステル交換反応
等を利用し、これらの官能基を有する化合物又は樹脂の一方又は両方に重合性不
飽和基を有するものを使用することにより行なうことができる。 また上記オニウム塩含有基を有する樹脂としては、該オニウム塩含有基を分子
中に少なくとも1個含有した樹脂である限り、アクリル系、ポリエステル系、ウ
レタン系、ポリブタジエン系、アルキド系、エポキシ系、フエノール系等従来公
知の樹脂のいずれでもよく、特に限定されるものではないが、上記樹脂(a)との
相溶性の良好なものが好ましい。本発明では、一級の水酸基を有する樹脂が硬化
性の観点から好適である。また該樹脂の分子量も、特に制限されるものではない
が、GPCによるピーク分子量が150〜100000程度のものが好ましく、
200〜20000程度のものがより好ましい。樹脂の分子量が上記範囲を越え
ると、塗装作業性が低下してくる傾向となるので好ましくない。 また非プロトン型オニウム塩含有基は、上記式(I)で表わされるものであり
、オニウム塩の窒素原子、リン原子もしくは硫黄原子からβ位にある炭素原子が
2級の水酸基を有する基であることが必要である。このような非プロトン型オニ
ウム塩は、第4級アンモニウム塩、第4級ホスホニウム塩及び第3級スルホニウ
ム塩のいずれかである。非プロトン型オニウム塩含有基における陽イオンの具体
例を下記に示す。 〔上記各式において、R2、R3及びR4は、同一又は異なって、炭素数1〜14
の有機基を示す。またこれらR2及びR3又はR2、R3及びR4は一緒になって、
これらが結合している窒素原子、リン原子もしくは硫黄原子と共に複素環基を形
成してもよい。〕 R2、R3及びR4で示される炭素数1〜14の有機基としては、アンモニウム
塩基、ホスホニウム塩基又はスルホニウム塩基のイオン化を実質的に妨害するも
のでない限り特に限定されるものではなく、例えば水酸基、アルコキシ基等の形
態で酸素原子の如き異種原子を含有していてもよい炭素数1〜14の炭化水素基
が一般に用いられる。 斯かる炭化水素基としては、アルキル基、シクロアルキル基、シクロアルキル
アルキル基、アリール基及びアラルキル基等の脂肪族、脂環式又は芳香族炭化水
素基を例示できる。上記アルキル基は、直鎖状及び分枝鎖状のいずれであっても
よく、炭素数8個以下、好適には低級のものが望ましく、例えばメチル、エチル
、n−もしくは iso−プロピル、n−、iso−、sec−もしくはtert−ブチル、ペ
ンチル、ヘプチル、オクチル基等が挙げられる。上記シクロアルキル基又はシク
ロアルキルアルキル基としては、炭素数5〜8個のものが好ましく、例えばシク
ロペンチル、シクロヘキシル、シクロヘキシルメチル、シクロヘキシルエチル基
等が挙げられる。上記アリール基には、フエニル、トルイル、キシリル基等が包
含される。また上記アラルキル基としては、ベンジル基が好適である。 また異種原子、例えば酸素原子が含有されている炭化水素基の好ましい例とし ては、ヒドロキシアルキル基(特にヒドロキシ低級アルキル基)、具体的にはヒ
ドロキシメチル、ヒドロキシエチル、ヒドロキシブチル、ヒドロキシペンチル、
ヒドロキシヘプチル、ヒドロキシオクチル基等や、アルコキシアルキル基(特に
低級アルコキシ低級アルキル基)、具体的にはメトキシメチル、エトキシメチル
、エトキシエチル、n−プロポキシエチル、iso−プロポキシメチル、n−ブト
キシメチル、iso−ブトキシエチル、tert−ブトキシエチル基等を例示できる。 R2及びR3又はR2、R3及びR4が一緒になって、これらが結合している窒素
しては、下記に示すものを例示できる。 また、上記(I)式におけるR1で示される水酸基、アルコキシ基、エステル
基又はハロゲン原子が置換していてもよい炭素数1〜8の炭化水素基としては、
アルキル基、アルケニル基、シクロアルキル基、シクロアルキルアルキル基、ア
リール基、アラルキル基等の脂肪族、脂環式又は芳香族炭化水素基を例示できる
。これらのうち、アルキル基及びアルケニル基が好ましく、これらの基は直鎖状
及び分枝鎖状のいずれであってもよく、特に低級のものが望ましく、例えばメチ
ル、エチル、n−もしくは iso−プロピル、n−、iso−、sec−もしくはtert−
ブチル、ペンチル、ヘプチル、オクチル、ビニル、2−メチルビニル基等が挙げ
られる。水酸基置換炭化水素基の好ましい例としては、ヒドロキシアルキル基(
特にヒドロキシ低級アルキル基)、具体的にはヒドロキシメチル、ヒドロキシエ
チル、ヒドロキシブチル、ヒドロキシペンチル、ヒドロキシヘプチル、ヒドロキ
シオクチル基等が挙げられる。アルコキシ基置換炭化水素基の好ましい例として
は、アルコキシアルキル基(特に低級アルコキシ低級アルキル基)、具体的には
メトキ シメチル、エトキシメチル、エトキシエチル、n−プロポキシエチル、iso−プ
ロポキシメチル、n−ブトキシメチル、iso−ブトキシエチル、tert−ブトキシ
エチル基等が挙げられる。エステル基置換炭化水素基の好ましい例としては、低
級アルコキシカルボニルアルキル基、低級アルコキシカルボニルアルケニル基等
、具体的にはメトキシカルボニルメチル、プロポキシカルボニルエチル、エトキ
シカルボニルプロピル、メトキシカルボニルブチル、メトキシカルボニルエチレ
ニル、エトキシカルボニルエチレニル基等が挙げられる。ハロゲン原子置換炭化
水素基の好ましい例としては、具体的にはクロロメチル、ブロモメチル、ヨード
メチル、ジクロロメチル、トリクロロメチル、クロロエチル、クロロブチル基等
が挙げられる。 また上記非プロトン型オニウム塩含有基は、樹脂固形分1kg当り0.01〜5
モルの範囲にあるのが好ましく、0.1〜2モルの範囲にあるのがより好ましい
。0.01モルより少なくなると、硬化不足になる傾向となるので、好ましくな
い。また逆に5モルより多くなると、硬化させて得られる硬化物の耐水性が低下
する虞れがあるので、好ましくない。 上記樹脂中へのオニウム塩の導入は、例えば下記(A)又は(B)に示す方法に従っ
て行なうことができる。 (A) 水混和性不活性有機溶媒中にて、2−ハロゲノ−1−ヒドロキシエチル基を
有する樹脂に第3級アミン、ホスフイン又はチオエーテルを反応させた後、陰イ
オン交換によりハロゲン原子を水酸基に置換し、次いでこれに有機酸を反応させ
る方法。 上記樹脂に反応させるべき化合物として第3級アミンを用いる場合を例にとり
、反応式で示すと以下の通りとなる。 4は前記に同じ。〕 第3級アミンの代りにホスフインを用いる場合には、上記反応式においてN をPに置き換えればよく、また第3級アミンの代りにチオエーテルを用いる場合
には、上記反応式においてNをSに置き換え且つ−R4を削除すればよい。 上記樹脂と第3級アミン等との反応は、約100〜150℃の加熱下で行なわ
れ、1〜20時間程度で該反応は完結する。 ハロゲン原子を水酸基で置換するには、例えばビーズ型陰イオン交換樹脂等の
通常の陰イオン交換樹脂中に処理すべき樹脂を通じればよい。 また斯くして得られる水酸基が置換された樹脂と有機酸との反応は、両者を常
温で混合するだけで容易に進行する。 (B) 水混和性不活性有機溶媒中にて、1,2−エポキシ基を有する樹脂に第3級
アミン、ホスフイン又はチオエーテル及び有機酸を同時に反応させる方法。 上記樹脂に反応させるべき化合物として第3級アミンを用いる場合を例にとり
、反応式で示すと以下の通りとなる。 第3級アミンの代りにホスフインを用いる場合及び第3級アミンの代りにチオ
エーテルを用いる場合には、上記(A)の場合と同様に上記反応式においてNをP
に置き換えたり、又はNをSに置き換え且つ−R4を削除すればよい。 上記樹脂、第3級アミン等及び有機酸の反応は、約40〜80℃の加熱下で行
なわれ、1〜20時間程度で該反応は完結する。 上記(A)及び(B)において用いられる水混和性不活性有機溶媒としては、例えば
エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテ
ル、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエ
ーテルアセテート、エタノール、プロパノール、ブタノール等のアルコール系溶
媒等を挙げることができる。 また有機酸は、上記(I)式におけるR1が水酸基、アルコキシ基、エステル
基又はハロゲン原子が置換していてもよい炭素数1〜8の炭化水素基を示す陰イ
オンを生成する有機カルボン酸である限り、従来公知のものを広く使用でき、具
体的には酢酸、蟻酸、トリメチル酢酸、アクリル酸、メタクリル酸、乳酸、ヒド
ロキシ酢酸、クロトン酸、クロル酢酸、マレイン酸モノメチルエステル、フマル
酸モノエチルエステル、イタコン酸モノメチルエステル等が例示される。これら
の中でも、特に解離定数(pKa値)が1×10-5以上のものが好適である。 また上記樹脂がアクリル樹脂である場合、該樹脂へのオニウム塩の導入は、上
記(A)及び(B)の方法に従い行ない得るが、下記一般式〔式中R5は水素原子又はメチル基を示す。R1及びWは前記に同じ。〕 で表わされる(メタ)アクリル酸エステルモノマーを単独で又はこれと共重合可
能なコモノマーと共に常法に従い重合させることによっても行なうことができる
。 また本発明における樹脂(b)は、分子中に重合性不飽和基を有していてもよく
、重合性不飽和基の量は、得られる硬化物の物性の点から樹脂(b)の固形分1kg
当り10モル以下であることが好ましい。樹脂(b)中への重合性不飽和基の導入
は、樹脂(a)中への重合性不飽和基の導入と同様の方法で行ない得る。 本発明における樹脂(a)と樹脂(b)との配合比率は、固形分重量比で、樹脂(a)
が99.99重量%以下であることが好ましく、99.9重量%以下であること
がより好ましい。更に樹脂(b)が固形分1kg当り0.1モル未満の重合性不飽和
基しか有さないか又は重合性不飽和基を有さない場合、固形分重量比で、樹脂(a
)は99.99〜50重量%の範囲が好ましく、99.9〜70重量%の範囲が
より好ましく、樹脂(b)は0.01〜50重量%の範囲が好ましく、0.1〜3
0重量%の範囲がより好ましい。 上記樹脂(a)及び樹脂(b)を含有する本発明の樹脂組成物には、更に着色顔料、
体質顔料、防錆顔料、染料、その他レベリング剤、消泡剤、タレ止め剤等の各種 添加剤を配合してもよい。 本発明の樹脂組成物は、有機溶剤に溶解乃至分散した形態で使用されるか、或
は上記樹脂作成時の溶媒として水混和性の溶媒を使用し、得られる樹脂液に水を
加えるか、又は水中に配合することによって、水溶液乃至水分散液の形態で使用
される。 本発明の樹脂組成物を硬化させるに際しては、例えば該樹脂組成物の溶液又は
分散液を、被塗物にスプレー塗装、ハケ塗り、ロール塗装、浸漬塗装等の通常の
方法に従い塗装し、これを80℃以上の温度、好ましくは100℃以上、より好
ましくは120〜200℃程度の温度で、好ましくは5分以上、より好ましくは
10〜30分程度加熱処理すればよい。この場合の硬化反応機構は明確ではない
が、赤外線吸収スペクトルの変化において、不飽和基の消失が認められることか
ら、重合性不飽和基の重合もしくは重合性不飽和基への水酸基等活性水素の付加
反応によるものと考えられる。また上記加熱の際に、硬化反応以外に、樹脂中の
オニウム塩のホフマン分解が起こり、その結果硬化物に優れた耐水性を付与する
ことができる。 発明の効果 本発明においては、樹脂中に含まれる特定の非プロトン型オニウム塩が、樹
脂の架橋硬化時の触媒として働き、樹脂の架橋硬化時に又は架橋硬化後の後に
容易にホフマン分解が起こり、オニウム塩が硬化物中に含まれなくなり、その結
果硬化物の耐水性の低下を防止できるという、優れた作用を発現する。従って、
本発明の樹脂組成物は、貯蔵安定性に優れていると共に、硬化性も良好なもので
ある。また本発明の方法によれば、耐水性に優れた硬化物を得ることができる。 本発明の樹脂組成物は、例えば低温硬化型塗料として好適に使用され得る。 実施例 以下に実施例を掲げて本発明をより一層明らかにする。尚、単に「部」及び「
%」とあるのは、それぞれ「重量部」、「重量%」を意味する。重合性不飽和基を有する樹脂(a)の製造例 製造例1 エピコート#154(シエル化学社製)627部、エチレングリコールモノブ チルエーテル883部、アクリル酸252部、ハイドロキノン1部及びテトラエ
チルアンモニウムブロマイド3部の混合物を四つ口フラスコ内に仕込み、120
℃で6時間反応させ、酸価が3以下になったところを終点とした。得られた樹脂
液(以下この樹脂液を「樹脂液(1−A)」という)は、不揮発分49.5%で
あり、ガードナー粘度(25℃)はKであった。この樹脂のGPCによるピーク
分子量は約900であった。 製造例2 2−ヒドロキシエチルアクリレート116部、グリシジルメタクリレート28
4部、n−ブチルメタクリレート600部及びアゾビスイソブチロニトリル30
部の混合物を、130℃に保持されたn−ブチルアルコール1000部の入った
四つ口フラスコ中に3時間要して添加し、重合を行なった。その後110℃まで
冷却し、更にメタクリル酸172部、ハイドロキノン1部及びテトラエチルアン
モニウムクロライド2部を添加し、酸価が3以下になるまで反応させた。得られ
た樹脂溶液(以下この樹脂液を「樹脂液(2−A)」という)は不揮発分54.
0%、ガードナー粘度(25℃)はQであった。この樹脂のGPCによるピーク
分子量が約10000であった。 製造例3 イタコン酸650部及びエチレングリコール248部の混合物を220℃で脱
水縮合し、末端にカルボキシル基を有するポリエステルを合成し、更にトルエン
を754部添加した。得られた樹脂溶液(以下この樹脂液を「樹脂液(3−A)
」という)は不揮発分50.0%、ガードナー粘度(25℃)はYであった。こ
の樹脂のGPCによるピーク分子量が約700であった。オニウム塩含有基を有する樹脂(b)の製造例 製造例4 エピコート#154(シエル化学社製)627部、エチレングリコールモノブ
チルエーテル1306部、アクリル酸252部及びチオジグリコール427部の
混合物を四つ口フラスコ内に仕込み、80℃で3時間反応させた。得られた樹脂
液(以下この樹脂液を「樹脂液(1−B)」という)は、不揮発分47.8%で
あり、ガードナー粘度(25℃)はPであった。この樹脂のGPCによるピーク 分子量は約1000であった。 製造例5 エピコート#1001(シエル化学社製)900部、ピバリン酸204部、ピ
リジン180部及びn−ブタノール1284部の混合物を四つ口フラスコ内に仕
込み、50℃で10時間反応させた。得られた樹脂液(以下この樹脂液を「樹脂
液(2−B)」という)は、不揮発分48.2%であり、ガードナー粘度(25
℃)はHであった。この樹脂のGPCによるピーク分子量は約1200であった
。 製造例6 エピクロルヒドリン93部、ジメチルアミノエタノール89部及び88%蟻酸
50部の混合物を四つ口フラスコ内に仕込み、70℃で40分間反応させた。得
られた樹脂液(以下この樹脂液を「樹脂液(3−B)」という)は、不揮発分9
5%であり、ガードナー粘度(25℃)はTであった。この樹脂のGPCによる
ピーク分子量は約200であった。 実施例1 上記製造例1で得た樹脂液(1−A)98部と製造例4で得た樹脂液(1−B
)2部との混合物をミガキ軟鋼板及びガラス板にウエツト膜厚100μになるよ
うに塗布し、120℃で30分間加熱し、硬化させた。 実施例2 上記製造例1で得た樹脂液(1−A)50部と製造例4で得た樹脂液(1−B
)50部との混合物をミガキ軟鋼板及びガラス板にウエツト膜厚100μになる
ように塗布し、120℃で30分間加熱し、硬化させた。 実施例3 上記製造例1で得た樹脂液(1−A)30部と製造例4で得た樹脂液(1−B
)70部との混合物をミガキ軟鋼板及びガラス板にウエツト膜厚100μになる
ように塗布し、120℃で30分間加熱し、硬化させた。 実施例4 上記製造例2で得た樹脂液(2−A)98部と製造例5で得た樹脂液(2−B
)2部との混合物をミガキ軟鋼板及びガラス板にウエツト膜厚100μになるよ
うに塗布し、100℃で10分間加熱し、硬化させた。 実施例5 上記製造例2で得た樹脂液(2−A)95部と製造例5で得た樹脂液(2−B
)5部との混合物をミガキ軟鋼板及びガラス板にウエツト膜厚100μになるよ
うに塗布し、100℃で10分間加熱し、硬化させた。 実施例6 上記製造例2で得た樹脂液(2−A)70部と製造例5で得た樹脂液(2−B
)30部との混合物をミガキ軟鋼板及びガラス板にウエツト膜厚100μになる
ように塗布し、100℃で10分間加熱し、硬化させた。 実施例7 上記製造例3で得た樹脂液(3−A)99.5部と製造例6で得た樹脂液(3
−B)0.5部との混合物をミガキ軟鋼板及びガラス板にウエツト膜厚100μ
になるように塗布し、160℃で2時間加熱し、硬化させた。 実施例8 上記製造例3で得た樹脂液(3−A)95部と製造例6で得た樹脂液(3−B
)5部との混合物をミガキ軟鋼板及びガラス板にウエツト膜厚100μになるよ
うに塗布し、160℃で2時間加熱し、硬化させた。 実施例9 上記製造例3で得た樹脂液(3−A)90部と製造例6で得た樹脂液(3−B
)10部との混合物をミガキ軟鋼板及びガラス板にウエツト膜厚100μになる
ように塗布し、160℃で2時間加熱し、硬化させた。 比較例1 製造例1で得られた樹脂液(1−A)100部をミガキ軟鋼板及びガラス板に
ウエツト膜厚100μになるように塗布し、150℃で30分間加熱し、硬化さ
せた。 比較例2 製造例1で得られた樹脂液(1−A)98部及びベンゾイルパーオキサイド2
部の混合物をミガキ軟鋼板及びガラス板にウエツト膜厚100μになるように塗
布し、150℃で30分間加熱し、硬化させた。 比較例3 製造例2で得られた樹脂液(2−A)98部及びナトリウムエチラート2部の
混合物をミガキ軟鋼板及びガラス板にウエツト膜厚100μになるように塗布し
、100℃で10分間加熱し、硬化させた。 比較例4 製造例3で得られた樹脂液(3−A)95部及びテトラメチルアンモニウムク
ロライド5部の混合物をミガキ軟鋼板及びガラス板にウエツト膜厚100μにな
るように塗布し、160℃で2時間加熱し、硬化させた 上記実施例1〜9及び比較例1〜4で得られた塗板につき、次の試験を行なっ
た。即ち、ガラス板に塗装したものを用いてアセトン抽出試験を行ない、ミガキ
軟鋼板に塗装したものを用いて耐水性試験を行なった。また上記実施例1〜9及
び比較例1〜4で得られた各樹脂溶液につき、貯蔵安定性試験を行なった。結果
を下記第1表に示す。
Description: FIELD OF THE INVENTION The present invention relates to a curable resin composition and a method for curing the same. 2. Description of the Related Art Conventionally, when a resin having an unsaturated group is cured by heating, it is generally performed to add a radical polymerization catalyst or a polythiol to cause a radical addition polymerization reaction to crosslink the resin. ing. However, this method has the drawbacks that the storage stability of the curable resin composition is poor and that the curing of the resin surface is prevented by oxygen in the air. As an alternative to the above method, a method in which a compound having active hydrogen is reacted with a polymerizable unsaturated group by Michael addition in the presence of a basic catalyst to cure the compound has been developed. The storage stability of the cured product is poor, and the basic catalyst remains in the cured product to lower the water resistance of the cured product. Means for Solving the Problems An object of the present invention is to provide a curable resin composition free from the above-mentioned disadvantages, that is, it has excellent storage stability, good curability, and excellent water resistance. And a method of curing the resin composition. According to the present invention, (a) selected from the group consisting of acrylic resins, polyester resins and epoxy resins.
Barre was, resins having a polymerizable unsaturated group in the molecule, and (b) the following formula in the molecule (I) [In the formula, R 1 represents a hydroxyl group, an alkoxy group, an ester group, a hydrocarbon group having 1 to 8 carbon atoms which may be substituted with a halogen atom, or a hydrogen atom. And Y represents a sulfur atom. R 2 , R 3 and R 4 are the same or different and have 1 to 1 carbon atoms.
And 14 organic groups. Further, R 2 and R 3 or R 2 , R 3 and R 4 may be taken together to form a heterocyclic group together with the nitrogen atom, phosphorus atom or sulfur atom to which they are bonded. A curable resin composition containing a resin having an aprotic onium salt-containing group represented by the formula: and a resin composition characterized by heating and curing the resin composition at 80 ° C or higher. A curing method is provided. The curable resin composition of the present invention comprises a resin having a polymerizable unsaturated group in a molecule (hereinafter, also referred to as “resin (a)”) and a resin having the specific aprotic onium salt-containing group ( Hereinafter, it may be referred to as “resin (b)”). Examples of the resin having a polymerizable unsaturated group, does not contain at least one content to and above onium salt-containing group in the molecule a polymerizable unsaturated group, acrylic resin
, A polyester resin and an epoxy resin.
In the present invention, a resin having a primary hydroxyl group is preferable from the viewpoint of curability. Also, the molecular weight of the resin is not particularly limited, but preferably has a peak molecular weight of about 250 to 100,000, more preferably about 500 to 20,000 according to gel permeation chromatography (GPC). If the molecular weight of the resin exceeds the above range, coating workability tends to decrease, which is not preferable. Examples of the polymerizable unsaturated group include, for example, acryloyl, methacryloyl, itaconate, maleate, fumarate, crotonate, acrylamide, methacrylamide, cinnamic acid, vinyl, allyl, and drying oil fatty acids. saturated group, and the like. The polymerizable unsaturated group is required to be at least one per molecule, and is preferably in the range of 0.1 to 10 mol per 1 kg of resin solid content from the viewpoint of curability,
More preferably, it is in the range of 5 moles. When the amount is less than 0.1 mol, the curing of the resin becomes insufficient. On the other hand, when the amount is more than 10 mol, the mechanical properties of the cured product tend to decrease. Introduction of a polymerizable unsaturated group into the resin can be performed by employing a conventionally known means. For example, (i) an addition reaction between a carboxyl group and an epoxy group, (ii)
(Iii) an esterification reaction between a hydroxyl group and a carboxyl group, (iv) an addition reaction between an isocyanate group and a hydroxyl group, (v) a half esterification reaction between a hydroxyl group and an acid anhydride, (vi ) It can be carried out by utilizing a transesterification reaction between a hydroxyl group and an ester group or the like, and using a compound having a polymerizable unsaturated group in one or both of the compound or resin having such a functional group. Further, as the resin having the onium salt-containing group, as long as it is a resin containing at least one onium salt-containing group in a molecule, an acrylic, polyester, urethane, polybutadiene, alkyd, epoxy, phenol, or phenol Any known resin such as a resin may be used, and the resin is not particularly limited, but a resin having good compatibility with the resin (a) is preferable. In the present invention, a resin having a primary hydroxyl group is preferable from the viewpoint of curability. The molecular weight of the resin is also not particularly limited, but preferably has a peak molecular weight of about 150 to 100000 by GPC,
Those having about 200 to 20,000 are more preferable. If the molecular weight of the resin exceeds the above range, coating workability tends to decrease, which is not preferable. The aprotic onium salt-containing group is represented by the above formula (I), and is a group having a secondary hydroxyl group in which the carbon atom at the β-position from the nitrogen, phosphorus or sulfur atom of the onium salt has a secondary hydroxyl group. It is necessary. Such an aprotic onium salt is any of a quaternary ammonium salt, a quaternary phosphonium salt and a tertiary sulfonium salt. Specific examples of the cation in the aprotic onium salt-containing group are shown below. [In each of the above formulas, R 2 , R 3 and R 4 are the same or different and each have 1 to 14 carbon atoms.
Represents an organic group. And R 2 and R 3 or R 2 , R 3 and R 4 together
A heterocyclic group may be formed together with the nitrogen atom, phosphorus atom or sulfur atom to which they are bonded. The organic group having 1 to 14 carbon atoms represented by R 2 , R 3 and R 4 is not particularly limited as long as it does not substantially interfere with ionization of an ammonium base, a phosphonium base or a sulfonium base, For example, a hydrocarbon group having 1 to 14 carbon atoms which may contain a hetero atom such as an oxygen atom in the form of a hydroxyl group, an alkoxy group or the like is generally used. Examples of such a hydrocarbon group include an aliphatic, alicyclic or aromatic hydrocarbon group such as an alkyl group, a cycloalkyl group, a cycloalkylalkyl group, an aryl group and an aralkyl group. The alkyl group may be linear or branched, and preferably has a carbon number of 8 or less, preferably a lower one. For example, methyl, ethyl, n- or iso-propyl, n- , Iso-, sec- or tert-butyl, pentyl, heptyl and octyl groups. The cycloalkyl group or cycloalkylalkyl group preferably has 5 to 8 carbon atoms, and examples thereof include cyclopentyl, cyclohexyl, cyclohexylmethyl, and cyclohexylethyl. The aryl group includes a phenyl, toluyl, xylyl group and the like. A benzyl group is preferred as the aralkyl group. Preferred examples of the hydrocarbon group containing a hetero atom, for example, an oxygen atom include a hydroxyalkyl group (particularly, a hydroxy lower alkyl group), specifically, hydroxymethyl, hydroxyethyl, hydroxybutyl, hydroxypentyl,
Hydroxyheptyl, hydroxyoctyl group and the like, and alkoxyalkyl group (especially lower alkoxy lower alkyl group), specifically methoxymethyl, ethoxymethyl, ethoxyethyl, n-propoxyethyl, iso-propoxymethyl, n-butoxymethyl, iso -Butoxyethyl, tert-butoxyethyl group and the like. R 2 and R 3 or R 2 , R 3 and R 4 together form the nitrogen atom to which they are attached. For example, the following can be exemplified. Further, as the hydroxyl group, alkoxy group, ester group or hydrocarbon group having 1 to 8 carbon atoms which may be substituted with a halogen atom represented by R 1 in the above formula (I),
Examples thereof include an aliphatic, alicyclic or aromatic hydrocarbon group such as an alkyl group, an alkenyl group, a cycloalkyl group, a cycloalkylalkyl group, an aryl group and an aralkyl group. Among these, an alkyl group and an alkenyl group are preferable, and these groups may be either linear or branched, and particularly preferably a lower one, for example, methyl, ethyl, n- or iso-propyl. , N-, iso-, sec- or tert-
Examples include butyl, pentyl, heptyl, octyl, vinyl, and 2-methylvinyl groups. Preferred examples of the hydroxyl-substituted hydrocarbon group include a hydroxyalkyl group (
Particularly, a hydroxy lower alkyl group), specifically, a hydroxymethyl, hydroxyethyl, hydroxybutyl, hydroxypentyl, hydroxyheptyl, hydroxyoctyl group and the like. Preferred examples of the alkoxy-substituted hydrocarbon group include an alkoxyalkyl group (especially a lower alkoxy lower alkyl group), specifically methoxymethyl, ethoxymethyl, ethoxyethyl, n-propoxyethyl, iso-propoxymethyl, n-butoxy. Methyl, iso-butoxyethyl, tert-butoxyethyl and the like. Preferred examples of the ester group-substituted hydrocarbon group include a lower alkoxycarbonylalkyl group, a lower alkoxycarbonylalkenyl group and the like, specifically, methoxycarbonylmethyl, propoxycarbonylethyl, ethoxycarbonylpropyl, methoxycarbonylbutyl, methoxycarbonylethylenyl, An ethoxycarbonylethylenyl group is exemplified. Preferred examples of the halogen atom-substituted hydrocarbon group include chloromethyl, bromomethyl, iodomethyl, dichloromethyl, trichloromethyl, chloroethyl, chlorobutyl and the like. Further, the aprotic onium salt-containing group is used in an amount of 0.01 to 5 per kg of resin solid content.
It is preferably in the range of moles, more preferably in the range of 0.1 to 2 moles. If the amount is less than 0.01 mol, curing tends to be insufficient, which is not preferable. Conversely, if the amount exceeds 5 mol, the water resistance of the cured product obtained by curing may decrease, which is not preferable. The onium salt can be introduced into the resin according to, for example, the method shown in the following (A) or (B). (A) A tertiary amine, phosphine or thioether is reacted with a resin having a 2-halogeno-1-hydroxyethyl group in a water-miscible inert organic solvent, and then a halogen atom is converted to a hydroxyl group by anion exchange. Substituting and then reacting with an organic acid. Taking a case where a tertiary amine is used as a compound to be reacted with the above resin as an example, the reaction formula is as follows. R 4 is the same as above. When phosphine is used instead of the tertiary amine, N may be replaced with P in the above reaction formula, and when thioether is used instead of the tertiary amine, N is replaced with S in the above reaction formula. replaced and -R 4 may be deleted to. The reaction between the resin and a tertiary amine or the like is performed under heating at about 100 to 150 ° C., and the reaction is completed in about 1 to 20 hours. In order to replace a halogen atom with a hydroxyl group, a resin to be treated may be passed through a usual anion exchange resin such as a bead type anion exchange resin. The reaction between the thus-obtained hydroxyl-substituted resin and the organic acid easily proceeds simply by mixing the two at room temperature. (B) A method in which a tertiary amine, phosphine or thioether and an organic acid are simultaneously reacted with a resin having a 1,2-epoxy group in a water-miscible inert organic solvent. Taking a case where a tertiary amine is used as a compound to be reacted with the above resin as an example, the reaction formula is as follows. When phosphine is used in place of the tertiary amine and thioether is used in place of the tertiary amine, N is converted to P in the above reaction formula as in the case of (A).
, Or replace N with S and delete -R 4 . The reaction between the resin, the tertiary amine and the like and the organic acid is carried out under heating at about 40 to 80 ° C., and the reaction is completed in about 1 to 20 hours. Examples of the water-miscible inert organic solvent used in the above (A) and (B) include, for example, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether acetate, ethanol, propanol, butanol and the like. And the like. The organic acid is an organic carboxylic acid that forms an anion in which R 1 in the above formula (I) represents a hydroxyl group, an alkoxy group, an ester group, or a hydrocarbon group having 1 to 8 carbon atoms which may be substituted with a halogen atom. Can be widely used as long as it is, specifically, acetic acid, formic acid, trimethylacetic acid, acrylic acid, methacrylic acid, lactic acid, hydroxyacetic acid, crotonic acid, chloroacetic acid, monomethyl maleate, monoethyl fumarate Esters and itaconic acid monomethyl ester are exemplified. Among them, those having a dissociation constant (pKa value) of 1 × 10 −5 or more are particularly preferable. When the resin is an acrylic resin, the onium salt can be introduced into the resin according to the methods (A) and (B) described above. [Wherein R 5 represents a hydrogen atom or a methyl group. R 1 and W are the same as above. Can be carried out by polymerizing the (meth) acrylic acid ester monomer represented by the formula (1) alone or together with a comonomer copolymerizable therewith in a conventional manner. Further, the resin (b) in the present invention may have a polymerizable unsaturated group in the molecule, and the amount of the polymerizable unsaturated group depends on the solidity of the resin (b) from the viewpoint of the physical properties of the obtained cured product. 1 kg per minute
It is preferably 10 mol or less per mol. The introduction of the polymerizable unsaturated group into the resin (b) can be performed in the same manner as the introduction of the polymerizable unsaturated group into the resin (a). The compounding ratio of the resin (a) and the resin (b) in the present invention is a solid content weight ratio, the resin (a)
Is preferably 99.99% by weight or less, more preferably 99.9% by weight or less. Furthermore, when the resin (b) has less than 0.1 mol of polymerizable unsaturated groups per 1 kg of solid content or has no polymerizable unsaturated group, the resin (a)
) Is preferably in the range of 99.99 to 50% by weight, more preferably in the range of 99.9 to 70% by weight, and the resin (b) is preferably in the range of 0.01 to 50% by weight, and 0.1 to 3% by weight.
A range of 0% by weight is more preferred. The resin composition of the present invention containing the resin (a) and the resin (b) further includes a coloring pigment,
Various additives such as extenders, rust preventive pigments, dyes, and other leveling agents, defoamers, and anti-sagging agents may be blended. The resin composition of the present invention is used in a form dissolved or dispersed in an organic solvent, or using a water-miscible solvent as a solvent at the time of preparing the resin, adding water to the obtained resin liquid, Alternatively, it is used in the form of an aqueous solution or an aqueous dispersion by being mixed in water. When curing the resin composition of the present invention, for example, a solution or dispersion of the resin composition, spray coating, brush coating, roll coating, dip coating and the like are applied to an object to be coated, and this is applied. Heat treatment may be performed at a temperature of 80 ° C. or higher, preferably 100 ° C. or higher, more preferably about 120 to 200 ° C., preferably 5 minutes or longer, more preferably about 10 to 30 minutes. Although the curing reaction mechanism in this case is not clear, the disappearance of the unsaturated group is observed in the change of the infrared absorption spectrum, so the polymerization of the polymerizable unsaturated group or the active hydrogen such as a hydroxyl group to the polymerizable unsaturated group is performed. This is probably due to the addition reaction. In addition to the curing reaction, Hoffman decomposition of the onium salt in the resin occurs in addition to the curing reaction, and as a result, excellent water resistance can be imparted to the cured product. In the present invention, in the present invention, a specific aprotic onium salt contained in the resin acts as a catalyst at the time of crosslinking and curing of the resin, and Hoffman decomposition easily occurs during or after crosslinking of the resin, The onium salt is no longer contained in the cured product, and as a result, an excellent effect of preventing a decrease in water resistance of the cured product is exhibited. Therefore,
The resin composition of the present invention has excellent storage stability and curability. Further, according to the method of the present invention, a cured product having excellent water resistance can be obtained. The resin composition of the present invention can be suitably used, for example, as a low-temperature curing type paint. Examples The present invention will be further clarified with reference to the following examples. In addition, simply "part" and "
"%" Means "parts by weight" and "% by weight", respectively. Production Example 1 of Resin (a) Having Polymerizable Unsaturation Group Production Example 1 Epicoat # 154 (manufactured by Ciel Chemical Co., Ltd.) 627 parts, ethylene glycol monobutyl ether 883 parts, acrylic acid 252 parts, hydroquinone 1 part, and tetraethylammonium bromide 3 parts In a four-necked flask,
The reaction was carried out at a temperature of 6 ° C. for 6 hours, and the point where the acid value became 3 or less was regarded as the end point. The obtained resin liquid (hereinafter, this resin liquid is referred to as “resin liquid (1-A)”) had a nonvolatile content of 49.5% and a Gardner viscosity (25 ° C.) of K. The peak molecular weight of this resin by GPC was about 900. Production Example 2 116 parts of 2-hydroxyethyl acrylate, glycidyl methacrylate 28
4 parts, n-butyl methacrylate 600 parts and azobisisobutyronitrile 30
Of the mixture was added to a four-necked flask containing 1000 parts of n-butyl alcohol maintained at 130 ° C. over 3 hours to carry out polymerization. Thereafter, the mixture was cooled to 110 ° C., and 172 parts of methacrylic acid, 1 part of hydroquinone and 2 parts of tetraethylammonium chloride were added and reacted until the acid value became 3 or less. The obtained resin solution (hereinafter, this resin solution is referred to as “resin solution (2-A)”) has a nonvolatile content of 54.
0% and Gardner viscosity (25 ° C.) was Q. The peak molecular weight of this resin by GPC was about 10,000. Production Example 3 A mixture of 650 parts of itaconic acid and 248 parts of ethylene glycol was dehydrated and condensed at 220 ° C. to synthesize a polyester having a carboxyl group at a terminal, and 754 parts of toluene was further added. The obtained resin solution (hereinafter referred to as “resin liquid (3-A)
") Was 50.0% of non-volatile content, and Y was Gardner viscosity (25 ° C). The peak molecular weight of this resin determined by GPC was about 700. Production Example 4 of Resin (b) Having Onium Salt-Containing Group Production Example 4 A mixture of four 627 parts of Epicoat # 154 (manufactured by Ciel Chemical), 1306 parts of ethylene glycol monobutyl ether, 252 parts of acrylic acid and 427 parts of thiodiglycol It was charged in a neck flask and reacted at 80 ° C. for 3 hours. The obtained resin liquid (hereinafter, this resin liquid is referred to as “resin liquid (1-B)”) had a nonvolatile content of 47.8% and a Gardner viscosity (25 ° C.) of P. The peak molecular weight of this resin determined by GPC was about 1,000. Production Example 5 A mixture of 900 parts of Epicoat # 1001 (manufactured by Ciel Chemical), 204 parts of pivalic acid, 180 parts of pyridine and 1284 parts of n-butanol was charged into a four-necked flask and reacted at 50 ° C. for 10 hours. The obtained resin liquid (hereinafter, this resin liquid is referred to as “resin liquid (2-B)”) has a nonvolatile content of 48.2% and a Gardner viscosity (25%).
° C) was H. The peak molecular weight of this resin determined by GPC was about 1200. Production Example 6 A mixture of 93 parts of epichlorohydrin, 89 parts of dimethylaminoethanol and 50 parts of 88% formic acid was charged in a four-necked flask and reacted at 70 ° C. for 40 minutes. The obtained resin liquid (hereinafter referred to as “resin liquid (3-B)”) has a nonvolatile content of 9%.
The Gardner viscosity (25 ° C.) was T. The peak molecular weight of this resin by GPC was about 200. Example 1 98 parts of the resin liquid (1-A) obtained in Production Example 1 and the resin liquid (1-B) obtained in Production Example 4
2) The mixture with 2 parts was applied to a mild steel mild steel plate and a glass plate so as to have a wet film thickness of 100 μm, and was heated at 120 ° C. for 30 minutes to be cured. Example 2 50 parts of the resin liquid (1-A) obtained in Production Example 1 and the resin liquid (1-B) obtained in Production Example 4
And 50 parts of the mixture were applied to a mild steel mild steel plate and a glass plate so as to have a wet film thickness of 100 μm, and heated at 120 ° C. for 30 minutes to be cured. Example 3 30 parts of the resin liquid (1-A) obtained in Production Example 1 and the resin liquid (1-B) obtained in Production Example 4
) And a mixture with 70 parts was applied to a mild steel mild steel plate and a glass plate so as to have a wet film thickness of 100 µm, and was heated at 120 ° C for 30 minutes to be cured. Example 4 98 parts of the resin liquid (2-A) obtained in Production Example 2 and the resin liquid (2-B) obtained in Production Example 5
2) The mixture of 2 parts was applied to a mild steel mild steel plate and a glass plate so as to have a wet film thickness of 100 μm, and heated at 100 ° C. for 10 minutes to be cured. Example 5 95 parts of the resin liquid (2-A) obtained in Production Example 2 and the resin liquid (2-B) obtained in Production Example 5
5) A mixture of 5 parts was applied to a mild steel mild steel plate and a glass plate so as to have a wet film thickness of 100 μm, and heated at 100 ° C. for 10 minutes to be cured. Example 6 70 parts of the resin liquid (2-A) obtained in Production Example 2 and the resin liquid (2-B) obtained in Production Example 5
And 30 parts of the mixture were applied to a mild steel mild steel plate and a glass plate so as to have a wet film thickness of 100 μm, and heated at 100 ° C. for 10 minutes to be cured. Example 7 99.5 parts of the resin liquid (3-A) obtained in Production Example 3 and the resin liquid (3
-B) A mixture with 0.5 part was wet-coated on a mild steel plate and a glass plate with a wet film thickness of 100 μm.
And heated at 160 ° C. for 2 hours to cure. Example 8 95 parts of the resin liquid (3-A) obtained in Production Example 3 and the resin liquid (3-B) obtained in Production Example 6
5) The mixture with 5 parts was applied to a mild steel mild steel plate and a glass plate so as to have a wet film thickness of 100 µm, and was heated at 160 ° C for 2 hours to be cured. Example 9 90 parts of the resin liquid (3-A) obtained in Production Example 3 and the resin liquid (3-B) obtained in Production Example 6
) The mixture with 10 parts was applied to a mild steel mild steel plate and a glass plate so as to have a wet film thickness of 100 µm, heated at 160 ° C for 2 hours, and cured. Comparative Example 1 100 parts of the resin liquid (1-A) obtained in Production Example 1 was applied to a mild steel plate and a glass plate so as to have a wet film thickness of 100 μm, and heated at 150 ° C. for 30 minutes to be cured. Comparative Example 2 98 parts of the resin liquid (1-A) obtained in Production Example 1 and benzoyl peroxide 2
The mixture was applied to a mild steel mild steel plate and a glass plate so as to have a wet film thickness of 100 μm, and was heated at 150 ° C. for 30 minutes to be cured. Comparative Example 3 A mixture of 98 parts of the resin solution (2-A) obtained in Production Example 2 and 2 parts of sodium ethylate was applied to a mild steel plate and a glass plate so as to have a wet film thickness of 100 μm. Heated for minutes and cured. Comparative Example 4 A mixture of 95 parts of the resin liquid (3-A) obtained in Production Example 3 and 5 parts of tetramethylammonium chloride was applied to a mild steel plate and a glass plate so as to have a wet film thickness of 100 μm. The following tests were performed on the coated plates obtained in Examples 1 to 9 and Comparative Examples 1 to 4 which were heated and cured for 2 hours. That is, an acetone extraction test was performed using a material coated on a glass plate, and a water resistance test was performed using a material coated on a mild steel plate. In addition, a storage stability test was performed on each of the resin solutions obtained in Examples 1 to 9 and Comparative Examples 1 to 4. The results are shown in Table 1 below.

Claims (1)

【特許請求の範囲】 (a)アクリル系樹脂、ポリエステル樹脂及びエポキシ系樹脂からなる群より
選ばれた、分子中に重合性不飽和基を有する樹脂、及び (b)分子中に下記式(I) 〔式中R1は、水酸基、アルコキシ基、エステル基もしくはハロゲン原子が置
換していてもよい炭素数1〜8の炭化水素基又は水素原子を示す。子を、Yは硫黄原子を示す。R2、R3及びR4は、同一又は異なって、炭素数1
〜14の有機基を示す。またこれらR2及びR3又はR2、R3及びR4は一緒にな
って、これらが結合している窒素原子、リン原子もしくは硫黄原子と共に複素環
基を形成してもよい。〕 で表わされる非プロトン型オニウム塩含有基を有する樹脂 を含有してなる硬化可能な樹脂組成物。 (a)アクリル系樹脂、ポリエステル系樹脂及びエポキシ系樹脂からなる群よ
り選ばれた、分子中に重合性不飽和基を有する樹脂、及び (b)分子中に下記式(I) 〔式中R1は、水酸基、アルコキシ基、エステル基もしくはハロゲン原子が置
換していてもよい炭素数1〜8の炭化水素基又は水素原子を示す。 子を、Yは硫黄原子を示す。R2、R3及びR4は、同一又は異なって、炭素数1
〜14の有機基を示す。またこれらR2及びR3又はR2、R3及びR4は一緒にな
って、これらが結合している窒素原子、リン原子もしくは硫黄原子と共に複素環
基を形成してもよい。〕 で表わされる非プロトン型オニウム塩含有基を有する樹脂 を含有してなる硬化可能な樹脂組成物を80℃以上に加熱して硬化させること
を特徴とする樹脂組成物の硬化方法。
Claims (a) From the group consisting of acrylic resins, polyester resins and epoxy resins
A selected resin having a polymerizable unsaturated group in the molecule, and (b) a compound represented by the following formula (I) in the molecule: [In the formula, R 1 represents a hydroxyl group, an alkoxy group, an ester group, a hydrocarbon group having 1 to 8 carbon atoms which may be substituted with a halogen atom, or a hydrogen atom. And Y represents a sulfur atom. R 2 , R 3 and R 4 are the same or different and each have 1 carbon atom;
To 14 organic groups. Further, R 2 and R 3 or R 2 , R 3 and R 4 may be taken together to form a heterocyclic group together with the nitrogen atom, phosphorus atom or sulfur atom to which they are bonded. ] A curable resin composition comprising a resin having an aprotic onium salt-containing group represented by the formula: (A) A group consisting of acrylic resin, polyester resin and epoxy resin
(B) a resin having a polymerizable unsaturated group in a molecule selected from the group consisting of the following formula (I): [In the formula, R 1 represents a hydroxyl group, an alkoxy group, an ester group, a hydrocarbon group having 1 to 8 carbon atoms which may be substituted with a halogen atom, or a hydrogen atom. And Y represents a sulfur atom. R 2 , R 3 and R 4 are the same or different and each have 1 carbon atom;
To 14 organic groups. Further, R 2 and R 3 or R 2 , R 3 and R 4 may be taken together to form a heterocyclic group together with the nitrogen atom, phosphorus atom or sulfur atom to which they are bonded. ] A method for curing a resin composition, comprising: curing a curable resin composition containing a resin having an aprotic type onium salt-containing group represented by:

Family

ID=

Similar Documents

Publication Publication Date Title
US5426156A (en) Binder composition and its use in surface coatings
US6656531B2 (en) Clear coating with composition of acrylic and polyester polycarboxylic acids, polyepoxide and crosslinked resin particles
JPH06234954A (en) Water-based vehicle composition, coating medium containing said composition and use of said composition
JPH08283627A (en) One-pack thermosetting resin composition for coating material
JP3882096B2 (en) Curable resin composition
DE19529659A1 (en) Water based paints for vehicles, buildings, wood, etc.
CN1126484A (en) Coating composition including a UV-deblockable basic catalyst
CN1098323C (en) Curable coating composition
JPH08506134A (en) 1,3,5-Tris- (2-carboxyethyl) -isocyanurate crosslinker for polyepoxide coatings
JPH1045993A (en) Curable resin composition and coating material
CA1302617C (en) Transesterification catalysts
US5169979A (en) Curing component, and the use thereof
JP3218345B2 (en) Cured resin composition for paint
JP2612457B2 (en) Curable resin and its curing method
JP2609881B2 (en) Curable resin composition and curing method thereof
JP2609881C (en)
JP3243165B2 (en) Curable resin composition, coating composition and coating film forming method
KR910008608B1 (en) Hardening resin composition
CN1172834A (en) Curable coating composition
JP2002167426A (en) Curable resin composition, clear coating material composition, and method for coating
JPH04359075A (en) Thermosetting aqueous coating compound composition
JP2958960B2 (en) Resin composition for paint
JP2850416B2 (en) New curing system and resin composition therefor
JPH01182377A (en) Method for cationic electro-deposition coating
JPS5811563A (en) Thermosetting resin composition for powder coating