JP2609763B2 - Turbine nozzle blade support structure - Google Patents

Turbine nozzle blade support structure

Info

Publication number
JP2609763B2
JP2609763B2 JP40654990A JP40654990A JP2609763B2 JP 2609763 B2 JP2609763 B2 JP 2609763B2 JP 40654990 A JP40654990 A JP 40654990A JP 40654990 A JP40654990 A JP 40654990A JP 2609763 B2 JP2609763 B2 JP 2609763B2
Authority
JP
Japan
Prior art keywords
nozzle blade
holder
heat shield
turbine nozzle
peripheral wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP40654990A
Other languages
Japanese (ja)
Other versions
JPH04224204A (en
Inventor
隆 池田
直紀 渋川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP40654990A priority Critical patent/JP2609763B2/en
Publication of JPH04224204A publication Critical patent/JPH04224204A/en
Application granted granted Critical
Publication of JP2609763B2 publication Critical patent/JP2609763B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】[発明の目的]DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention]

【0001】[0001]

【産業上の利用分野】本発明は、ガスタ−ビンのノズル
翼を支持するためのタービンノズル翼の支持構造物に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine nozzle blade support structure for supporting a gas turbine nozzle blade.

【0002】[0002]

【従来の技術】高効率ガスタービンにおいては、その熱
効率向上のためにノズル翼の材料にセラミックが用いら
れることがある。すなわち、タービン入口温度の高温化
要求に対してセラミック等の脆性材料をノズル翼に用い
る研究がなされているが、その場合、ノズル翼にかかる
定常、非定常の熱応力、また、熱伸び差等やガス力によ
ってノズル翼にかかる応力をいかに小さく抑えるかが問
題となる。
2. Description of the Related Art In a high-efficiency gas turbine, ceramic is sometimes used as a material for nozzle blades in order to improve its thermal efficiency. In other words, studies have been made to use brittle materials such as ceramics for the nozzle blades in response to the demand for increasing the turbine inlet temperature. In this case, steady and unsteady thermal stresses on the nozzle blades, thermal expansion differences, etc. The problem is how to reduce the stress applied to the nozzle blade by the gas force and the gas force.

【0003】ここで、ノズル翼面の高温ガス通路部にか
かる熱応力や翼列半径方向にかかる局所応力の低減につ
いては、板状ノズル翼をバネ付き押え棒によって支持す
ることによって解決された。図9および図10は、その
ようなセラミックを材料としたノズル翼の支持構造体を
示し、図9はその断面図、図10は図9のI−I線での
断面図である。
Here, the reduction of the thermal stress applied to the high-temperature gas passage portion of the nozzle blade surface and the local stress applied in the blade row radial direction has been solved by supporting the plate-shaped nozzle blade with a spring-loaded holding rod. 9 and 10 show such a support structure for a nozzle blade made of a ceramic material. FIG. 9 is a cross-sectional view thereof, and FIG. 10 is a cross-sectional view taken along line II of FIG.

【0004】このセラミック製のノズル翼1は外筒9お
よび内筒5にて、遮熱材15およびシール材16を介し
て支持される。そしてノズル翼にかかる作動ガスからの
円周方向接線力は、ノズル翼1の内周壁部および外周壁
部の回り止め溝12aに嵌合する押え棒12を介して、
作動ガスからの軸方向力は後部遮熱体19を介して内筒
5、外筒9によって受けられる。なお、18は前部遮熱
体、20は冷却流路である。押え棒12は、内筒5、外
筒9とバネ17を介して取り付けられ、ノズル翼1と内
外両筒間の熱伸び差等を吸収できるようにしている。
The ceramic nozzle blade 1 is supported by an outer cylinder 9 and an inner cylinder 5 via a heat shield 15 and a seal 16. Then, the circumferential tangential force from the working gas applied to the nozzle blades is applied via the presser rods 12 fitted to the detent grooves 12a of the inner peripheral wall portion and the outer peripheral wall portion of the nozzle blade 1.
The axial force from the working gas is received by the inner cylinder 5 and the outer cylinder 9 via the rear heat shield 19. Reference numeral 18 denotes a front heat shield, and reference numeral 20 denotes a cooling channel. The holding rod 12 is attached to the inner cylinder 5, the outer cylinder 9 and the spring 17 via a spring 17 so as to absorb a difference in thermal expansion between the nozzle blade 1 and the inner and outer cylinders.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな従来のものは、作動ガスからの円周方向接線力を回
り止め溝12aで受ける構造であるため、この部位にか
かる応力の集中は避け難いという点、また、内筒5およ
び外筒9が熱伸び差等により翼列の円周方向および軸方
向にずれるとノズル翼は傾きノズル翼と面接触している
後部遮熱体および押え棒とは線または点接触になるため
ここに応力が集中するという点が依然問題として残って
いる。
However, since such a conventional device has a structure in which the circumferential tangential force from the working gas is received by the detent groove 12a, it is inevitable to concentrate the stress applied to this portion. In addition, when the inner cylinder 5 and the outer cylinder 9 are displaced in the circumferential direction and the axial direction of the cascade due to a difference in thermal expansion or the like, the nozzle blades are inclined, and the rear heat shield and the presser bar are in contact with the nozzle blades. The problem remains that stress concentrates here because of the line or point contact.

【0006】本発明はこのような点に鑑み、ノズル翼と
内外両筒間に熱伸び差等が生じてもノズル翼を支持する
接触面積を常に一定にせしめノズル翼に過大な応力の集
中をおこさないノズル支持構造物を得ることを目的とす
る。[発明の構成]
In view of the above, the present invention keeps the contact area supporting the nozzle blade constant even if a thermal expansion difference or the like occurs between the nozzle blade and the inner and outer cylinders. It is an object of the present invention to obtain a nozzle support structure that does not cause any trouble. [Configuration of the Invention]

【0007】[0007]

【課題を解決するための手段】本発明は、板状の翼部の
両端からそれぞれ翼部を含む面と直行する方向に一体的
に突出され上記翼部とともに作動ガスの通路部を構成す
る内周壁部および外周壁部とを有したタ−ビンノズル翼
を外筒と内筒との間に支持するタービンノズル翼の支持
構造物において、タービンノズル翼の内周壁部の反ガス
通路部と接触支持する窪みを有した内側ホルダーと、タ
ービンノズル翼の外周壁部の反ガス通路部と接触支持す
る窪み部有する外側ホルダーと、内側ホルダーの窪み部
に配置された第1の遮熱材と、外側ホルダーの窪み部に
配置された第2の遮熱材と、内側ホルダーと内筒との間
に押圧支持される第1の弾性体と、外側ホルダーと外筒
との間に押圧支持される第2の弾性体とを備えたことを
特徴としたタービンノズル翼の支持構造物である。
According to the present invention, there is provided an internal combustion engine comprising a plate-like wing which is integrally protruded from both ends of the wing in a direction perpendicular to a surface including the wing to constitute a working gas passage together with the wing. In a turbine nozzle blade support structure for supporting a turbine nozzle blade having a peripheral wall portion and an outer peripheral wall portion between an outer cylinder and an inner cylinder, the turbine nozzle blade has a gas passage portion on an inner peripheral wall portion of the turbine nozzle blade in contact with the turbine nozzle blade. An inner holder having a concave portion to be formed, an outer holder having a concave portion for contacting and supporting an anti-gas passage portion of an outer peripheral wall portion of the turbine nozzle blade, a first heat shield material disposed in the concave portion of the inner holder, A second heat shield disposed in the recess of the holder, a first elastic body pressed and supported between the inner holder and the inner cylinder, and a second elastic body pressed and supported between the outer holder and the outer cylinder. Turbi characterized by comprising two elastic bodies A support structure of the nozzle blade.

【0008】[0008]

【作用】本構造のノズル翼を上記の支持構造物間に組み
合わせることにより、外筒と内筒との間でノズル翼の高
さ方向の熱伸び差等生じても、弾性体の伸縮効果によっ
てノズル翼に過大な力を与えることはない。また、円周
方向および軸方向の熱伸び差等の変位が生じてノズル翼
が傾いてもガス力による支持構造物への押着力が作用し
ているので、バネの伸縮効果によって支持構造物も傾き
ノズル翼との接触面は保たれ応力の集中を避けることが
できる。さらにノズル翼と支持構造物間に遮熱材を介装
していることにより、ノズル翼をセラミック製とした場
合でも部材温度の均一化が計られ、過大な熱応力の発生
を防ぐことができる。
By assembling the nozzle blade of this structure between the above-mentioned supporting structures, even if a difference in thermal expansion in the height direction of the nozzle blade occurs between the outer cylinder and the inner cylinder, the elastic body expands and contracts. No excessive force is applied to the nozzle wings. In addition, even if the nozzle blade is tilted due to a displacement such as a difference in thermal expansion between the circumferential direction and the axial direction, a pressing force is applied to the supporting structure by the gas force. The contact surface with the inclined nozzle blade is kept, so that concentration of stress can be avoided. Furthermore, by interposing a heat shield between the nozzle blade and the support structure, even when the nozzle blade is made of ceramic, the temperature of the member is made uniform and excessive thermal stress can be prevented. .

【0009】[0009]

【実施例】以下、本発明の一実施例について説明する。An embodiment of the present invention will be described below.

【0010】1図は本発明のノズル翼支持構造物の本体
を示す斜視図であり、図2は、タ−ビンノズル翼1の1
ピッチ分のノズル翼支持構造物を示す分解図である。ノ
ズル翼1は耐熱性材料例えばセラミックスによって形成
されており、翼部1aはガスの流れを変え且つ増速する
のに好適なように曲がった板状の形状をしている。この
翼部1aは内周側及び外周側両端から翼部1aを含む面
に直交する方向に突出された内周壁部1b及び外周壁部
1cと一体となって1ピッチ分が構成されている。翼部
1aと内周壁部1b及び外周壁部1cとはそれぞれ滑ら
かな曲面で接続しており、境界部も含めて肉厚は一様で
ある。
FIG. 1 is a perspective view showing a main body of the nozzle blade supporting structure of the present invention, and FIG.
FIG. 3 is an exploded view showing a nozzle blade support structure for a pitch. The nozzle blade 1 is formed of a heat-resistant material such as ceramics, and the blade portion 1a has a curved plate shape suitable for changing the gas flow and increasing the speed. The wing portion 1a is integrally formed with the inner peripheral wall portion 1b and the outer peripheral wall portion 1c which protrude from both ends on the inner peripheral side and the outer peripheral side in a direction perpendicular to the plane including the wing portion 1a, and constitute one pitch. The wing portion 1a is connected to the inner peripheral wall portion 1b and the outer peripheral wall portion 1c by smooth curved surfaces, and has a uniform thickness including the boundary.

【0011】このタービンノズル翼1は第1の遮熱材6
を介して外側ホルダー2に嵌着され、また第2の遮熱材
7を介して内側ホルダー3に嵌着される。そして、外側
ホルダー2は第1の弾性体(たとえば板バネ)2a,2
bを介して外筒に、内側ホルダー3は第2の弾性体(た
とえば板バネ)4を介して内筒5にそれぞれ接するよう
に、嵌め込まれる。
The turbine nozzle blade 1 is provided with a first heat shield 6
And is fitted to the inner holder 3 via the second heat shield 7. The outer holder 2 includes first elastic members (for example, leaf springs) 2a, 2
b, the inner holder 3 is fitted into the outer cylinder via a second elastic body (for example, a leaf spring) 4 so as to be in contact with the inner cylinder 5.

【0012】図3は環状の翼列を構成する複数のタ−ビ
ンノズル翼1の隣接する2ピッチ分のタ−ビンノズル翼
1を支持する場合の支持構造物の説明図である。図3A
は外周方向から見た平面図であり、図3Bはガス流入方
向から見た正面図である。図4に図3中のH−H断面図
を示す。
FIG. 3 is an explanatory view of a support structure for supporting the turbine nozzle blades 1 for two pitches adjacent to a plurality of turbine nozzle blades 1 constituting an annular cascade. FIG. 3A
FIG. 3B is a plan view seen from the outer peripheral direction, and FIG. 3B is a front view seen from the gas inflow direction. FIG. 4 is a sectional view taken along line HH in FIG.

【0013】ノズル翼1は外筒9及び内筒5に装着され
た外周窪み形支持構造物である金属製の外側ホルダ−2
及び内周窪み形支持構造物である金属製の内側ホルダ−
3のそれぞれの窪み部にその外周壁部1c及び内周壁部
1dを嵌合し外周側と内周側より挟まれて取り付けられ
る。
The nozzle blade 1 is a metal outer holder-2 which is a support structure having an outer peripheral concave shape mounted on the outer cylinder 9 and the inner cylinder 5.
And a metal inner holder which is an inner peripheral concave support structure
The outer peripheral wall portion 1c and the inner peripheral wall portion 1d are fitted into the respective recesses of No. 3 and are attached so as to be sandwiched from the outer peripheral side and the inner peripheral side.

【0014】ノズル翼1の外周側反ガス通路面1eと外
側ホルダ−2の窪み部の間及び内周側反ガス通路面1d
と内側ホルダ−3の窪み部の間にはそれぞれ第1の遮熱
材6及び第2の遮熱材7が介挿されている。
Between the outer gas passage surface 1e of the nozzle blade 1 and the recessed portion of the outer holder 2 and the inner gas passage surface 1d.
A first heat shield 6 and a second heat shield 7 are interposed between the first and second recesses of the inner holder 3, respectively.

【0015】ノズル翼1、第1の遮熱板6、第2の遮熱
材7、外側ホルダ−2及び内側ホルダ−3は相互に固定
されていないが、外側ホルダ−2に内蔵される第1の弾
性体2a,2bおよび内側ホルダー3との内筒5の間に
挿着される第2の弾性体4のバネ力により常に外筒1,
内筒2押圧支持される。
The nozzle blade 1, the first heat shield plate 6, the second heat shield material 7, the outer holder 2 and the inner holder 3 are not fixed to each other, but are embedded in the outer holder 2. Due to the spring force of the second elastic body 4 inserted between the first elastic bodies 2a, 2b and the inner cylinder 5 with the inner holder 3, the outer cylinder 1,
The inner cylinder 2 is pressed and supported.

【0016】図5に窪み形支持構造物の窪み部内部の状
態の例として図4のA部分の詳細を示す。金属製の外側
ホルダ−2の高温に曝されるガス通路面及び窪み部表面
は保護のために第3の遮熱材11が介挿される。ノズル
翼1の外周壁部1c及び第1の遮熱材6の形状は外側ホ
ルダ−2の窪み部より小さいので、ノズル翼1の外周壁
部1c及び第1の遮熱板6は外側ホルダ−2の窪み部内
部で移動することが可能である。内側ホルダ−3につい
ても同様である。隣接する外側ホルダ−2間及び内側ホ
ルダ−3間の間隙にはシ−ルプレ−ト10が挿着され
る。
FIG. 5 shows the details of the portion A in FIG. 4 as an example of the state inside the hollow portion of the hollow support structure. A third heat shield 11 is interposed for protection of the gas passage surface and the depression surface of the metal outer holder 2 exposed to high temperatures. Since the outer peripheral wall portion 1c of the nozzle blade 1 and the shape of the first heat shield 6 are smaller than the recessed portion of the outer holder 2, the outer peripheral wall portion 1c of the nozzle blade 1 and the first heat shield plate 6 are formed of the outer holder. It is possible to move inside the second depression. The same applies to the inner holder-3. A seal plate 10 is inserted into the gap between the adjacent outer holders 2 and the gap between the inner holders 3.

【0017】しかして、第1の弾性体2a、2b、およ
び第2の弾性体4の力によってノズル翼1の外周側反ガ
ス通路部面1eは第1の遮熱材6に、内周側反ガス通路
部面1dは第2の遮熱材7に接触する。
Thus, the outer gas-passing surface 1e of the nozzle blade 1 on the outer peripheral side is brought into contact with the first heat shield 6 by the force of the first elastic bodies 2a, 2b and the second elastic body 4. The anti-gas passage surface 1d contacts the second heat shield 7.

【0018】また、ノズル翼1を通過するガス力によっ
て、ノズル翼1の外周側円周方向肉厚端面1fおよび内
周側円周方向肉厚端面1gは外側ホルダ−2の窪み内壁
の第3の遮熱板11に接触し、外周側軸方向肉厚端面1
hおよび内周側軸方向肉厚端面1iは内側ホルダ−3の
窪み内壁の第3の遮熱材11に接触する。
Further, due to the gas force passing through the nozzle blade 1, the outer circumferential side thick end face 1f and the inner circumferential thick end face 1g of the nozzle blade 1 become the third inner wall of the hollow inner wall of the outer holder-2. Contact with the heat shield plate 11 and the outer peripheral side axially thick end face 1
h and the inner peripheral side axially thick end face 1i are in contact with the third heat shield 11 on the inner wall of the recess of the inner holder-3.

【0019】たとえば、ノズル翼1が高温のガスさらさ
れ、図6で示されるように図6Aの通常状態から図6B
のように、ノズル翼1の高さ方向に熱伸び(δ1 )等が
生じたとする。ノズル翼1は第1の遮熱材6および第2
の遮熱材7を介して外側ホルダ−2および内側ホルダ−
3を押すことになる。ここで、外側ホルダ−2が有す第
1の弾性体2a,2bが縮みノズル翼1の高さ方向の熱
伸びを吸収するとともに、ノズル翼1の外周側反ガス通
路面1eと第1の遮熱材6の接触面の当たり状態も保つ
ことができる。
For example, when the nozzle blade 1 is exposed to a high-temperature gas, as shown in FIG. 6, the normal state shown in FIG.
Suppose that thermal expansion (δ 1 ) or the like occurs in the height direction of the nozzle blade 1 as shown in FIG. The nozzle blade 1 has a first heat shield 6 and a second heat shield 6.
Outer holder-2 and inner holder-
You will press 3. Here, the first elastic bodies 2a and 2b of the outer holder 2 contract and absorb the thermal expansion in the height direction of the nozzle blade 1, and the outer-side anti-gas passage surface 1e of the nozzle blade 1 and the first elastic body 2a and 2b. The contact state of the contact surface of the heat shield 6 can also be maintained.

【0020】次に外側ホルダ−2を保持する外筒9と内
側ホルダ−3を保持する内筒5との間で温度差等によっ
て円周方向に熱伸びをきたし図7に示す変位(δ2 )が
生じたとする。ここで、ノズル翼1の外周側円周方向肉
厚端面1fは外側ホルダ−2の窪み内壁の第3の遮熱材
11を加圧しているので、外側ホルダ−2が有す第1の
弾性体2a,2bの伸縮の効果によって、ノズル翼1の
外周側円軸方向肉厚端面1fとホルダ−2の窪み内壁の
第3の遮熱材11の接触面の当たり状態を保つようにホ
ルダ−2のノズル翼1側が傾く事ができる。かつ、ノズ
ル翼の内周側反ガス通路面1d,外周側反ガス通路面1
eと第1の遮熱板6,第2の遮熱板7の接触面の当たり
状態も保つことができる。
Next, thermal expansion occurs in the circumferential direction due to a temperature difference between the outer cylinder 9 holding the outer holder 2 and the inner cylinder 5 holding the inner holder 3, and the displacement (δ 2) shown in FIG. ) Occurs. Here, since the outer circumferential side thick end face 1f of the nozzle blade 1 presses the third heat shield 11 on the inner wall of the recess of the outer holder-2, the first elasticity of the outer holder-2 is provided. Due to the effect of the expansion and contraction of the bodies 2a and 2b, the holder is held so as to maintain the contact state between the outer circumferential side thick end face 1f of the nozzle blade 1 and the contact surface of the third heat shield 11 on the hollow inner wall of the holder-2. The two nozzle blades 1 can tilt. In addition, the inner peripheral side anti-gas passage surface 1d of the nozzle blade and the outer peripheral side opposite gas passage surface 1
The contact state of the contact surfaces of the first heat shield plate 6 and the second heat shield plate 7 can be maintained.

【0021】最後に、外側ホルダ−2を保持する外筒9
と内側ホルダ−3を保持する内筒5との間で温度差等に
よって軸方向に熱伸びをきたし図8に示す変位(δ3
が生じたとする。ここでも、外側ホルダ−2が有す第1
の弾性体2a,2bおよび内側ホルダ−3と内筒5の間
にある第2の弾性体4の伸縮の効果によって、ノズル翼
1の外周側軸方向肉厚端面1hとホルダ−2の窪み内壁
の第3の遮熱材11の接触面およびノズル翼1の内周側
軸方向肉厚端面1iとホルダ−2の窪み内壁の第3の遮
熱材11の接触面の当たり状態を保つように内側ホルダ
ー2および外側ホルダ−3は傾く事ができる。かつ、ノ
ズル翼1の内周側反ガス通路面1d,外周側反ガス通路
面1eと第1の遮熱板6,第2の遮熱板7の接触面の当
たり状態も保つことができる。
Finally, the outer cylinder 9 holding the outer holder-2
Thermal expansion occurs in the axial direction due to a temperature difference or the like between the inner cylinder 5 holding the inner holder 3 and the displacement (δ 3 ) shown in FIG.
Is generated. Again, the first of the outer holder-2 has
Due to the effect of expansion and contraction of the elastic bodies 2a and 2b and the second elastic body 4 between the inner holder 3 and the inner cylinder 5, the outer peripheral side axially thick end face 1h of the nozzle blade 1 and the concave inner wall of the holder 2 So that the contact surface of the third heat shield 11 and the inner peripheral axially thick end face 1i of the nozzle blade 1 and the contact surface of the third heat shield 11 of the hollow inner wall of the holder 2 are maintained. The inner holder 2 and the outer holder-3 can be inclined. In addition, the contact state between the inner and outer gas passage surfaces 1d and 1e of the nozzle blade 1 and the first heat shield plate 6 and the second heat shield plate 7 can be maintained.

【0022】以上のように、ノズル翼1の半径・円周・
軸方向に生じる変位に対してノズル翼1とその支持構造
物間の接触面は一定に保たれるため、片当たりが防止で
きノズル翼1で過大な応力集中が発生しなくなる。ま
た、ノズル翼1がセラミック製である場合でも、支持構
造物間とは絶えず安定に断熱材と接触しており、本接触
部での温度変化が小さく本部位の熱応力を低減すること
ができる。
As described above, the radius, circumference,
Since the contact surface between the nozzle blade 1 and the supporting structure thereof is kept constant with respect to the displacement occurring in the axial direction, one-side contact can be prevented, and excessive stress concentration does not occur in the nozzle blade 1. Further, even when the nozzle blade 1 is made of ceramic, it is constantly and stably in contact with the heat insulating material between the supporting structures, and the temperature change at the main contact portion is small and the thermal stress at the main portion can be reduced. .

【0023】[0023]

【発明の効果】上記発明によれば、ノズル翼とその支持
構造物間の接触部面が常に確保されるのでノズル翼で過
大な応力集中を防止できる。かつ、高効率なガスタ−ビ
ンノズル翼として特に冷却空気の不要なセラミックノズ
ル翼である場合、支持構造物間と接触部のノズル翼の熱
応力は低減され信頼性のある構造にすることができる。
According to the present invention, a contact surface between the nozzle blade and its supporting structure is always secured, so that excessive stress concentration at the nozzle blade can be prevented. In the case of a highly efficient gas turbine nozzle blade, especially a ceramic nozzle blade that does not require cooling air, the thermal stress between the supporting structures and the nozzle blade at the contact portion is reduced, and a reliable structure can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のノズル翼支持構造物を示す斜視図FIG. 1 is a perspective view showing a nozzle blade support structure of the present invention.

【図2】ノズル翼支持構造物の分解図FIG. 2 is an exploded view of a nozzle blade support structure.

【図3】図1のガス流入方向から見た正面図FIG. 3 is a front view as viewed from a gas inflow direction in FIG. 1;

【図4】図3のH−H線の断面図FIG. 4 is a sectional view taken along line HH of FIG. 3;

【図5】図4のA−A部分の詳細図FIG. 5 is a detailed view of a portion AA in FIG. 4;

【図6】ノズル翼が通常状態から高さ方向に熱伸びした
場合の説明図
FIG. 6 is an explanatory diagram in the case where the nozzle blades thermally expand in a height direction from a normal state.

【図7】ノズル翼が軸方向から変位した場合の説明図FIG. 7 is an explanatory diagram when the nozzle blade is displaced from the axial direction.

【図8】ノズル翼が軸方向に伸びをきたし変位を生じた
場合の説明図
FIG. 8 is an explanatory diagram in a case where the nozzle blades extend in the axial direction and cause displacement.

【図9】従来例を示す断面図FIG. 9 is a sectional view showing a conventional example.

【図10】図9のI−I線での断面図FIG. 10 is a sectional view taken along line II of FIG. 9;

【符号の説明】[Explanation of symbols]

1…ノズル翼、 2…外側ホルダ− 2a,2b…第1
の弾性体 3…内側ホルダ−、4…第2の弾性体 5…
内筒、6…第1の遮熱材 7…第2の遮熱材9…外筒
DESCRIPTION OF SYMBOLS 1 ... Nozzle blade, 2 ... Outer holder 2a, 2b ... 1st
Elastic body 3 ... Inner holder 4 ... Second elastic body 5 ...
Inner cylinder, 6: first heat shield 7: second heat shield 9: outer cylinder

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】板状の翼部の両端からそれぞれ翼部を含む
面と直行する方向に一体的に突出され上記翼部とともに
作動ガスの通路部を構成する内周壁部および外周壁部と
を有したタ−ビンノズル翼を外筒と内筒との間に支持す
るタービンノズル翼の支持構造物において、前記タービ
ンノズル翼の外周壁部の反ガス通路部と接触支持する窪
み部を有する外側ホルダーと、前記タービンノズル翼の
内周壁部の反ガス通路部と接触支持する窪み部を有した
内側ホルダーと、前記外側ホルダーの窪み部に配置され
た第1の遮熱材と、前記内側ホルダーの窪み部に配置さ
れた第2の遮熱材と、前記外側ホルダーと前記外筒との
間に押圧支持される第1の弾性体と、前記内側ホルダー
と前記内筒との間に押圧支持される第2の弾性体とを備
えたことを特徴としたタービンノズル翼の支持構造物。
An inner peripheral wall and an outer peripheral wall which are integrally protruded from both ends of a plate-shaped wing in a direction perpendicular to a surface including the wing and constitute a working gas passage together with the wing. A turbine nozzle blade supporting structure for supporting a turbine nozzle blade between an outer cylinder and an inner cylinder, the outer holder having a recess for contacting and supporting an anti-gas passage on an outer peripheral wall of the turbine nozzle blade. An inner holder having a concave portion that is in contact with and supports an anti-gas passage portion of an inner peripheral wall portion of the turbine nozzle blade; a first heat shield material disposed in the concave portion of the outer holder; A second heat shield disposed in the recess, a first elastic body pressed and supported between the outer holder and the outer cylinder, and a first elastic body pressed and supported between the inner holder and the inner cylinder; And a second elastic body. Support structure of the turbine nozzle blade.
JP40654990A 1990-12-26 1990-12-26 Turbine nozzle blade support structure Expired - Fee Related JP2609763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40654990A JP2609763B2 (en) 1990-12-26 1990-12-26 Turbine nozzle blade support structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40654990A JP2609763B2 (en) 1990-12-26 1990-12-26 Turbine nozzle blade support structure

Publications (2)

Publication Number Publication Date
JPH04224204A JPH04224204A (en) 1992-08-13
JP2609763B2 true JP2609763B2 (en) 1997-05-14

Family

ID=18516172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40654990A Expired - Fee Related JP2609763B2 (en) 1990-12-26 1990-12-26 Turbine nozzle blade support structure

Country Status (1)

Country Link
JP (1) JP2609763B2 (en)

Also Published As

Publication number Publication date
JPH04224204A (en) 1992-08-13

Similar Documents

Publication Publication Date Title
JP3840556B2 (en) Combustor liner seal structure
US4582126A (en) Heat exchanger with ceramic elements
US4679981A (en) Turbine ring for a gas turbine engine
US4798514A (en) Nozzle guide vane structure for a gas turbine engine
US5079210A (en) Metallic support for exhaust gas purifying catalyst
JPH1037701A (en) Blade for turbomachine thermally loaded
US5950707A (en) Sealing element for a regenerative heat exchanger
JP2703750B2 (en) Adjusting ring and compressor with adjusting ring
EP0530183B1 (en) A sealing system for a circular heat exchanger
JP2609763B2 (en) Turbine nozzle blade support structure
US5116158A (en) High temperature turbine engine structure
US3856077A (en) Regenerator seal
US4787817A (en) Device for monitoring clearance between rotor blades and a housing
JPS63223302A (en) Ceramics stationary blade for gas turbine
JP7018131B2 (en) Gas turbine shroud assembly
US4053257A (en) Stator vane assembly for gas turbines
US7112042B2 (en) Turbine nozzle support structure
JPH0533602A (en) Turbine nozzle
JPH0370129B2 (en)
JP2000304487A (en) Plate fin type heat exchanger
JPS59185804A (en) Gas turbine
JPS61231331A (en) Combustion chamber structure
JP2539331Y2 (en) Assembly structure of ceramic gas turbine nozzle
GB2386083A (en) Honeycomb body having a segmented sheathing tube
JPS64832B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees