JP2608865B2 - Method for producing conductive thin film - Google Patents

Method for producing conductive thin film

Info

Publication number
JP2608865B2
JP2608865B2 JP62113095A JP11309587A JP2608865B2 JP 2608865 B2 JP2608865 B2 JP 2608865B2 JP 62113095 A JP62113095 A JP 62113095A JP 11309587 A JP11309587 A JP 11309587A JP 2608865 B2 JP2608865 B2 JP 2608865B2
Authority
JP
Japan
Prior art keywords
plasma
thin film
film
conductivity
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62113095A
Other languages
Japanese (ja)
Other versions
JPS63277764A (en
Inventor
義和 近藤
俊博 山本
義仁 長田
Original Assignee
鐘紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鐘紡株式会社 filed Critical 鐘紡株式会社
Priority to JP62113095A priority Critical patent/JP2608865B2/en
Publication of JPS63277764A publication Critical patent/JPS63277764A/en
Application granted granted Critical
Publication of JP2608865B2 publication Critical patent/JP2608865B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は導電性薄膜、特にニトリル基含有化合物のプ
ラズマ重合薄膜の電荷移動錯体型薄膜に関する。
Description: TECHNICAL FIELD The present invention relates to a conductive thin film, in particular, a charge transfer complex type thin film of a plasma polymerized thin film of a nitrile group-containing compound.

(従来の技術) 従来、有機高分子半導体材料としては、ポリアセチレ
ン,ポリ−p−フェニレン,ポリフェニレンスルフィド
等の合成高分子材料が知られている。しかし、これらは
重合迄の困難さや収率の低さ及び生成物の空中での安定
性のなさ、電導度及び力学物性の経時変化等欠点を有し
ていた。又、天然の色素、例えばフタロシアニン,メロ
シアニン,クロロフィル等の光化学エネルギー変換機能
を利用した半導体材料も知られているが、単独では力学
強度がなく、合成高分子に分散させて使用する場合は成
形性や成膜性効率の低下等使用上の問題がある。
(Prior Art) Conventionally, synthetic polymer materials such as polyacetylene, poly-p-phenylene, and polyphenylene sulfide are known as organic polymer semiconductor materials. However, they have disadvantages such as difficulty in polymerization, low yield, instability of the product in the air, change over time in electrical conductivity and mechanical properties. Also, semiconductor materials utilizing photochemical energy conversion functions such as natural pigments such as phthalocyanine, merocyanine, and chlorophyll are known. However, when used alone, they have no mechanical strength. And there is a problem in use such as a decrease in film forming efficiency.

又、テトラシアノキノジメタン/テトラチアフルバレ
ン,テトラシアノキノジメタン/テトラセレナフルバレ
ン等電子受容性物質/電子供与性物質の組み合わせによ
る電荷移動型電導体が数多く提案されているが、いずれ
も成型性,製膜体が悪く実用上問題がある。
Many charge-transfer-type conductors using a combination of an electron-accepting substance / an electron-donating substance such as tetracyanoquinodimethane / tetrathiafulvalene and tetracyanoquinodimethane / tetraselenafulvalene have been proposed. Poor moldability and film-forming body cause practical problems.

(発明が解決しようとする問題点) 本発明者らは鋭意検討の結果、本発明を完成するに至
った。
(Problems to be solved by the invention) As a result of intensive studies, the present inventors have completed the present invention.

本発明の目的は、ニトリル基を有する電子受容性有機
化合物に何らの化学的修飾を行なわず、又他の成型性を
有する樹脂等を用いる事なく、極めて薄く均一でかつ物
理的,化学的に安定な薄膜の製造方法を提供するにあ
る。更に他の目的は、導電性にすぐれた薄膜の製造方法
を提供するにある。
An object of the present invention is to provide an extremely thin, uniform and physically and chemically stable electron-accepting organic compound having a nitrile group without any chemical modification and without using a resin having other moldability. An object of the present invention is to provide a method for producing a stable thin film. Still another object is to provide a method for producing a thin film having excellent conductivity.

(問題点を解決する為の手段) 本発明方法は、非重合性ガスの低温ガスプラズマ中
で、ニトリル基を有する電子受容性有機化合物(I)を
気化して基板上にプラズマ重合膜を形成させ、次いで電
子供与性物質(II)をドーピングする事を特徴とする。
(Means for Solving the Problems) The method of the present invention forms a plasma polymerized film on a substrate by vaporizing an electron-accepting organic compound (I) having a nitrile group in a low-temperature gas plasma of a non-polymerizable gas. And then doping with an electron donating substance (II).

本発明に使用する非重合性ガスは、アルゴン,窒素,
ヘリウム,水,水素,二酸化炭素等が使用しうるが、中
でもアルゴン,窒素,ヘリウム,水素が好ましい。
The non-polymerizable gas used in the present invention is argon, nitrogen,
Helium, water, hydrogen, carbon dioxide and the like can be used, and among them, argon, nitrogen, helium and hydrogen are preferable.

低温ガスプラズマはいわゆる非平衡ガスプラズマの事
を示し、かかるプラズマを生成する為の公知の方法のい
ずれによっても生成させる事が出来る。例えば、J・R
・ホラハン(Hollahan)とA・T.ベル(Bell)版「プラ
ズマ化学の応用技術」、ワイリー、ニューヨーク1974お
よびMシエン(Shen)版「重合体のプラズマ化学」デッ
カー・ニューヨーク・1976に記載されている。即ち高周
波発生器に連結された平行板電極の間にモノマーを真空
下で入れ、真空室の外部又は内部のいずれかの平行板を
用いてプラズマを生成させることが出来る。また外部誘
導コイルによって電場をつくらせ、イオン化ガスのプラ
ズマを発生させてもよく、また反対に荷電した電極に間
隔をおいて直接真空室に入れてプラズマを生成させても
よい。
Low temperature gas plasma refers to so-called non-equilibrium gas plasma and can be generated by any of the known methods for generating such plasma. For example, JR
See Hollahan and AT Bell's "Applied Technologies for Plasma Chemistry", Wiley, NY 1974 and M. Shen's "Polymer Plasma Chemistry", Decker New York, 1976. I have. That is, the monomer can be placed under vacuum between the parallel plate electrodes connected to the high frequency generator, and plasma can be generated using either the parallel plate outside or inside the vacuum chamber. Further, an electric field may be generated by an external induction coil to generate plasma of an ionized gas, or conversely, the plasma may be generated by directly entering a vacuum chamber with an interval between charged electrodes.

本発明に使用する電子受容性有機化合物(I)(以下
単に化合物(I)ともいう)としては、テトラシアノキ
ノジメタン,テトラシアノエチレン,テトラシアノチオ
フェン,テトラシアノフラン,オクタシアノ−p,p,p−
トリフェニルホスホリジン,ジシアノベンゼン,テトラ
シアノベンゼン,2,3−ジクロロ−5,6−ジシアノ−P−
ベンゾキノン、及びそれらのアルキル或いはハロゲン置
換等の各種誘導体がある。
Examples of the electron-accepting organic compound (I) (hereinafter also simply referred to as compound (I)) used in the present invention include tetracyanoquinodimethane, tetracyanoethylene, tetracyanothiophene, tetracyanofuran, octacyano-p, p, p−
Triphenylphospholidine, dicyanobenzene, tetracyanobenzene, 2,3-dichloro-5,6-dicyano-P-
There are various derivatives such as benzoquinone and their alkyl or halogen substitution.

低温ガスプラズマ中で化合物(I)を活性化し、重合
させる為には化合物(I)を気化させなければならな
い。化合物(I)は通常常圧で200℃以上でも安定であ
り、10-5〜102torrという低温ガスプラズマ空間におい
ても必要に応じて加熱しなければ気化させる事は出来な
い。化合物(I)の加熱気化には通常、ヒーター加熱,
高周波加熱,遠赤外線加熱,レーザー加熱及び電子線加
熱等の方法があり適宜選択する。
In order to activate and polymerize compound (I) in a low-temperature gas plasma, compound (I) must be vaporized. The compound (I) is usually stable even at a normal pressure of 200 ° C. or higher, and cannot be vaporized in a low-temperature gas plasma space of 10 −5 to 10 2 torr without heating if necessary. The heating and vaporization of compound (I) is usually performed by heating with a heater,
There are methods such as high-frequency heating, far-infrared heating, laser heating, and electron beam heating, which are appropriately selected.

化合物(I)の気化速度、即ち低温ガスプラズマ中の
化合物(I)モノマーの供給速度は重合膜の形成速度,
形態,性能の点に大きな影響を及ぼす。モノマーの気化
速度が大であれば活性化されたモノマーと未活性モノマ
ーの比が小さく、良好な重合膜は形成出来ない。即ち、
重合度が十分でなく、薄膜としての形態を取り得ない
か、又は溶剤に溶解し、使用中に薄膜が破壊してしま
う。一方、モノマーの気化速度が小であれば、活性モノ
マーと未活性モノマーの比が大きく、モノマーの一次構
造が著しく破壊されて非常に架橋が進み、表面硬度の大
きい耐溶剤性の高い重合膜が得られるが、その分モノマ
ーの一次構造破壊が進み、導電性は小さくなる。化合物
(I)の加熱昇華速度は加熱温度により調整し、プラズ
マ中への供給時間は加熱容器の上につけたシャッターを
開閉して設定する。
The vaporization rate of the compound (I), that is, the supply rate of the monomer of the compound (I) in the low-temperature gas plasma, depends on the formation rate of the polymerized film,
This has a significant effect on form and performance. If the vaporization rate of the monomer is high, the ratio between the activated monomer and the inactive monomer is small, and a good polymer film cannot be formed. That is,
The degree of polymerization is not sufficient, and the film cannot take the form of a thin film, or is dissolved in a solvent, and the thin film is broken during use. On the other hand, if the vaporization rate of the monomer is low, the ratio of the active monomer to the inactive monomer is large, the primary structure of the monomer is remarkably destroyed, the crosslinking proceeds extremely, and a polymer film having high surface hardness and high solvent resistance is obtained. However, the primary structure of the monomer is destroyed by that amount, and the conductivity is reduced. The heating sublimation rate of the compound (I) is adjusted by the heating temperature, and the supply time into the plasma is set by opening and closing a shutter provided on the heating vessel.

低温ガスプラズマを発生させる時の真空度は通常10-3
〜102torr、好ましくは10-2〜101torr、更に好ましくは
10-1〜100torrで行なう。真空度が10-3torr未満或いは1
02torr以上では、プラズマの発生が不十分であるか或い
は不安定であり、好ましくない。圧力の制御には外部よ
りアルゴン,窒素,ヘリウム等の不活性ガスを導入して
行なう。
The degree of vacuum when generating low-temperature gas plasma is usually 10 -3
~ 10 2 torr, preferably 10 -2 to 10 1 torr, more preferably
Carried out in 10 -1 ~10 0 torr. Vacuum degree less than 10 -3 torr or 1
0 The 2 torr or more, and or unstable plasma generation is insufficient, undesirably. The pressure is controlled by introducing an inert gas such as argon, nitrogen or helium from the outside.

プラズマの出力は、例えば直径10cmの平行平板電極に
おいては高々200W以下、好ましくは2〜150W以下、更に
好ましくは10〜100Wである。出力が200Wより高い場合
は、有機化合物(I)のモノマー破壊が進行しすぎ、プ
ラズマ重合膜の導電性や光電変換能が十分でない。一方
2W以下という低出力の場合は、プラズマ重合膜の強度や
表面硬度或いは耐溶剤溶解性が若干小さい。
The plasma output is, for example, at most 200 W or less, preferably 2 to 150 W or less, more preferably 10 to 100 W in a parallel plate electrode having a diameter of 10 cm. When the output is higher than 200 W, the destruction of the monomer of the organic compound (I) proceeds excessively, and the conductivity and photoelectric conversion ability of the plasma polymerized film are not sufficient. on the other hand
When the output is as low as 2 W or less, the strength, surface hardness, or solvent solubility of the plasma polymerized film is slightly small.

プラズマ重合時間は、通常10分以下、好ましくは2〜
8分である。プラズマ重合時間が10分より長くなると、
生成したプラズマ重合膜の変質,破壊が進み、逆に重合
時間が短かいと、プラズマ重合膜の皮膜強度や硬度が低
下し、次のドーピング処理や取り扱いがやや困難にな
る。
Plasma polymerization time is usually 10 minutes or less, preferably 2 to
8 minutes. When the plasma polymerization time is longer than 10 minutes,
Deterioration and destruction of the generated plasma-polymerized film proceed, and if the polymerization time is short, the film strength and hardness of the plasma-polymerized film decrease, and the subsequent doping treatment and handling become somewhat difficult.

本発明方法により得られるプラズマ重合膜は透明ない
しは薄茶色で光沢を有し、非常に薄く、0.01μm〜5μ
mである為に単独で使用する事は少なく、多くの場合基
板の上にプラズマ重合膜を形成させて使用する。基板と
しては、例えば粒状(球状)或いは膜状,フィルム状,
シート状のものが挙げられる。ここで得られたプラズマ
重合膜は、少なくとも10-9S/cmの導電性を有し、プラズ
マ重合膜中においても化合物(I)の二重結合の存在、
スタッキング構造の存在を推定させる。
The plasma polymerized film obtained by the method of the present invention is transparent or light brown, has a gloss, is very thin, and has a thickness of 0.01 μm to 5 μm.
Since m is used, it is rarely used alone. In many cases, a plasma polymerized film is formed on a substrate. As the substrate, for example, granular (spherical) or film-like, film-like,
A sheet-like thing is mentioned. The plasma polymerized film obtained here has a conductivity of at least 10 -9 S / cm, and the presence of the double bond of compound (I) in the plasma polymerized film.
Estimate the existence of stacking structures.

次いで、本薄膜の導電性を更に向上させる為に電子供
与性物質(II)(以下単に物質(II)ともいう)をドー
ピングする。物質(II)としては化合物(I)に対して
電子供与性であれば特に限定されないが、例えばテトラ
チアフルバレン及びその誘導体、テトラセレナフルバレ
ン及びその誘導体、ジセレナジチアフルバレン及びその
誘導体、沃素,臭素,塩素,フッ素等のハロゲン元素、
トリメチルアミン,トリエチルアミン等のアミン類、N
−ビニルカルバゾール,ピリジン,モルホリンジメチル
アニリン,1,5−ジアミノナフタレン,フェノチアジン,
ベンゼン,ナイフタレン,ピレン,1−6ジアミノピレン
等が挙げられる。
Next, in order to further improve the conductivity of the thin film, an electron donating substance (II) (hereinafter, also simply referred to as substance (II)) is doped. The substance (II) is not particularly limited as long as it has an electron donating property to the compound (I). For example, tetrathiafulvalene and its derivatives, tetraselenafulvalene and its derivatives, diselenadithiafulvalene and its derivatives, iodine , Bromine, chlorine, fluorine and other halogen elements,
Amines such as trimethylamine and triethylamine, N
-Vinyl carbazole, pyridine, morpholine dimethyl aniline, 1,5-diaminonaphthalene, phenothiazine,
Benzene, knife tarene, pyrene, 1-6 diaminopyrene and the like can be mentioned.

ドーピングは、上記化合物(I)のプラズマ重合膜を
物質(II)の蒸気に暴露したり、物質(II)の溶液に浸
漬する事で容易に達成できる。或いは、プラズマ重合と
同時に物質(II)例えば沃素をも気化し、プラズマ重合
膜中にドーピングする事も出来る。この方法は、ドーピ
ング時に沃素の蒸気圧が低い為に、通常のドーピングの
場合のようにアルミ,ITOガラス等の基板をいためたり、
腐食させたりする事がなく好ましい。更にプラズマ重合
膜にドーピングした沃素をアルコール等で抽出しプラズ
マ重合膜に所定の微小な孔を形成させる事も可能であ
る。次いでその微孔を有したプラズマ重合膜に他の電子
供与性物質でドーピング処理を施す事も可能である。ド
ーピング後の薄膜の導電性は、ドーピング前に比べて少
なくとも10倍、多くの場合100倍以上導電性が増大して
おり、電荷移動型錯体を形成した薄膜となっている事が
わかる。
The doping can be easily achieved by exposing the plasma polymerized film of the compound (I) to the vapor of the substance (II) or dipping the film in the solution of the substance (II). Alternatively, the substance (II), for example, iodine can be vaporized simultaneously with the plasma polymerization, and can be doped into the plasma polymerization film. In this method, since the vapor pressure of iodine is low at the time of doping, a substrate such as aluminum or ITO glass is damaged as in the case of normal doping,
It is preferable because it does not corrode. Further, it is also possible to extract iodine doped in the plasma polymerized film with alcohol or the like to form predetermined fine holes in the plasma polymerized film. Next, the plasma polymerized film having the pores can be subjected to doping treatment with another electron donating substance. The conductivity of the thin film after doping is at least 10 times that of before doping, and in most cases 100 times or more, indicating that the thin film has a charge-transfer complex formed.

本発明の導電性薄膜は導電性を有するのみでなく、該
薄膜とオーミック接合を形成する金属と電位障壁を形成
する金属とではさみサンドイッチ型セルを形成し、太陽
光或いは人工の光を照射する事により、セルの両端に電
位を発生し、太陽電池として作用する。即ち、導電性薄
膜と金属或いは金属化合物の間でショットキー接合を形
成させ、発生電位を外部へ取り出す事が出来る。接合形
成のための金属或いは金属化合物は、金属箔の接触,蒸
着或いはスパッタリング等により導電性薄膜と接触させ
る。接触抵抗を下げる為には、蒸着或いはスパッタリン
グによるのが好ましい。オーミック接合を形成する金属
としては金,白金,銅或いはインジウム錫酸化物等があ
り、又電位障壁を形成する金属としてはアルミニウム或
いはインジウムがある。
The conductive thin film of the present invention not only has conductivity, but also forms a sandwich cell sandwiched between a metal forming an ohmic junction with the thin film and a metal forming a potential barrier, and is irradiated with sunlight or artificial light. As a result, a potential is generated at both ends of the cell, and the cell functions as a solar cell. That is, a Schottky junction is formed between the conductive thin film and the metal or metal compound, and the generated potential can be taken out. A metal or metal compound for forming a bond is brought into contact with the conductive thin film by contacting a metal foil, vapor deposition or sputtering. In order to reduce the contact resistance, it is preferable to use evaporation or sputtering. Metals that form an ohmic junction include gold, platinum, copper, indium tin oxide, and the like, and metals that form a potential barrier include aluminum or indium.

本発明の導電性薄膜を用いたセルの短絡電流(Jsc)
は通常1nA/cm2以上、好ましくは10nA/cm2以上、更に好
ましくは100nA/cm2以上である。又、開放端電圧(Voc)
は通常0.1V以上、好ましくは0.2V以上、更に好ましくは
0.5V以上であり、光電変換能η(%)は通常1×10-7
以上、好ましくは1×10-6%以上、更に好ましくは1×
10-5%以上である。
Short circuit current (Jsc) of a cell using the conductive thin film of the present invention
Usually 1 nA / cm 2 or more, preferably 10 nA / cm 2 or more, more preferably 100 nA / cm 2 or more. Open circuit voltage (Voc)
Is usually 0.1 V or more, preferably 0.2 V or more, more preferably
0.5 V or more, and the photoelectric conversion ability η (%) is usually 1 × 10 −7 %
Or more, preferably 1 × 10 −6 % or more, more preferably 1 × 10 −6 % or more.
10 -5 % or more.

(発明の効果) 本発明方法によれば、化学的に又物理的に安定でかつ
導電性に優れた重合薄膜が他の材料,添加物等を用いる
事なく、又原料への重合可能な官能基の導入や微粒子に
粉砕後他のポリマーへの混合といった複雑でエストのか
かる工程も必要とする事なく容易に得ることができ、工
業的に極めて有用である。
(Effects of the Invention) According to the method of the present invention, a polymerized thin film that is chemically and physically stable and has excellent conductivity can be used without using other materials and additives, and can be polymerized into a raw material. It can be easily obtained without the need for complicated and expensive steps such as introduction of groups and mixing with other polymers after pulverization into fine particles, and is industrially extremely useful.

(実施例) 以下実施例を示して本発明を更に詳細に説明する。(Example) Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1 第1図に示すプラズマ反応装置の上部電極にITO薄膜
(インジウム錫酸化物)を有するガラス板を基板として
置き、反応器内を10-3torrで30分間脱気し、アルゴンで
0.1torrに圧力を調整した。
Example 1 A glass plate having an ITO thin film (indium tin oxide) was placed as a substrate on the upper electrode of the plasma reactor shown in FIG. 1, and the inside of the reactor was degassed at 10 -3 torr for 30 minutes, and then argon was applied.
The pressure was adjusted to 0.1 torr.

次いで、両電極間に13.56MHzの高周波を100Wの出力で
印加し、低温ガスプラズマを3分間発生させた後、反応
器中の加熱容器に入れたテトラシアノエチレンを加熱,
昇華させた。加熱,昇華は3分間行なった。基板上には
光沢のある茶色の薄膜が形成した。
Next, a high frequency of 13.56 MHz was applied between the two electrodes at an output of 100 W to generate low-temperature gas plasma for 3 minutes, and then the tetracyanoethylene contained in the heating vessel in the reactor was heated.
Sublimated. Heating and sublimation were performed for 3 minutes. A glossy brown thin film was formed on the substrate.

この薄膜はテトラシアノエチレンの溶剤に不溶であ
り、メタノール,エタノール,アセトン,THF等汎用の溶
剤にも不溶であった。
This thin film was insoluble in the solvent of tetracyanoethylene and insoluble in general-purpose solvents such as methanol, ethanol, acetone, and THF.

次いで、第1表に示すドーピング液を40℃に加温して
浸漬し、プラズマ重合薄膜にドーピング処理を施した。
Next, the doping solutions shown in Table 1 were heated to 40 ° C. and immersed, and the plasma polymerized thin films were subjected to doping treatment.

電導度は、プラズマ重合薄膜或いはドーピング処理し
た薄膜上に金の蒸着膜を形成して電極とし、測定した。
結果を第1表に示す。
The electric conductivity was measured by forming a gold vapor deposition film on a plasma polymerized thin film or a doped thin film to form an electrode.
The results are shown in Table 1.

実施例2 実施例1と同様、上部電極上にITO薄膜を有するガラ
ス板を基板としておき、反応器内を10-3torrで約30分間
脱気し、アルゴンで0.1torrに圧力を調整した。
Example 2 As in Example 1, a glass plate having an ITO thin film on an upper electrode was used as a substrate, and the inside of the reactor was degassed at 10 −3 torr for about 30 minutes, and the pressure was adjusted to 0.1 torr with argon.

次いで電極間に13.56MHzの高周波を50Wの出力で印加
し低温ガスプラズマを発生させる。3分後反応器内に設
置した別々の加熱容器に入れたテトラシアノエチレンと
沃素を各々加熱し、昇華させた。加熱昇華は約3分間行
った。昇華したテトシアノエチレンと沃素の比(重量
比)は95:5であった。基板上には光沢はあるが、褐色が
かった薄膜が形成した。
Next, a high frequency of 13.56 MHz is applied between the electrodes at an output of 50 W to generate low-temperature gas plasma. Three minutes later, tetracyanoethylene and iodine contained in separate heating vessels provided in the reactor were heated and sublimated. Heat sublimation was performed for about 3 minutes. The ratio (weight ratio) of sublimed tetocyanoethylene to iodine was 95: 5. A glossy but brownish thin film was formed on the substrate.

褐色は、沃素の影響であり、沃素がプラズマ重合膜中
に分子状〜極めて微小な粒子状に分散しており、テトラ
シアノエチレンに実質的にドーピングされた状態にあ
る。このプラズマ重合薄膜の電導度は6.5×10-7S/cmで
あった。
The brown color is due to the effect of iodine, iodine is dispersed in the form of molecular to extremely fine particles in the plasma-polymerized film, and is substantially doped with tetracyanoethylene. The conductivity of the plasma polymerized thin film was 6.5 × 10 −7 S / cm.

このプラズマ重合膜にアルミニウムを蒸着させて、MS
M型セルを形成させ、アルミニウム電極側から500Wのタ
ングステンランプを照射したところ電極間に電位が発生
し、光電変換機能を有する事がわかった。開放端電圧Vo
cは0.9V、短絡電流Jscは54nA/cm2、曲線因子(F.F)は
0.19であり、光電変換効率ηは7.5×10-6%であった。
Aluminum is deposited on this plasma polymerized film, and MS
When an M-type cell was formed and a 500 W tungsten lamp was irradiated from the aluminum electrode side, a potential was generated between the electrodes, indicating that the cell had a photoelectric conversion function. Open circuit voltage Vo
c is 0.9 V, short-circuit current Jsc is 54 nA / cm 2 , and fill factor (FF) is
0.19, and the photoelectric conversion efficiency η was 7.5 × 10 −6 %.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に用いることのできるプラズマ反応装置
の一例を示し、平行平板電極(3,9),モノマーディス
ク(6)をのせた加熱用フィラメント(4),電極に接
着した重合膜を形成させる基板(8),モノマーの供給
を制御するシャッター(10),耐圧性のプラズマ反応容
器(2),高周波電源(1)及び真空排気系(5)より
なる。
FIG. 1 shows an example of a plasma reactor that can be used in the present invention. A parallel plate electrode (3, 9), a heating filament (4) on which a monomer disk (6) is placed, and a polymer film adhered to the electrode are shown. It comprises a substrate (8) to be formed, a shutter (10) for controlling the supply of monomers, a pressure-resistant plasma reactor (2), a high-frequency power supply (1), and a vacuum exhaust system (5).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 31/04 H01L 31/04 D ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location H01L 31/04 H01L 31/04 D

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非重合性の低温ガスプラズマ中でニトリル
基を有する電子受容性有機化合物(I)を気化して基板
上にプラズマ重合膜を形成させ、次いで電子供与性物質
(II)を、ドーピングする事を特徴とする導電性有機薄
膜の製造方法。
An electron-accepting organic compound having a nitrile group is vaporized in a non-polymerizable low-temperature gas plasma to form a plasma-polymerized film on a substrate. A method for producing a conductive organic thin film, characterized by doping.
【請求項2】非重合性の低温ガスプラズマが窒素,アル
ゴン,ヘリウム,水素の低温ガスプラズマである特許請
求の範囲第1項記載の方法。
2. The method according to claim 1, wherein the non-polymerizable cryogenic gas plasma is a cryogenic gas plasma of nitrogen, argon, helium, and hydrogen.
【請求項3】有機化合物(I)がテトラシアノエチレ
ン,テトラシアノキノジメタン,テトラシアノチオフェ
ンである特許請求の範囲第1項記載の方法。
3. The method according to claim 1, wherein the organic compound (I) is tetracyanoethylene, tetracyanoquinodimethane, or tetracyanothiophene.
【請求項4】プラズマ重合膜が少なくとも、10-9S/cmの
導電性を有する特許請求の範囲第1項記載の方法。
4. The method of claim 1, wherein the plasma polymerized film has a conductivity of at least 10 -9 S / cm.
【請求項5】ドーピング後の導電性が少なくとも10-7S/
cmである特許請求の範囲第1項記載の方法。
5. The conductivity after doping is at least 10 −7 S /
2. The method of claim 1, wherein the distance is cm.
JP62113095A 1987-05-09 1987-05-09 Method for producing conductive thin film Expired - Lifetime JP2608865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62113095A JP2608865B2 (en) 1987-05-09 1987-05-09 Method for producing conductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62113095A JP2608865B2 (en) 1987-05-09 1987-05-09 Method for producing conductive thin film

Publications (2)

Publication Number Publication Date
JPS63277764A JPS63277764A (en) 1988-11-15
JP2608865B2 true JP2608865B2 (en) 1997-05-14

Family

ID=14603349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62113095A Expired - Lifetime JP2608865B2 (en) 1987-05-09 1987-05-09 Method for producing conductive thin film

Country Status (1)

Country Link
JP (1) JP2608865B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4220171A1 (en) * 1992-06-19 1992-12-17 Lsg Loet Und Schweissgeraete G METHOD FOR THE PRODUCTION OF ION AND ELECTRON-CONDUCTING POLYMERS
JP5733816B2 (en) * 2010-10-28 2015-06-10 国立研究開発法人土木研究所 Polymer membrane and gas barrier material

Also Published As

Publication number Publication date
JPS63277764A (en) 1988-11-15

Similar Documents

Publication Publication Date Title
Zhu et al. Polyfluorene derivatives are high‐performance organic hole‐transporting materials for inorganic− organic hybrid perovskite solar cells
US7800194B2 (en) Thin film photodetector, method and system
US6998285B2 (en) Charge separation type heterojunction structure and manufacturing method therefor
Qin et al. Enhanced intramolecular charge transfer of unfused electron acceptors for efficient organic solar cells
Osada et al. Preparation and electrical properties of polymeric copper phthalocyanine thin films by plasma polymerization
WO2006025433A1 (en) Photoelectric transduction material, photoelectric transduction apparatus and process for producing photoelectric transduction material
Petit et al. Properties of iodine complexes of monosubstituted polyacetylenes
Chen et al. A novel composite polymer electrolyte containing room-temperature ionic liquids and heteropolyacids for dye-sensitized solar cells
Fan et al. Improved performance of cyanine solar cells with polyaniline anodes
Page et al. Rapid, facile synthesis of conjugated polymer zwitterions in ionic liquids
Osada et al. Photovoltaic and catalytic activity of plasma-polymerized phthalocyanine films
JP2608865B2 (en) Method for producing conductive thin film
WO2019176982A1 (en) Solar cell
Ponder Jr et al. Metal‐like Charge Transport in PEDOT (OH) Films by Post‐processing Side Chain Removal from a Soluble Precursor Polymer
Abalyaeva et al. Synthesis and electrochemical properties of nanocomposites containing poly (3, 6-bis (phenylamino)-2, 5-dichlorobenzoquinone and multiwalled carbon nanotubes
Osada et al. Preparation and electrical properties of polymeric TCNQ and TCNE films by plasma polymerization
JPH08222281A (en) Photochemical battery containing kind of fluorene, photoelectric transfer element and manufacture of electrode for photochemical battery
Pacheco et al. Understanding the Performance of a Nanocomposite Based on a Conjugated Azo‐Polymer and Reduced Graphene Oxide with Photoelectrically Switchable Properties by Analyzing the Potential Profile during Photocurrent Generation
JPS63215772A (en) Production of electrically conductive polymer composition
JP2006073900A (en) Photoelectric conversion element
JP4083297B2 (en) Method for producing polymer electrode
JP2559677B2 (en) Method for producing plasma polymerized film of porphyrin dye
Yao et al. Self-assembled film of poly (4-carboxyphenyl) acetylene and diazoresin and its photoelectric conversion property
Osada et al. A study on the plasma polymerization of some cyano‐containing compounds and their electrical properties
JP2607454B2 (en) Plasma polymerized film of porphyrin dye