JPS6157929B2 - - Google Patents

Info

Publication number
JPS6157929B2
JPS6157929B2 JP2559182A JP2559182A JPS6157929B2 JP S6157929 B2 JPS6157929 B2 JP S6157929B2 JP 2559182 A JP2559182 A JP 2559182A JP 2559182 A JP2559182 A JP 2559182A JP S6157929 B2 JPS6157929 B2 JP S6157929B2
Authority
JP
Japan
Prior art keywords
exhaust gas
oxygen
fuel ratio
air
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2559182A
Other languages
Japanese (ja)
Other versions
JPS58143113A (en
Inventor
Mitsutama Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2559182A priority Critical patent/JPS58143113A/en
Publication of JPS58143113A publication Critical patent/JPS58143113A/en
Publication of JPS6157929B2 publication Critical patent/JPS6157929B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【発明の詳細な説明】 本発明は、エンジンの燃費効率を最良に保ちつ
つHC、COの酸化とNOxの環元を行なう排気浄化
装置に関する。エンジンから排出される有害成分
として、HC、COとNOxがあげられ、HC、COに
ついて酸化させることにより、またNOxについ
ては還元することにより無害な成分に転換でき
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an exhaust gas purification device that oxidizes HC and CO and refluxes NOx while maintaining the best fuel efficiency of an engine. Harmful components emitted from engines include HC, CO, and NOx, and HC and CO can be converted to harmless components by oxidizing them, and NOx can be converted to harmless components by reducing them.

このために、排気系に三元触媒を取り付け、
HC、COの酸化とNOxの還元を同時に行なうよう
にした排気浄化システムが提案されている。
For this purpose, a three-way catalyst is installed in the exhaust system,
An exhaust purification system that simultaneously oxidizes HC and CO and reduces NOx has been proposed.

この場合、三元触媒は、触媒に流入する排気ガ
ス中に酸化成分(O2ガス)と還元成分(CO、
HC、H2等の還元性ガス)が、丁度反応する量同
志含まれていないと効果がなく、そのために触媒
流入ガスの総合空燃比を正確に理論空燃比(空気
過剰率:1)としなければならない。
In this case, the three-way catalyst combines oxidizing components ( O2 gas) and reducing components (CO,
The catalyst will not be effective unless it contains just the right amount of reducing gas (HC, H2 , etc.) to react with each other. Therefore, the total air-fuel ratio of the catalyst inflow gas must be accurately set to the stoichiometric air-fuel ratio (excess air ratio: 1). Must be.

このようにするため、エンジンに供給する混合
気を理論空燃比(ストイキオメトリツク)とする
か、またはエンジンには濃混合気(リツチ)を供
給しておいて排気中に二次空気を導入することに
より理論空燃比にしていた。
To do this, either the mixture supplied to the engine has a stoichiometric air-fuel ratio, or the mixture supplied to the engine is rich and secondary air is introduced into the exhaust gas. This kept the air-fuel ratio at the stoichiometric ratio.

しかしながら、エンジンの燃費効率は、理論空
燃比よりもやや薄い混合気を供給したときに最良
となる関係上、このような理論空燃比もしくはそ
れよりも濃い混合気の供給は燃費対策上得策とは
言えない。
However, the fuel efficiency of the engine is best when a mixture that is slightly leaner than the stoichiometric air-fuel ratio is supplied, so supplying a mixture that is at or above the stoichiometric air-fuel ratio is not a good idea in terms of fuel efficiency. I can not say.

本発明はこのような点に着目してなされたもの
で、稀薄混合気によりエンジンを運転しておき、
排気ガス中から燃焼に関与しない酸素成分を除去
する装置例えば選択的酸素透過性物質を使用した
酸素除去装置を設け、三元触媒に流入する排気総
合空燃比をほぼ理論空燃比とすることにより、エ
ンジンの燃費効率を最良に保ちつつHC、COの酸
化とNOxの還元を効率よく行なうようにした排
気浄化装置を提供する。
The present invention was made with attention to this point, and it is possible to operate the engine with a lean mixture,
By providing a device for removing oxygen components not involved in combustion from the exhaust gas, such as an oxygen removal device using a selective oxygen permeable substance, the total air-fuel ratio of the exhaust gas flowing into the three-way catalyst is approximately the stoichiometric air-fuel ratio. To provide an exhaust purification device that efficiently oxidizes HC and CO and reduces NOx while maintaining the best fuel efficiency of an engine.

以下、本発明の実施例を図面にもとづいて説明
する。
Embodiments of the present invention will be described below based on the drawings.

第1図において、10はエンジン本体であり、
燃料供給装置9として、例えば吸気ポートに燃料
を噴射供給する燃料噴射弁が取り付けられる。
In FIG. 1, 10 is the engine body;
As the fuel supply device 9, for example, a fuel injection valve that injects and supplies fuel to an intake port is attached.

燃料供給装置9は定常運転中にエンジン吸入混
合気が理論空燃比よりも薄い空燃比、最も好まし
くは最良燃費域の空燃比となるように、吸気空気
量に対応しての燃料供給量が制御される。
The fuel supply device 9 controls the fuel supply amount corresponding to the intake air amount so that the engine intake air-fuel mixture becomes an air-fuel ratio thinner than the stoichiometric air-fuel ratio during steady operation, most preferably an air-fuel ratio in the best fuel efficiency range. be done.

排気通路11には排気ガス中の酸素成分を除去
するために、酸素除去装置12が設けられる。
An oxygen removal device 12 is provided in the exhaust passage 11 to remove oxygen components in the exhaust gas.

酸素除去装置12の下流には、触媒流入排気ガ
スの総合空燃比が理論空燃比のときに、HC、CO
の酸化とNOxの還元とを効率よく行なう三元触
媒装置13が設置され、この触媒通過後の排気ガ
スは再び酸素除去装置12を経由して排気管14
へと流出する。
Downstream of the oxygen removal device 12, when the total air-fuel ratio of the exhaust gas flowing into the catalyst is the stoichiometric air-fuel ratio, HC, CO
A three-way catalyst device 13 that efficiently oxidizes NOx and reduces NOx is installed, and the exhaust gas after passing through this catalyst is passed through the oxygen removal device 12 again to the exhaust pipe 14.
flows out to.

酸素除去装置12は、直方体のハウジング16
に2つの入口17A,18Aと同じく出口17
B,18Bが形成され、この内部に選択的酸素透
過性物質例えば第2図で示す酸化ジルコニアなど
の固体電解質からなる隔膜1Aが収設される。
The oxygen removal device 12 has a rectangular parallelepiped housing 16.
There are two inlets 17A and 18A and an outlet 17.
B, 18B are formed, and a diaphragm 1A made of a selective oxygen-permeable material, such as a solid electrolyte such as zirconia oxide shown in FIG. 2, is accommodated therein.

すなわち、両面に第3図のような白金(Pt)や
パラジウム(Pd)ロジウム(Rh)で形成したポ
ーラスな電極A1〜A9及びC1〜C9を取り付け、交
互に所定の間隔と幅をもつて折り重ねられた隔膜
1が、ハウジング16の内部をきつちりと収装さ
れる。
That is, porous electrodes A 1 to A 9 and C 1 to C 9 made of platinum (Pt), palladium (Pd, and rhodium (Rh)) as shown in Figure 3 are attached to both sides, and they are alternately spaced at predetermined intervals and widths. The diaphragm 1 which has been folded up with the same angle as the diaphragm 1 is tightly housed inside the housing 16.

この場合、入口17Aから流入した排気ガス
は、隔膜1Aで区画された上流側室21を通り出
口17Bからのみ流出し、かつ他方の入口18A
から流入した排気ガスは同じく隔膜1Aの他面で
区画された下流側室22を通り、出口18Bから
のみ流出するように、上下面及び両端部はシール
される。
In this case, the exhaust gas flowing in from the inlet 17A passes through the upstream chamber 21 divided by the diaphragm 1A and flows out only from the outlet 17B, and the exhaust gas flows from the other inlet 18A.
The upper and lower surfaces and both ends are sealed so that the exhaust gas flowing in from the diaphragm 1A passes through the downstream chamber 22 divided by the other surface of the diaphragm 1A, and flows out only from the outlet 18B.

隔膜1は酸素イオン伝導性の固体電解質で形成
され、その両面に酸素濃度差があるときに、酸素
分圧の高い側から低い側へと酸素を移動させる。
The diaphragm 1 is formed of an oxygen ion conductive solid electrolyte, and when there is a difference in oxygen concentration on both sides, oxygen is moved from the side with a higher oxygen partial pressure to the side with a lower oxygen partial pressure.

また、酸素除去装置12の下流には、三元触媒
13に流入する排気ガス中の酸素濃度を検出する
酸素センサ19が設けてあり、この酸素センサ1
9の出力にもとづいて制御回路(図示せず)は前
述の対向する電極A1とC1、A2とC2……A9とC9
の間に印加する微小電圧を調整し、固体電解質か
らなる隔膜1Aにおける酸素イオンの伝導度を制
御する。
Furthermore, an oxygen sensor 19 is provided downstream of the oxygen removal device 12 to detect the oxygen concentration in the exhaust gas flowing into the three-way catalyst 13.
Based on the output of 9, a control circuit (not shown) adjusts the minute voltage applied between the aforementioned opposing electrodes A1 and C1 , A2 and C2 ... A9 and C9 , and The conductivity of oxygen ions in the diaphragm 1A made of electrolyte is controlled.

次に作用について説明する。 Next, the effect will be explained.

酸素除去装置において、選択的酸素透過性隔膜
の一方に触媒上流の排気ガス、他方に下流の排気
ガスが接しており、両側の酸素成分含有率(%)
は同等であるが、触媒部での流動抵抗にもとづく
圧力差により上流側が下流側より酸素分圧が高
く、したがつて上流側排気ガス中の酸素が下流側
排気ガス中へ隔膜を通つて移動する。
In an oxygen removal device, the exhaust gas upstream of the catalyst is in contact with one side of the selective oxygen permeable diaphragm, and the exhaust gas downstream of the catalyst is in contact with the other side, and the oxygen component content (%) on both sides is
are the same, but the oxygen partial pressure is higher on the upstream side than on the downstream side due to the pressure difference based on the flow resistance in the catalyst section, so oxygen in the upstream exhaust gas moves through the diaphragm into the downstream exhaust gas. do.

第3図においては、酸化ジルコニア(ZrO2)等
の固体電解質でつくられた隔膜1は、その両面に
触れる排気ガス中の酸素分圧に差があると、例え
ば触媒通過前の排気ガスの酸素分圧が通過後の排
気ガスよりも高いとすると、固体電解質中では電
極A1〜A9側から電極C1〜C9側へと酸素イオン
O2-が移動する。
In Fig. 3, a diaphragm 1 made of a solid electrolyte such as zirconia oxide (ZrO 2 ) can cause a difference in the partial pressure of oxygen in the exhaust gas that comes into contact with both sides of the diaphragm 1. Assuming that the partial pressure is higher than that of the exhaust gas after passing through, oxygen ions flow from the electrodes A 1 to A 9 side to the electrodes C 1 to C 9 side in the solid electrolyte.
O 2- moves.

このため、A電極側ではO2÷4e-→2O2-、C電
極側では2O2-→O2+4e-の反応が進み、C電極側
で生成した電子eがA電流側へ移動するととも
に、A電極側から取り込んだ酸素O2がC電極側
へと移動することになる。
Therefore, the reaction O 2 ÷ 4e - →2O 2- progresses on the A electrode side and 2O 2- → O 2 +4e - on the C electrode side, and the electron e generated on the C electrode side moves to the A current side. , oxygen O 2 taken in from the A electrode side moves to the C electrode side.

このようにして、触媒通過後の稀薄混合気の燃
焼排気中から、固体電解質の隔膜1を通して酸素
が触媒通過後の排気ガス中へ移動し、排気総合空
燃比が次第に理論空燃比に近づいていく。
In this way, oxygen moves from the combustion exhaust gas of the lean mixture after passing through the catalyst to the exhaust gas after passing through the catalyst through the solid electrolyte diaphragm 1, and the total exhaust air-fuel ratio gradually approaches the stoichiometric air-fuel ratio. .

ところが第1図の構成からも分るように、実際
にはエンジン本体10から排出された排気ガス
は、三元触媒装置13を通過してそのまま酸素除
去装置12へ流入するため、固体電解質の隔壁1
Aの両面の酸素濃度に当初ほとんど差は発生しな
い。
However, as can be seen from the configuration in FIG. 1, in reality, the exhaust gas discharged from the engine body 10 passes through the three-way catalyst device 13 and directly flows into the oxygen removal device 12, so the solid electrolyte partition wall 1
At first, there is almost no difference in the oxygen concentration on both sides of A.

つまり、上記した仮定は、三元触媒通過後の排
気ガス中に酸素がほとんど含まれないことを前提
としているために、酸素の移動がスムーズに行な
われるようになつているが、三元触媒装置13に
おける未燃焼HC、COの酸化反応で排気中の酸素
成分が消費された程度では、上記隔膜1Aの両面
に酸素濃度差は小さく、酸素の移動を生じる反応
速度は極めて小さい。
In other words, the above assumption is based on the assumption that the exhaust gas after passing through the three-way catalyst contains almost no oxygen, so oxygen transfer is smooth, but the three-way catalyst To the extent that the oxygen components in the exhaust gas are consumed by the oxidation reaction of unburned HC and CO in step 13, the difference in oxygen concentration on both sides of the diaphragm 1A is small, and the reaction rate that causes the movement of oxygen is extremely small.

これに対して、電極C1〜C9とA1〜A9間に制御
回路から微小電圧を印加して強制的に電流を流す
と、酸素の取り込みは強制的に行なわれて、反応
速度が著しく高まる。
On the other hand, if a small voltage is applied from a control circuit between electrodes C 1 to C 9 and A 1 to A 9 to force current to flow, oxygen uptake is forced and the reaction rate slows down. It increases significantly.

したがつて、A、C電極間に微小電圧を印加す
るのと、固体電解質からなる隔膜1Aの面積を第
2図のようにコルゲート状に形成して拡大するこ
とにより、三元触媒装置13に流入する前に排気
中の酸素成分を充分に低減して、ほぼ理論空燃比
となるようにできる。
Therefore, by applying a minute voltage between the A and C electrodes and expanding the area of the diaphragm 1A made of solid electrolyte in a corrugated shape as shown in FIG. It is possible to sufficiently reduce the oxygen component in the exhaust gas before it enters the exhaust gas, so that the air-fuel ratio becomes approximately the stoichiometric air-fuel ratio.

三元触媒装置13では、このように流入排気ガ
スの総合空燃比が理論空燃比(λ≒14、54)に
制御されていれば、HC、COの酸化とNOxの還元
とを共に効率よく行なうことができ、エンジン本
体10に対する混合気を稀薄化したことと相まつ
て、排気浄化と燃費とを同時に向上させられるこ
とになる。
In the three-way catalyst device 13, if the total air-fuel ratio of the inflowing exhaust gas is controlled to the stoichiometric air-fuel ratio (λ 0 ≒ 14, 54), both the oxidation of HC and CO and the reduction of NOx can be efficiently performed. This can be done, and together with the dilution of the air-fuel mixture for the engine body 10, exhaust purification and fuel efficiency can be improved at the same time.

第4図は、混合気の空燃比(A/F)と排気環
流率(EGR率)との関係において、NOxの排出
量と燃費率の特性の変化をあらわしたものである
が、図中の一点鎖線はエンジンの安定限界を示
し、斜線域はそれ以上にEGR率を増加させた
り、空燃比を稀薄化すると安定度不良により運転
が困難となる領域である。
Figure 4 shows the changes in the characteristics of NOx emissions and fuel efficiency in relation to the air-fuel ratio (A/F) of the mixture and the exhaust gas recirculation rate (EGR rate). The dashed-dotted line indicates the stability limit of the engine, and the shaded area is the area where operation becomes difficult due to poor stability if the EGR rate is increased further or the air-fuel ratio is made leaner.

仮に、NOの排出値が、1.5g/PS・hを目標とす
ると、EGRによりこれを達成するには燃費率と
の兼ね合いから図中A点付近である。
If the NO emission value is set as a target of 1.5g/PS・h, achieving this with EGR would be around point A in the figure due to the balance with fuel efficiency.

なお、この場合には酸化触媒を併設して排気中
に二次空気を供給しつつHC、COを低減させる。
In this case, an oxidation catalyst is also installed to reduce HC and CO while supplying secondary air into the exhaust gas.

従来の三元触媒装置では供給混合気が理論空燃
比付近に限られるので、その中で最も燃費の良い
領域はB点付近となる。
In the conventional three-way catalyst device, the supplied air-fuel mixture is limited to around the stoichiometric air-fuel ratio, so the area with the best fuel efficiency is around point B.

ただし、三元触媒ではNOを1/4程度まで低減で
きるので、エンジンからの排出量は5g/PS・h程
度まで許容できる。
However, with a three-way catalyst, NO can be reduced to about 1/4, so emissions from the engine can be tolerated up to about 5g/PS/h.

これらに対して、空燃比を稀薄化したときに、
NO排気量がこの5g/PS・h以下に収まる領域
で、燃費が最良となるのはC点付近である。
In contrast, when the air-fuel ratio is diluted,
In the region where NO emissions are below 5g/PS・h, fuel efficiency is best around point C.

このC点は、他のA、B点に比べるとはるかに
燃費効率上すぐれるのであり、したがつて、上記
燃料供給装置9でこのC点付近の空燃比が得られ
るように燃料供給量を制御することにより、本発
明では従来方式に比較してきわめて良好な燃費効
率とすることができるのである。
This point C has much better fuel efficiency than the other points A and B, so the fuel supply amount is adjusted so that the fuel supply device 9 obtains an air-fuel ratio near this point C. Through this control, the present invention can achieve significantly better fuel efficiency than conventional systems.

ところで、上記酸素除去装置12では、白金電
極A1〜A9にロジウム(Rh)を添加すると、触媒
としての働きも生じ、NOxの還元とHC、COの酸
化も行なうことが可能となる。
By the way, in the oxygen removal device 12, when rhodium (Rh) is added to the platinum electrodes A1 to A9 , it also functions as a catalyst, making it possible to reduce NOx and oxidize HC and CO.

酸素イオンの移動により排気ガスの総合空燃比
がほぼ理論空燃比になつた領域で、この排気ガス
に接触する電極A1〜A9(排気流に対して下流側
の電極)の電極面積をある程度拡大することによ
り、酸素の除去と同時に上記三成分の除去ができ
るのである。
In the region where the overall air-fuel ratio of the exhaust gas becomes almost the stoichiometric air-fuel ratio due to the movement of oxygen ions, the electrode area of the electrodes A 1 to A 9 (electrodes on the downstream side with respect to the exhaust flow) that come into contact with this exhaust gas is reduced to a certain extent. By enlarging it, the three components mentioned above can be removed at the same time as oxygen is removed.

したがつて、三元触媒装置12における消費電
力は、電圧値が非常に小さいためにバツテリの負
荷はそれほどでなく、また印加電流の制御を厳密
に行なわなくてもとくに上流側の排気中の酸素濃
度がゼロとなればよほぼ高電圧をかけない限り、
酸素の移動が行なわれず自由に空燃比が理論値に
なるので、酸素センサ19によるフイードバツク
制御などは必ずしも必要ではない。
Therefore, the power consumption in the three-way catalyst device 12 is such that the voltage value is very small, so the load on the battery is not so great, and even if the applied current is not strictly controlled, the power consumption in the upstream exhaust gas will be reduced. As long as the concentration is zero, unless a high voltage is applied,
Since no oxygen is transferred and the air-fuel ratio freely reaches the theoretical value, feedback control using the oxygen sensor 19 is not necessarily required.

第5図は酸素除去装置12のハウジング16′
の変形例であつて、固体電解質の折り曲げ隔壁1
Aの後部に滞溜室30を形成し、かつ入口17A
と出口18Bのみ形成したもので、入口17Aか
ら上流側室21(第2図参照)に流入した排気ガ
スは、酸素の除去とともにHC、COの酸化と、
NOxの還元反応を受けつつ滞溜室30へと流
れ、ここでUターンして下流側室22へと流れ込
み出口18Bから流出する。
FIG. 5 shows the housing 16' of the oxygen removal device 12.
This is a modification of the solid electrolyte folded partition wall 1
A retention chamber 30 is formed at the rear of A, and an inlet 17A is formed.
The exhaust gas flowing into the upstream chamber 21 (see Figure 2) from the inlet 17A removes oxygen and oxidizes HC and CO.
It flows into the retention chamber 30 while undergoing a reduction reaction of NOx, and here it makes a U-turn and flows into the downstream chamber 22 and flows out from the outlet 18B.

なお、滞溜室30には酸素センサ19を取り付
け、酸素濃度を検出するようにしてもよい。
Note that an oxygen sensor 19 may be attached to the retention chamber 30 to detect the oxygen concentration.

この場合には三元触媒装置13を除去してある
が、酸素除去装置12での触媒作用が充分に行な
われるときは、このようにすることも可能であ
る。
In this case, the three-way catalyst device 13 is removed, but it is also possible to do so if the catalytic action in the oxygen removal device 12 is sufficiently performed.

以上説明したように本発明は、排気中に含まれ
る過剰酸素は三元触媒に流入する前に除去するよ
うにしたので、エンジンを最良燃費状態で運転し
つつ三元触媒の働きも最良にすることができ、燃
費と排気性能を共に向上させられるという効果が
ある。
As explained above, the present invention removes excess oxygen contained in the exhaust gas before it flows into the three-way catalyst, so that the engine can be operated at the best fuel efficiency and the three-way catalyst can also function optimally. This has the effect of improving both fuel efficiency and exhaust performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の全体的な構成を示す斜視図、
第2図は固体電解質隔膜の斜視図、第3図は固体
電解質隔膜の一部拡大断面図、第4図は燃費と
NOの排出特性を空燃比と排気還流率にもとづい
て示す説明図、第5図は酸素除去装置の他例を示
す斜視図である。 1,1A……固体電解質隔膜、9……燃料供給
装置、10……エンジン本体、12……酸素除去
装置、13……三元触媒装置、16……ハウジン
グ、17A,18A……入口、17B,18B…
…出口、19……酸素センサ、20……制御回路
(手段)、21……上流側室、22……下流側室。
FIG. 1 is a perspective view showing the overall configuration of the present invention;
Figure 2 is a perspective view of the solid electrolyte diaphragm, Figure 3 is a partially enlarged sectional view of the solid electrolyte diaphragm, and Figure 4 is a diagram showing fuel efficiency.
An explanatory diagram showing the NO emission characteristics based on the air-fuel ratio and the exhaust gas recirculation rate, and FIG. 5 is a perspective view showing another example of the oxygen removal device. 1, 1A... Solid electrolyte diaphragm, 9... Fuel supply device, 10... Engine body, 12... Oxygen removal device, 13... Three-way catalyst device, 16... Housing, 17A, 18A... Inlet, 17B ,18B...
...Exit, 19...Oxygen sensor, 20...Control circuit (means), 21...Upstream side chamber, 22...Downstream side chamber.

Claims (1)

【特許請求の範囲】[Claims] 1 機関排気通路に三元触媒装置を取り付け、排
気ガス中のHC、COの酸化とNOxの還元を同時に
行なうようにした内燃機関において、理論空燃比
よりも稀薄な混合気を機関に供給する燃料供給装
置と、前記三元触媒装置の上流排気通路に介装し
た酸素除去装置とを備え、この酸素除去装置は選
択的酸素透過性物質からなる隔膜で隔成した上流
側室に触媒流入前の排気ガス、下流側室に触媒流
出後の排気ガスを通すことにより、触媒流入前の
排気ガス中の過剰酸素を除去するように構成され
ていることを特徴とする排気浄化装置。
1 A fuel that supplies a mixture leaner than the stoichiometric air-fuel ratio to the engine in an internal combustion engine that has a three-way catalytic converter installed in the engine exhaust passage to simultaneously oxidize HC and CO in the exhaust gas and reduce NOx. The oxygen removing device is equipped with a supply device and an oxygen removing device installed in the upstream exhaust passage of the three-way catalyst device. 1. An exhaust gas purification device characterized in that the exhaust gas is configured to remove excess oxygen in the exhaust gas before the catalyst flows in by passing the exhaust gas after the catalyst flows into a downstream chamber.
JP2559182A 1982-02-19 1982-02-19 Exhaust purifier Granted JPS58143113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2559182A JPS58143113A (en) 1982-02-19 1982-02-19 Exhaust purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2559182A JPS58143113A (en) 1982-02-19 1982-02-19 Exhaust purifier

Publications (2)

Publication Number Publication Date
JPS58143113A JPS58143113A (en) 1983-08-25
JPS6157929B2 true JPS6157929B2 (en) 1986-12-09

Family

ID=12170147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2559182A Granted JPS58143113A (en) 1982-02-19 1982-02-19 Exhaust purifier

Country Status (1)

Country Link
JP (1) JPS58143113A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130731U (en) * 1988-02-29 1989-09-05
JPH0420342U (en) * 1990-06-08 1992-02-20

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4418117C1 (en) * 1994-05-24 1995-06-29 Daimler Benz Ag Petrol driven IC engine
JP4561489B2 (en) * 2004-12-07 2010-10-13 トヨタ自動車株式会社 Exhaust gas purification device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130731U (en) * 1988-02-29 1989-09-05
JPH0420342U (en) * 1990-06-08 1992-02-20

Also Published As

Publication number Publication date
JPS58143113A (en) 1983-08-25

Similar Documents

Publication Publication Date Title
US6698188B2 (en) Emission control apparatus of internal combustion engine
US5551231A (en) Engine exhaust gas purification device
EP0629771B1 (en) An engine exhaust gas purification device
CN108691613B (en) Exhaust gas purification device for internal combustion engine
EP3385519A1 (en) Exhaust purification system of internal combustion engine
CN107340326A (en) The control device of NOx sensor
JP2003120399A (en) APPARATUS FOR DETECTING ABNORMALITY OF NOx SENSOR
JP3589179B2 (en) Exhaust gas purification device for internal combustion engine
JPS6157929B2 (en)
JP7240990B2 (en) VEHICLE ENGINE OPERATION CONTROL METHOD AND VEHICLE SYSTEM
JP3775229B2 (en) Exhaust gas purification device for internal combustion engine
CN217443234U (en) Device for detecting ammonia and nitrogen oxide and nitrogen-oxygen sensor
US20070186545A1 (en) Catalytic device with fuel cell portion and catalytic conversion portion
JPS6139062Y2 (en)
JP2004092431A (en) Emission control device
JP4211232B2 (en) Exhaust gas sensor
JP3555581B2 (en) Exhaust gas purification device for internal combustion engine
JP2004068623A (en) Exhaust emission control device and exhaust gas purification method of internal combustion engine
JP3494145B2 (en) Exhaust gas purification device for internal combustion engine
JP3744373B2 (en) Exhaust gas purification device for internal combustion engine
US11828243B2 (en) Exhaust gas control apparatus and exhaust gas control method for internal combustion engine
JP2004144072A (en) Exhaust gas purifier for internal combustion engine
JPH01134020A (en) Exhaust gas purifying system for internal combustion engine
JP3912170B2 (en) Exhaust gas purification device for internal combustion engine
JPH06173659A (en) Exhaust emission control device for internal combustion engine