JP2609135B2 - Oxygen sensor for internal combustion engine - Google Patents

Oxygen sensor for internal combustion engine

Info

Publication number
JP2609135B2
JP2609135B2 JP63157910A JP15791088A JP2609135B2 JP 2609135 B2 JP2609135 B2 JP 2609135B2 JP 63157910 A JP63157910 A JP 63157910A JP 15791088 A JP15791088 A JP 15791088A JP 2609135 B2 JP2609135 B2 JP 2609135B2
Authority
JP
Japan
Prior art keywords
catalyst layer
oxygen sensor
internal combustion
combustion engine
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63157910A
Other languages
Japanese (ja)
Other versions
JPH028735A (en
Inventor
晶 内川
Original Assignee
株式会社ユニシアジェックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニシアジェックス filed Critical 株式会社ユニシアジェックス
Priority to JP63157910A priority Critical patent/JP2609135B2/en
Publication of JPH028735A publication Critical patent/JPH028735A/en
Application granted granted Critical
Publication of JP2609135B2 publication Critical patent/JP2609135B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、内燃機関の排気管に装着して該機関に供給
される混合気の空燃比と密接な関係にある排気中の酸素
濃度を測定し、空燃比フィードバック制御におけるフィ
ードバック信号の提供に用いる内燃機関用酸素センサに
関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an exhaust pipe of an internal combustion engine, which measures the oxygen concentration in exhaust gas which is closely related to the air-fuel ratio of the air-fuel mixture supplied to the engine. The present invention relates to an oxygen sensor for an internal combustion engine which is measured and used for providing a feedback signal in air-fuel ratio feedback control.

〈従来の技術〉 従来、内燃機関用酸素センサとしては、例えば、第3
図に示すようなものがある(特開昭58−204365号公報,
実開昭59−31054号公報等参照)。
<Prior Art> Conventionally, as an oxygen sensor for an internal combustion engine, for example,
There is one shown in the figure (JP-A-58-204365,
See JP-A-59-31054.

即ち、先端部を閉塞した酸化ジルコニウムZrO2(酸素
イオン伝導性固体電解質)を主成分とするセラミック管
1の内表面と外表面の各一部に白金Ptペーストを塗布し
た後、セラミック管1を焼成することで、起電力取り出
し用の電極2,3を形成してある。セラミック管1の外表
面には、更に白金Ptを蒸着して白金触媒層4を形成し、
その上からマグネシウムスピネル等の酸化金属を溶射し
て、白金触媒層4を保護するための保護層5を形成して
ある。
That is, a platinum Pt paste is applied to each of the inner surface and a part of the outer surface of the ceramic tube 1 containing zirconium oxide ZrO 2 (oxygen ion conductive solid electrolyte) as a main component, and the ceramic tube 1 is closed. By firing, the electrodes 2 and 3 for taking out the electromotive force are formed. Platinum Pt is further deposited on the outer surface of the ceramic tube 1 to form a platinum catalyst layer 4,
A protective layer 5 for protecting the platinum catalyst layer 4 is formed by spraying a metal oxide such as magnesium spinel thereon.

かかる構成において、セラミック管1の内側空洞に基
準気体として大気が導かれるようにする一方、セラミッ
ク管1の外側を機関排気通路に臨ませて機関排気と接触
させ、内表面に接触する大気中の酸素濃度と外表面に接
触する排気中の酸素濃度との比に応じた電圧を電極2,3
間に発生させることにより、排気中の酸素濃度を検出す
るものである。
In such a configuration, the atmosphere is guided as the reference gas to the inner cavity of the ceramic tube 1, while the outside of the ceramic tube 1 is exposed to the engine exhaust passage to come into contact with the engine exhaust gas, and the air in the atmosphere contacting the inner surface is exposed. A voltage corresponding to the ratio of the oxygen concentration to the oxygen concentration in the exhaust gas in contact with the outer surface is applied to the electrodes 2 and 3.
The oxygen concentration in the exhaust gas is detected by generating the gas in the middle.

尚、白金触媒層4は、一酸化炭素COや炭化水素HCと酸
素O2とのCO+1/2 O2→CO2,HC+O2→H2O+CO2なる酸化反
応を促進し、理論空燃比に対して濃混合気で燃焼させた
ときにその部分に残存する低濃度のO2をCOやHCと良好に
反応させてO2濃度をゼロ近くにし、大きな起電力を発生
させる。
The platinum catalyst layer 4 promotes an oxidation reaction of CO + 1/2 O 2 → CO 2 , HC + O 2 → H 2 O + CO 2 between carbon monoxide CO or hydrocarbon HC and oxygen O 2, and increases the stoichiometric air-fuel ratio. When the mixture is burned with a rich mixture, the low-concentration O 2 remaining in that portion is satisfactorily reacted with CO and HC to bring the O 2 concentration close to zero, thereby generating a large electromotive force.

一方、理論空燃比に対して希薄混合気で燃焼させたと
きには、排気中に高濃度のO2と低濃度のCO,HCがあるた
め、CO,HCとO2とが反応してもまだO2があまり、セラミ
ック管1内外のO2濃度比は小さく殆ど電圧は発生しな
い。
On the other hand, when burned in the lean relative to the theoretical air-fuel ratio, CO of O 2 and low concentration of the high concentration in the exhaust, because of the HC, CO, yet even reacts with HC and O 2 O 2 , the O 2 concentration ratio inside and outside the ceramic tube 1 is so small that almost no voltage is generated.

〈発明が解決しようとする課題〉 ところで、内燃機関の排気中に発生する窒素酸化物
は、通常下記の反応を示す。
<Problems to be Solved by the Invention> Incidentally, nitrogen oxides generated in the exhaust gas of an internal combustion engine usually show the following reactions.

2NO+2CO→N2+2CO …… 2NO+2H2→N2+2H2O …… 2NO+3H2→2NH3+O2 …… 2NO+N2O+1/2 O2 …… 通常、高温状態では,の反応が優勢となり、逆に
低温状態ではの反応が優勢となる。特に、メタノール
やエタノール等のアルコールに他の燃料例えばガソリン
を混合させたアルコール混合燃料を使用する機関では、
ガソリン燃料の場合よりもH2の発生が多いためにの反
応が優勢となり、始動時や低速運転時などの低温状態で
は排気中に多量のNH3が存在する。
2NO + 2CO → N 2 + 2CO 2NO + 2H 2 → N 2 + 2H 2 O 2NO + 3H 2 → 2NH 3 + O 2 2NO + N 2 O + 1/2 O 2 Normally, the reaction becomes dominant at high temperature and low temperature The reaction in the state becomes dominant. In particular, in an engine using an alcohol blended fuel obtained by mixing an alcohol such as methanol or ethanol with another fuel such as gasoline,
Reactions for H 2 evolution is larger than in the case of gasoline fuel becomes superior, in a low temperature state, such as during start-up or during low-speed operation a large amount of NH 3 present in the exhaust.

アンモニアNH3は、白金触媒層4において酸化反応し
てO2を消費するため、アルコール混合燃料を使用したと
きにはガソリン燃料のときに比べ酸素センサの出力がリ
ーン側にずれる。しかも、NH3はO2に比べ保護層5内に
おける拡散速度が速く、保護層5の内側にある白金触媒
層4表面にO2よりも速く到達するため、保護層5外表面
における実際の排気中のNH3とO2の比率に比べ白金触媒
層4表面上のNH3量が見掛け上多くなるため、第4図に
示すようにアルコール混合燃料ではガソリン燃料の場合
(図中実線で示す)に比べ点線で示すように起電力特性
がリーン側へ大きくずれる。
Ammonia NH 3 is oxidized in the platinum catalyst layer 4 to consume O 2 , so that when an alcohol-mixed fuel is used, the output of the oxygen sensor shifts to the lean side as compared with gasoline fuel. Moreover, NH 3 because the diffusion rate in the protective layer 5 compared to O 2 is fast, reaches earlier than O 2 in the platinum catalyst layer 4 surface on the inside of the protective layer 5, the actual exhaust gas in the protective layer 5 the outer surface Since the amount of NH 3 on the surface of the platinum catalyst layer 4 is apparently larger than the ratio of NH 3 and O 2 in the fuel, the alcohol-mixed fuel is gasoline fuel as shown in FIG. 4 (shown by a solid line in the figure). As shown by the dotted line, the electromotive force characteristic is greatly shifted toward the lean side.

従って、アルコール混合燃料を使用した場合には、リ
ーン燃焼傾向になり易く、これにより窒素酸化物の排出
量が増大し、排気特性が悪化するという問題がある。
Therefore, when an alcohol-mixed fuel is used, there is a problem that lean combustion tends to occur, which increases the emission of nitrogen oxides and deteriorates exhaust characteristics.

本発明は上記問題点に鑑みなされたものであり、アル
コール混合燃料を使用する内燃機関に適用するに際し
て、NH3とO2の拡散速度差の影響をなくし、かつ、窒素
酸化物を低減させる空燃比制御が行える内燃機関用酸素
センサを提供することを目的とする。
The present invention has been made in view of the above problems, and when applied to an internal combustion engine using an alcohol-mixed fuel, eliminates the influence of the difference in diffusion rates between NH 3 and O 2 and reduces the amount of nitrogen oxide. An object of the present invention is to provide an oxygen sensor for an internal combustion engine that can perform fuel ratio control.

〈課題を解決するための手段〉 そのため本発明では、酸素イオン伝導性固体電解質の
内外表面の各一部に電極を形成し、大気に接触させた内
表面側電極と機関排気に接触させた外表面側電極との間
に発生する起電力により排気中の酸素濃度を検出する構
成の内燃機関用酸素センサにおいて、前記酸素イオン伝
導性固体電解質の最外表面にアンモニアの酸化反応を促
進させるアンモニア酸化触媒層を設けると共に、このア
ンモニア酸化触媒層の内側に窒素酸化物の還元反応を促
進させる窒素酸化物還元触媒層を設ける構成とした。
<Means for Solving the Problems> Therefore, in the present invention, electrodes are formed on each part of the inner and outer surfaces of the oxygen ion conductive solid electrolyte, and the inner surface side electrode contacted with the atmosphere and the outer surface contacted with the engine exhaust are formed. In an oxygen sensor for an internal combustion engine configured to detect an oxygen concentration in exhaust gas by an electromotive force generated between the electrode and a surface-side electrode, ammonia oxidation that promotes an oxidation reaction of ammonia on the outermost surface of the oxygen ion conductive solid electrolyte is provided. A catalyst layer is provided, and a nitrogen oxide reduction catalyst layer for promoting a reduction reaction of nitrogen oxide is provided inside the ammonia oxidation catalyst layer.

〈作用〉 上記の構成において、最外表面のアンモニア酸化触媒
層によって予めアンモニアNH3を酸化反応させることに
よって消費し、O2とNH3との拡散速度差の影響をなくす
ことができる。更に、アンモニア酸化触媒層で発生した
ものを含め窒素酸化物を内側の窒素酸化物還元触媒層に
おいてCO,HC等と反応させることによって、白金触媒層
でO2と反応するCO,HC量が減少して相対的に大気側O2
度との濃度差が減少するため、従来よりもリッチ側で起
電力が低下しリーン検出がなされる。従って、空燃比フ
ィードバック制御において空燃比が従来よりもリッチ側
に制御されることになり、窒素酸化物の低減を図れるよ
うになる。
<Operation> In the above configuration, ammonia NH 3 is previously oxidized by the ammonia oxidation catalyst layer on the outermost surface to be consumed by the oxidation reaction, and the influence of the diffusion rate difference between O 2 and NH 3 can be eliminated. Furthermore, by reacting nitrogen oxides including those generated in the ammonia oxidation catalyst layer with CO, HC, etc. in the inner nitrogen oxide reduction catalyst layer, the amount of CO, HC that reacts with O 2 in the platinum catalyst layer is reduced. since the density difference between the relatively atmosphere side O 2 concentration decreases, it is lowered electromotive force is richer than the conventional lean detection is made with. Therefore, in the air-fuel ratio feedback control, the air-fuel ratio is controlled to be richer than the conventional one, so that the nitrogen oxide can be reduced.

〈実施例〉 以下に本発明の一実施例を図面に基づいて説明する。
尚、第3図に示す従来例と同一要素には同一符号を付し
てある。
<Example> An example of the present invention will be described below with reference to the drawings.
The same elements as those of the conventional example shown in FIG. 3 are denoted by the same reference numerals.

第1図において、酸化ジルコニウムZrO2(酸素イオン
伝導性固体電解質)を主成分とする閉塞先端部を有する
セラミック管1の内表面及び外表面の一部に、それぞれ
白金Ptからなる内側電極2及び外側電極3を形成してあ
り、更に、セラミック管1の外表面には、白金Ptの蒸着
による白金触媒層4及びマグネシウムスピネル等の保護
層5を形成してあることは従来と同様である。
In FIG. 1, an inner electrode 2 made of platinum Pt is provided on a part of an inner surface and a part of an outer surface of a ceramic tube 1 having a closed tip mainly composed of zirconium oxide ZrO 2 (oxygen ion conductive solid electrolyte). The outer electrode 3 is formed, and a platinum catalyst layer 4 formed by vapor deposition of platinum Pt and a protective layer 5 such as magnesium spinel are formed on the outer surface of the ceramic tube 1 as in the conventional case.

本実施例のものは更に前記保護層5表面上に窒素酸化
物NOxの還元反応を促進させる窒素酸化物還元触媒層6
と、該還元触媒層6表面上(最外表面上)にアンモニア
NH3の酸化反応を促進させるアンモニア酸化触媒層7を
積層して構成されている。
In this embodiment, the nitrogen oxide reduction catalyst layer 6 for promoting the reduction reaction of nitrogen oxide NOx is further provided on the surface of the protective layer 5.
And ammonia on the surface of the reduction catalyst layer 6 (on the outermost surface).
An ammonia oxidation catalyst layer 7 for accelerating the oxidation reaction of NH 3 is laminated.

前記還元触媒層6は、TiO2,La2O3或いはAl2O3等の金
属酸化物を担体としてRh或いはRu等の還元触媒を0.5〜5
wt%の範囲で含有させて形成されている。
The reduction catalyst layer 6 comprises a metal oxide such as TiO 2 , La 2 O 3 or Al 2 O 3 as a carrier and a reduction catalyst such as Rh or Ru for 0.5 to 5 minutes.
It is formed to be contained in the range of wt%.

また、酸化触媒層7は、Al2O3等を担体として、Pt触
媒を0.1〜5wt%及びNi触媒を略0.2wt%それぞれ含有さ
せて形成されている。
The oxidation catalyst layer 7 is formed using Al 2 O 3 or the like as a carrier and containing a Pt catalyst at 0.1 to 5 wt% and a Ni catalyst at approximately 0.2 wt%.

かかる構成によれば、機関低温状態で2NO+3H2→2NH3
+O2なる反応によって多量に発生したアンモニアNH
3は、量外表面の酸化触媒層7において排気中のO2と下
記の反応式に従って反応する。
According to such a configuration, 2NO + 3H 2 → 2NH 3 in a low temperature state of the engine
Ammonia NH generated in large amount by + O 2 reaction
3 reacts with O 2 in the exhaust gas in the oxidation catalyst layer 7 on the outer surface in accordance with the following reaction formula.

4NH3+5O2→4NO+6H2O このため、保護層5内側の白金触媒4表面には、アン
モニアNH3は殆ど到達せず従来と同様のO2とCO,HCとの酸
化反応となり、白金触媒層4表面と酸化触媒層7表面と
の酸素濃度は略等しいものとなる。
4NH 3 + 5O 2 → 4NO + 6H 2 O For this reason, ammonia NH 3 hardly reaches the surface of the platinum catalyst 4 inside the protective layer 5 and the same oxidation reaction of O 2 and CO, HC occurs as in the conventional case. The oxygen concentration on the surface of the oxidation catalyst layer 7 is substantially equal to the oxygen concentration on the surface of the oxidation catalyst layer 7.

従って、O2とNH3との保護層5内の拡散速度差の影響
をなくすことができ、拡散速度差に基づき酸素センサの
起電力特性がリーン側へずれることを防止できる。
Therefore, the influence of the diffusion speed difference between O 2 and NH 3 in the protective layer 5 can be eliminated, and the electromotive force characteristics of the oxygen sensor can be prevented from shifting to the lean side based on the diffusion speed difference.

更に、酸化触媒層7における酸化反応で発生したNO及
び排気中に含まれているNOは、酸化触媒層7内側の還元
触媒層6に達すると、排気中の未燃成分であるCO,HCと
の下記に示す反応が促進される。
Further, when the NO generated by the oxidation reaction in the oxidation catalyst layer 7 and the NO contained in the exhaust gas reach the reduction catalyst layer 6 inside the oxidation catalyst layer 7, CO and HC, which are unburned components in the exhaust gas, are removed. The following reaction is promoted.

2NO+2CO→2CO2+N2 2NO+2H2→2H2O+N2 この結果、還元触媒層6より内側にある白金触媒層4
に達したO2と反応する未燃成分CO,HCが前記還元触媒層
6における反応によって減少しているため、その分O2
度が増大することになる。
2NO + 2CO → 2CO 2 + N 2 2NO + 2H 2 → 2H 2 O + N 2 As a result, the platinum catalyst layer 4 inside the reduction catalyst layer 6
Since the unburned components CO and HC that react with the O 2 that has reached the above-mentioned level have been reduced by the reaction in the reduction catalyst layer 6, the O 2 concentration increases accordingly.

従って、大気と接触するセラミック管1内側のO2濃度
と排気側のO2濃度との濃度差が減少し、第2図に示すよ
うに理論空燃比(λ=1)よりリッチ側で酸素センサの
起電力がスライスレベルに低下し、リーン検出がなされ
ることになる。
Therefore, the oxygen sensor in the ceramic tube 1 concentration difference between the inside of the O 2 concentration and the O 2 concentration of the exhaust side is decreased, the stoichiometric air-fuel ratio as shown in FIG. 2 (lambda = 1) from the rich side to contact with the atmosphere Is reduced to the slice level, and lean detection is performed.

排気中の窒素酸化物濃度が高いほど、窒素酸化物と反
応する未燃成分CO,HCは増大し、O2との反応が減少する
ため、よりリッチ側でリーン検出がなされる。
As the concentration of nitrogen oxides in the exhaust gas is higher, the unburned components CO and HC that react with the nitrogen oxides increase and the reaction with O 2 decreases, so that lean detection is performed on the richer side.

従って、この酸素センサの検出結果に基づいて空燃比
フィードバック制御を行うと、空燃比は窒素酸化物濃度
が高いほどリッチ側に制御されることになる。
Therefore, when the air-fuel ratio feedback control is performed based on the detection result of the oxygen sensor, the air-fuel ratio is controlled to be richer as the nitrogen oxide concentration is higher.

尚、本実施例では、チューブ型の酸素センサに適用し
たが、プレート型のジルコニアを用いた酸素センサにも
適用できることは明らかである。
In this embodiment, the present invention is applied to a tube-type oxygen sensor. However, it is apparent that the present invention can be applied to a plate-type oxygen sensor using zirconia.

また、保護層4は、最外表面側の酸化触媒層7と還元
触媒層6との間に設けても良い。
Further, the protective layer 4 may be provided between the oxidation catalyst layer 7 and the reduction catalyst layer 6 on the outermost surface side.

〈発明の効果〉 以上説明したように本発明によれば、O2とNH3との拡
散速度差に基づく起電力特性のリーン側へのずれを修正
できると共に、還元触媒層の作用によってよりリッチ側
でリーン検出がなされる。従って、アルコール混合燃料
使用量に適用した場合に、空燃比がリーン側に制御され
るのを防止できると共に、窒素酸化物の低減を図れると
いう効果がある。
<Effects of the Invention> As described above, according to the present invention, it is possible to correct the shift of the electromotive force characteristic to the lean side based on the difference in the diffusion rate between O 2 and NH 3, and to achieve a richer effect by the action of the reduction catalyst layer. Lean detection is performed on the side. Therefore, when the present invention is applied to the use amount of the alcohol-mixed fuel, it is possible to prevent the air-fuel ratio from being controlled to the lean side and to reduce the nitrogen oxides.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す要部拡大図、第2図は
同上実施例の酸素センサの出力特性図、第3図は従来の
酸素センサの構成を示す断面図、第4図は従来のガソリ
ン燃料とアルコール混合燃料の場合の各出力特性を示す
図である。 1……セラミック管、2……内側電極、3……外側電
極、4……白金触媒層、5……保護層、6……還元触媒
層、7……酸化触媒層
FIG. 1 is an enlarged view of a main part showing an embodiment of the present invention, FIG. 2 is an output characteristic diagram of the oxygen sensor of the above embodiment, FIG. 3 is a sectional view showing the configuration of a conventional oxygen sensor, and FIG. FIG. 5 is a diagram showing output characteristics in the case of a conventional gasoline fuel and alcohol mixed fuel. DESCRIPTION OF SYMBOLS 1 ... Ceramic tube, 2 ... Inner electrode, 3 ... Outer electrode, 4 ... Platinum catalyst layer, 5 ... Protective layer, 6 ... Reduction catalyst layer, 7 ... Oxidation catalyst layer

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸素イオン伝導性固体電解質の内外表面の
各一部に電極を形成し、大気に接触させた内表面側電極
と機関排気に接触させた外表面側電極との間に発生する
起電力により排気中の酸素濃度を検出する構成の内燃機
関用酸素センサにおいて、 前記酸素イオン伝導性固体電解質の最外表面にアンモニ
アの酸化反応を促進させるアンモニア酸化触媒層を設け
ると共に、該アンモニア酸化触媒層の内側に窒素酸化物
の還元反応を促進させる窒素酸化物還元触媒層を設けた
ことを特徴とする内燃機関用酸素センサ。
An electrode is formed on each part of the inner and outer surfaces of an oxygen ion conductive solid electrolyte, and is generated between an inner surface electrode in contact with the atmosphere and an outer surface electrode in contact with engine exhaust. An oxygen sensor for an internal combustion engine configured to detect an oxygen concentration in exhaust gas by an electromotive force, wherein an ammonia oxidation catalyst layer that promotes an oxidation reaction of ammonia is provided on an outermost surface of the oxygen ion conductive solid electrolyte, and the ammonia oxidation catalyst layer is provided. An oxygen sensor for an internal combustion engine, wherein a nitrogen oxide reduction catalyst layer for promoting a reduction reaction of nitrogen oxides is provided inside the catalyst layer.
JP63157910A 1988-06-28 1988-06-28 Oxygen sensor for internal combustion engine Expired - Lifetime JP2609135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63157910A JP2609135B2 (en) 1988-06-28 1988-06-28 Oxygen sensor for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63157910A JP2609135B2 (en) 1988-06-28 1988-06-28 Oxygen sensor for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH028735A JPH028735A (en) 1990-01-12
JP2609135B2 true JP2609135B2 (en) 1997-05-14

Family

ID=15660122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63157910A Expired - Lifetime JP2609135B2 (en) 1988-06-28 1988-06-28 Oxygen sensor for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2609135B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014215230A (en) * 2013-04-26 2014-11-17 株式会社日本自動車部品総合研究所 Gas sensor element
US11073057B2 (en) * 2019-01-31 2021-07-27 Hyundai Motor Company Co clean-up catalyst, after treatment system and after treatment method

Also Published As

Publication number Publication date
JPH028735A (en) 1990-01-12

Similar Documents

Publication Publication Date Title
US5630920A (en) Electrochemical sensor for determining the oxygen concentration in gas mixtures
US6303012B1 (en) Gas sensor, gas sensor system using the same
JP5469553B2 (en) Ammonia concentration detection sensor
US6220017B1 (en) Exhaust emission control system for internal combustion engine
JP2014062541A (en) Degradation diagnostic device for oxidation catalyst
CN108691613B (en) Exhaust gas purification device for internal combustion engine
JP2609135B2 (en) Oxygen sensor for internal combustion engine
JPS61207961A (en) Oxygen sensor
CN217443234U (en) Device for detecting ammonia and nitrogen oxide and nitrogen-oxygen sensor
JPH0650298B2 (en) Oxygen sensor for internal combustion engine
JPH0713609B2 (en) Oxygen sensor for internal combustion engine
JP2592270B2 (en) Exhaust purification system for internal combustion engine
JPH01458A (en) Oxygen sensor for internal combustion engine
JPH0713608B2 (en) Oxygen sensor for internal combustion engine
JP2003328822A (en) Exhaust emission control device
JPS6357810A (en) Method for eliminating nox of diesel engine
JP4272970B2 (en) Exhaust gas concentration detector
JP7304317B2 (en) Ammonia concentration detector
US11828243B2 (en) Exhaust gas control apparatus and exhaust gas control method for internal combustion engine
JPH0747730Y2 (en) Oxygen sensor
JPH0283442A (en) Oxygen sensor for internal combustion engine
JPH0495765A (en) Oxygen sensor of internal combustion engine
JPS6157929B2 (en)
JP2784832B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0697001B2 (en) Air-fuel ratio controller for internal combustion engine using alcohol fuel