JP2608477B2 - Discharger for ozone generation - Google Patents

Discharger for ozone generation

Info

Publication number
JP2608477B2
JP2608477B2 JP1222348A JP22234889A JP2608477B2 JP 2608477 B2 JP2608477 B2 JP 2608477B2 JP 1222348 A JP1222348 A JP 1222348A JP 22234889 A JP22234889 A JP 22234889A JP 2608477 B2 JP2608477 B2 JP 2608477B2
Authority
JP
Japan
Prior art keywords
protective layer
ozone
discharge
capacitance
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1222348A
Other languages
Japanese (ja)
Other versions
JPH0383803A (en
Inventor
清茂 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1222348A priority Critical patent/JP2608477B2/en
Publication of JPH0383803A publication Critical patent/JPH0383803A/en
Application granted granted Critical
Publication of JP2608477B2 publication Critical patent/JP2608477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、オゾンを発生させるための放電体に関する
ものである。
Description: TECHNICAL FIELD The present invention relates to a discharger for generating ozone.

〔従来の技術〕[Conventional technology]

オゾンは乾燥空気中で放電を行うことにより得られる
もので、強い酸化力を持ち、脱臭、殺菌、漂白等に使用
されている。
Ozone is obtained by performing discharge in dry air, has a strong oxidizing power, and is used for deodorization, sterilization, bleaching, and the like.

このようなオゾンの発生装置としては、たとえば特公
昭55−37483号公報に示されるようにアルミナセラミッ
クスからなる誘電体をはさんで放電を行うようにしたも
のが用いられていた。また、特開昭59−44797号公報な
どに示されているように、セラミックスからなる誘導体
の内部に面状の誘導電極を、表面に線状の放電電極をそ
れぞれ形成し、これらの電極間に高周波電圧を印加して
沿面放電を発生させるようにしたものも用いられてい
た。
As such an ozone generating device, for example, a device in which a discharge is sandwiched by a dielectric made of alumina ceramics as disclosed in Japanese Patent Publication No. 55-37483 has been used. Further, as shown in JP-A-59-44797 and the like, a planar induction electrode is formed inside a derivative made of ceramics, and a linear discharge electrode is formed on the surface, and between these electrodes. A device that generates a creeping discharge by applying a high-frequency voltage has also been used.

さらに、上記誘導電極と放電電極を形成してなるオゾ
ン発生用放電体において、放電電極は放電中に消耗しや
すいため、これを覆うようにガラスから成る保護層を形
成することも行われていた(特開昭63−66880号公報参
照)。
Furthermore, in the ozone generating discharge body formed by forming the above-described induction electrode and discharge electrode, the discharge electrode is easily consumed during discharge, and thus a protective layer made of glass is formed to cover the discharge electrode. (See JP-A-63-66880).

〔従来技術の課題〕 ところが、上記の如きガラスからなる保護層は放電に
より浸食されやすく、次第にオゾン発生量が低下してし
まうという問題点があった。
[Problems of the Related Art] However, the above-mentioned protective layer made of glass has a problem that it is easily eroded by electric discharge, and the amount of ozone generated gradually decreases.

そのため、保護層の材質としてさまざまなセラミック
スを用いることが考えられているが、その場合保護層が
薄いと製造が困難であり、ピンホールが発生しやすく、
逆に保護層が厚いと放電特性が悪くなりオゾン発生量が
低下するなどの問題点があった。またセラミックの種類
が異なると、最適厚みも異なるため、保護層の厚み調整
が非常に難しいものであった。
Therefore, it is considered to use various ceramics as the material of the protective layer. In this case, if the protective layer is thin, it is difficult to manufacture, and pinholes are easily generated.
Conversely, if the protective layer is thick, there are problems such as the discharge characteristics being deteriorated and the amount of generated ozone being reduced. In addition, when the type of ceramic is different, the optimum thickness is also different, so that it is very difficult to adjust the thickness of the protective layer.

〔課題を解決するための手段〕[Means for solving the problem]

上記に鑑みて本発明は、オゾン発生用放電体の放電電
極を覆うように保護層を形成するとともに、誘電体層の
静電容量C1と保護層の静電容量C2との比をC1/C2≦0.5と
すればオゾン発生量を高くできることを見い出したもの
である。
The present invention in view of the above, as well as a protection layer is formed to cover the discharge electrode of the ozone generating discharge body, the ratio of the capacitance C 2 of the capacitance C 1 and the protective layer of the dielectric layer C It has been found that if 1 / C 2 ≦ 0.5, the amount of generated ozone can be increased.

なお、上記誘電体層の静電容量C1とは誘電体層をはさ
んで形成された面状誘導電極と線状放電電極間の静電容
量のことであり、一方保護層の静電容量C2とは、保護層
の上に前記面状誘導電極と同じ大きさの電極を置いたと
きの、この電極と前記放電電極間の静電容量のことであ
る。
The above is a dielectric layer capacitance C 1 of is that the capacitance between the dielectric layer interposed therebetween formed planar induction electrode and the linear discharge electrode, whereas the capacitance of the protective layer the C 2, when placing the same size of the electrode and the planar induction electrode on the protective layer is that this electrode of the electrostatic capacitance between the discharge electrodes.

〔実施例〕〔Example〕

以下本発明の実施例を図によって説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図(a)(b)に示すオゾン発生用放電体は、未
焼成セラミック板1に面状の誘導電極3を、もう一枚の
未焼成セラミック板2に線状の放電電極4を、それぞれ
タングステン、モリブデンなどのペーストを塗布して形
成し、これらのセラミック板1,2を積層した後、上記放
電電極4を覆うようにセラミックスからなる保護層5を
印刷、吹き付け、CVD法、PVD法などにより形成して全体
を焼成一体化したものである。このオゾン発生用放電体
は、上記セラミック板2が誘電体層となり、誘導電極3
と放電電極4間に電圧を印加すると沿面放電が生じ、オ
ゾンを発生させることができる。
1 (a) and 1 (b) show a discharge element for ozone generation, in which an unfired ceramic plate 1 has a planar induction electrode 3 and another unfired ceramic plate 2 has a linear discharge electrode 4. Each of them is formed by applying a paste of tungsten, molybdenum, or the like, and after laminating these ceramic plates 1 and 2, a protective layer 5 made of ceramics is printed and sprayed so as to cover the discharge electrode 4, a CVD method, a PVD method. It is formed by baking and the like and the whole is integrated by firing. In the ozone generating discharger, the ceramic plate 2 serves as a dielectric layer and the induction electrode 3
When a voltage is applied between the electrode and the discharge electrode 4, creeping discharge occurs, and ozone can be generated.

また、他の例として、第2図(a)(b)(c)に示
すオゾン発生用放電体は、まず、第2図(a)に示すよ
うに未焼成セラミック板11の表面にタングステン、モリ
ブデン等からなる面状の誘導電極13を形成し、これを覆
うように誘電体層としてのセラミック層12を印刷、吹き
付け、CVD法、PVD法などにより形成した後、このセラミ
ック層12の上にタングステン、モリブデン等からなる線
状の放電電極14を形成し、これを覆うようにセラミック
スの保護層15を前記と同様の手段で形成したものであ
る。このオゾン発生用放電体は、コーティングにより形
成したセラミック層12を誘電体層としていることから、
誘電体層を薄くして、放電特性を向上させることができ
る。
As another example, as shown in FIG. 2 (a), the ozone generating discharger shown in FIGS. 2 (a), 2 (b), and 2 (c) first has tungsten, After forming a planar induction electrode 13 made of molybdenum or the like, a ceramic layer 12 as a dielectric layer is printed, sprayed, formed by a CVD method, a PVD method, or the like so as to cover the induction electrode 13, and then formed on the ceramic layer 12. A linear discharge electrode 14 made of tungsten, molybdenum, or the like is formed, and a protective layer 15 made of ceramics is formed by the same means as described above so as to cover the discharge electrode. Since this ozone generating discharge body uses the ceramic layer 12 formed by coating as a dielectric layer,
The discharge characteristics can be improved by reducing the thickness of the dielectric layer.

次に、第2図(a)(b)(c)に示すオゾン発生用
放電体において、誘電体層としてのセラミック層12の材
質、厚みT1、及び保護層15の材質、厚みT2を種々に変化
させたものを試作し、それぞれ誘電体層、保護層の静電
容量C1,C2を測定した後、実際のオゾン発生量を調べ
た。
Next, in the ozone generating discharge body shown in FIGS. 2 (a), (b) and (c), the material and thickness T 1 of the ceramic layer 12 as the dielectric layer and the material and thickness T 2 of the protective layer 15 were changed. Various samples were fabricated, and the capacitances C 1 and C 2 of the dielectric layer and the protective layer were measured, and the actual amount of ozone generated was examined.

なお、誘電体層の静電容量C1とは誘電電極13と放電電
極14の間の静電容量であり、保護層の静電容量C2とは保
護層15の上面に誘導電極13と同じ大きさの電極を置いた
ときの、この電極と放電電極14間の静電容量のことであ
る。
Note that the capacitance C 1 of the dielectric layer is the capacitance between the dielectric electrodes 13 and the discharge electrode 14, the same as the induction electrode 13 on the upper surface of the protective layer 15 and the capacitance C 2 of the protective layer This is the capacitance between the electrode and the discharge electrode 14 when a large-sized electrode is placed.

また、上記誘導電極13は5mm×20mm、放電電極14は1mm
×17.5mmの大きさでタングステンにより形成し、オゾン
発生時の条件は、5℃、湿度30%で1次側電圧3.5Vを60
秒印加させたときのオゾン発生量を調べた。
The induction electrode 13 is 5 mm × 20 mm, and the discharge electrode 14 is 1 mm.
It is formed of tungsten with a size of × 17.5mm, and the conditions at the time of ozone generation are as follows.
The amount of ozone generated when applied for seconds was examined.

まず、誘電体層12、保護層15をいずれも、アルミナセ
ラミックスにより形成した場合の実験結果を第1表およ
び第3図に示す。なお、このアルミナセラミックスは、
92%のAl2O3と残部がSiO2,MgO,CaOなどからなり、誘電
率9.5のものを用いた。
First, the experimental results when both the dielectric layer 12 and the protective layer 15 are formed of alumina ceramics are shown in Table 1 and FIG. In addition, this alumina ceramics
92% Al 2 O 3 and the remainder were made of SiO 2 , MgO, CaO, etc., and the dielectric constant was 9.5.

第1表、およびC1/C2とオゾン発生量の関係を示す第
3図より明らかに、誘電体層と保護層の静電容量の比C1
/C2が0.4より大きくなると極端にオゾン発生量が低下
し、特にC1/C2が0.5より大きいとオゾン発生量がほとん
ど0になることがわかる。
From Table 1 and FIG. 3 showing the relationship between C 1 / C 2 and the amount of generated ozone, the capacitance ratio C 1 between the dielectric layer and the protective layer is clearly shown.
/ C 2 decreases extremely ozone generation amount becomes larger than 0.4, in particular C 1 / C 2 is seen to be a 0 almost larger than the amount of ozone generated 0.5.

次に、誘電体層、保護層の材質として、誘電率6.8の
ムライトを用いた場合の実験結果を第2表、第3表に示
す。
Next, Tables 2 and 3 show experimental results when mullite having a dielectric constant of 6.8 was used as the material of the dielectric layer and the protective layer.

第2表、第3表の結果も、第1表と同様であり、誘電
体層と保護層の静電容量の比C1/C2が0.4より大きくなる
と極端にオゾン発生量が低下し、特にC1/C2が0.5より大
きいとオゾン発生量がほとんど0となった。
The results in Tables 2 and 3 are also the same as those in Table 1. When the ratio C 1 / C 2 of the capacitance between the dielectric layer and the protective layer is larger than 0.4, the amount of ozone generation decreases extremely, In particular, when C 1 / C 2 was larger than 0.5, the amount of generated ozone was almost zero.

また、たとえば第1表中のNo.3と第3表中のNo.2を比
較してみると、両者は誘電体層、保護層の厚みはほぼ同
じであるが、保護層の材質が異なるため静電容量の比C1
/C2も異なり、オゾン発生量も異なっている。即ち、オ
ゾン発生量は誘電体層と保護層の厚みの比ではなく、静
電容量の比によって決定されることが確認されている。
Also, for example, comparing No. 3 in Table 1 and No. 2 in Table 3, both have substantially the same thickness of the dielectric layer and the protective layer, but differ in the material of the protective layer. Because the capacitance ratio C 1
/ C 2 is also different, but also different from the amount of ozone generated. That is, it has been confirmed that the amount of ozone generated is determined not by the ratio of the thickness of the dielectric layer to the thickness of the protective layer but by the ratio of the capacitance.

さらに、上記実施例ではセラミック材としてアルミ
ナ、ムライトを用いたもののみを示したが、この他にフ
ォルステライト、ステアタイト、ジルコン、チタニア系
セラミックスなどさまざまなものを用いても同様の結果
であった。
Furthermore, in the above example, only alumina and mullite were used as ceramic materials, but similar results were obtained using various materials such as forsterite, steatite, zircon, and titania ceramics. .

したがって、放電電極上にセラミックスの保護層を形
成したオゾン発生用放電体において、オゾン発生量を多
くするためには、セラミックスの種類にかかわらず、誘
電体層の静電容量C1と保護層の静電容量C2の比C1/C2
0.5以下とすれば良く、特にC1/C2を0.4以下とすればも
っとも優れていることがわかった。
Thus, in the ozone generating discharge body to form a protective layer of ceramic on the discharge electrodes, in order to increase the ozone generation amount, regardless of the type of ceramic, the dielectric layer capacitances C 1 and the protective layer of Capacitance C 2 ratio C 1 / C 2
It was found that the best value was 0.5 or less, and in particular, it was best if C 1 / C 2 was 0.4 or less.

ただし、これはオゾン発生量の点のみから見たもので
あって、放電電極の保護という観点からは保護層の厚み
が大きいほど良いため、実際には、静電容量の比C1/C2
が0.5以下の範囲内で、保護層の厚みを最大にすれば良
い。
However, this is only from the viewpoint of the amount of generated ozone, and from the viewpoint of protection of the discharge electrode, the larger the thickness of the protective layer, the better. Therefore, actually, the capacitance ratio C 1 / C 2
Is within 0.5 or less, the thickness of the protective layer may be maximized.

また誘電体層の静電容量C1と保護層の静電容量C2は、
それぞれ理論的に下記の式によって求められる。
Also, the capacitance C 1 of the dielectric layer and the capacitance C 2 of the protective layer are:
Each is theoretically determined by the following equation.

C1=ε・ε・S/T1 C2=ε・ε・S/T2 これらの2式より C1/C2=ε・T2・T1 したがって、C1/C2を小さくするためには、保護層の
誘電率εを大きくするか厚みT2を小さくすれば良いこ
とがわかる。また、保護層の厚みT2は、15μmより小さ
いと製造が困難で、ボイドが発生しやすいなどの問題が
生じるが、そのような場合は、誘電率εの大きな材質
を用いれば厚みT2を大きくすることができ、上記問題を
解消できる。
C 1 = ε 0・ ε 1・ S / T 1 C 2 = ε 0・ ε 2・ S / T 2 From these two equations, C 1 / C 2 = ε 1 · T 2 / ε 2 · T 1 Therefore, in order to reduce C 1 / C 2 , either increase the dielectric constant ε 2 of the protective layer or increase the thickness T 2 It can be seen that should be reduced. The thickness T 2 of the protective layer is difficult to 15μm is less than the production, but problems such as voids are easily generated occurs such a case, the thickness T 2 With the large material of dielectric constant epsilon 2 Can be increased, and the above problem can be solved.

〔発明の効果〕〔The invention's effect〕

叙上のように本発明によれば、オゾン発生用放電体の
線状放電電極を覆うように保護層を形成するとともに、
誘電体層の静電容量C1と前記保護層の静電容量C2の比を
C1/C2≦0.5としたことによって、放電特性およびオゾン
発生量を低下させることなく線状放電電極の浸食を防止
し、長期間にわたってオゾン発生量の変化が少ない、高
性能のオゾン発生用放電体を提供できる。
According to the present invention as described above, a protective layer is formed so as to cover a linear discharge electrode of an ozone generating discharger,
The capacitance C 1 of the dielectric layer the ratio of the capacitance C 2 of the protective layer
By setting C 1 / C 2 ≦ 0.5, it is possible to prevent erosion of the linear discharge electrode without deteriorating the discharge characteristics and the amount of ozone generation, and to have a small change in the amount of ozone generated for a long period of time for high performance ozone generation. A discharge body can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)は本発明実施例に係るオゾン発生用放電体
を示す分解斜視図、第1図(b)は同図(a)中のX−
X線断面図である。 第2図(a)(b)はそれぞれ本発明の他の実施例に係
るオゾン発生用放電体の製造工程を示す斜視図である。
第2図(c)は同図(b)中のY−Y線断面図である。 第3図は本発明のオゾン発生装置における誘電体層と保
護層の静電容量の比C1/C2とオゾン発生量の関係を示す
グラフである。 1,11:セラミック板、2,12:誘電体層 3,13:誘導電極、4,14:放電電極 5,15:保護層
FIG. 1 (a) is an exploded perspective view showing an ozone generating discharge body according to an embodiment of the present invention, and FIG. 1 (b) is an X- line in FIG.
It is an X-ray sectional view. 2 (a) and 2 (b) are perspective views each showing a manufacturing process of a discharge element for ozone generation according to another embodiment of the present invention.
FIG. 2 (c) is a sectional view taken along line YY in FIG. 2 (b). FIG. 3 is a graph showing the relationship between the ratio C 1 / C 2 of the capacitance between the dielectric layer and the protective layer in the ozone generator of the present invention and the amount of ozone generated. 1,11: ceramic plate, 2,12: dielectric layer 3,13: induction electrode, 4,14: discharge electrode 5, 15: protective layer

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】誘電体層をはさむように誘導電極と放電電
極を備えてなるオゾン発生用放電体において、前記放電
体を覆うように保護層を形成するとともに、前記誘電体
層の静電容量C1と前記保護層の静電容量C2との比を C1/C2≦0.5 としたことを特徴とするオゾン発生用放電体。
1. An ozone generating discharger comprising an induction electrode and a discharge electrode sandwiching a dielectric layer, wherein a protective layer is formed so as to cover the discharger, and a capacitance of the dielectric layer is formed. ozone generating discharge body the ratio of the capacitance C 2 of the C 1 and the protective layer, characterized in that the C 1 / C 2 ≦ 0.5.
JP1222348A 1989-08-29 1989-08-29 Discharger for ozone generation Expired - Fee Related JP2608477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1222348A JP2608477B2 (en) 1989-08-29 1989-08-29 Discharger for ozone generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1222348A JP2608477B2 (en) 1989-08-29 1989-08-29 Discharger for ozone generation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP18089996A Division JP2873205B2 (en) 1996-07-10 1996-07-10 Discharger for ozone generation

Publications (2)

Publication Number Publication Date
JPH0383803A JPH0383803A (en) 1991-04-09
JP2608477B2 true JP2608477B2 (en) 1997-05-07

Family

ID=16780935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1222348A Expired - Fee Related JP2608477B2 (en) 1989-08-29 1989-08-29 Discharger for ozone generation

Country Status (1)

Country Link
JP (1) JP2608477B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102530880A (en) * 2012-02-17 2012-07-04 陈建中 Closed durable moistureproof and anticorrosion ozone sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2430847A1 (en) * 1978-07-13 1980-02-08 Saint Gobain HEATING AND / OR ALARM GLASS
JPS6442306A (en) * 1987-08-05 1989-02-14 Matsushita Electric Ind Co Ltd Ozonizer
JPH01117240A (en) * 1987-10-30 1989-05-10 Masao Iwanaga Discharge element and its applied device
JPH01154482A (en) * 1987-12-09 1989-06-16 Senichi Masuda Electric field device

Also Published As

Publication number Publication date
JPH0383803A (en) 1991-04-09

Similar Documents

Publication Publication Date Title
JP2608477B2 (en) Discharger for ozone generation
WO2002089160A3 (en) Electrical multilayer component and method for the production thereof
JP2822062B2 (en) Discharger for ozone generation
JPH0222998B2 (en)
Bowen et al. Piezoelectric properties of internally electroded PZT multilayers
JP2873205B2 (en) Discharger for ozone generation
JP2608477C (en)
JPH0714341Y2 (en) Ozone generator
JPH10241993A (en) Laminated ceramic electronic component
US4672503A (en) Electric field forming apparatus
JPH0764523B2 (en) Ozone generator
JPH1064753A (en) Trimming capacitor
JPS61231573A (en) Corona discharger
JPS60102727A (en) Trimming condenser and method of producing same
JPH10275734A (en) Ceramics capacitor
Prinsloo et al. Manufacture, behaviour and modelling of BaTiO/sub 3/nonlinear ceramic disc capacitors for high-voltage applications
JPH0730657Y2 (en) Ozone generator
JPH0746627B2 (en) Discharger for ion generation
KR100239101B1 (en) Method for manufacturing a corona discharge device
JPS63143775A (en) Manufacture of corona discharge electrode
JPH08273977A (en) Stacked layer capacitor
JPS63206303A (en) Ozonizer
JPH05226177A (en) Laminated ceramic capacitor using resin mold
JPH02181384A (en) Ceramics ozonizer
JPH05251259A (en) Manufacture of thin film multilayer capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees