JP2607102B2 - Assay method for substances with specific binding sites using a homogeneous system - Google Patents
Assay method for substances with specific binding sites using a homogeneous systemInfo
- Publication number
- JP2607102B2 JP2607102B2 JP62280302A JP28030287A JP2607102B2 JP 2607102 B2 JP2607102 B2 JP 2607102B2 JP 62280302 A JP62280302 A JP 62280302A JP 28030287 A JP28030287 A JP 28030287A JP 2607102 B2 JP2607102 B2 JP 2607102B2
- Authority
- JP
- Japan
- Prior art keywords
- enzyme
- specific binding
- test substance
- substance
- labeled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、連続する一連の反応を触媒する2種類の酵
素標識物質を被検物質を介して近接させ連続した酵素反
応により試料中の被検物質量を求める均一系の測定法に
関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method in which two types of enzyme-labeled substances that catalyze a continuous series of reactions are brought close to each other via a test substance, and the enzymatic reaction in a sample is performed by a continuous enzyme reaction. The present invention relates to a homogeneous measurement method for determining the amount of a test substance.
試料中の微量成分を簡単に測定しようとする方法は従
来より強く望まれていた。現在行われている血清の微量
成分の測定法にはアイソトープを標識物質とする方法と
酵素を標識物質とする方法が有る。アイソトープを使用
する方法は高価な試薬と特別な装置を必要とし、更にア
イソトープの人体への影響も無視できず簡便な方法とは
言えない。酵素を標識物質とするエンザイムイムノアッ
セイは、上記のような欠点はないものの操作上の問題が
あり、特に洗浄を繰り返す煩雑な工程は作業者の負担を
大きくしており、また、測定結果を得るまでに1〜24時
間を必要とする方法であり、更に大量の検体を処理する
には専用の高価な装置を必要とする。エンザイムイムノ
アッセイの改良は1976年ウルマンらにより洗浄を必要と
しないホモジニアスエンザイムイムノアッセイが報告さ
れた。この方法は連続する一連の反応を触媒する2種類
の酵素標識物質を被検物質を介して近接させ連続した酵
素反応により被検物質量を求めるものである。例えば、
セルロースビーズに特定の抗原とグルコース−6−リン
酸脱水素酵素を化学的に結合させた担体と、抗原に対す
る抗体とヘキソキナーゼを化学的に結合させた酵素標識
抗体の両者を用いて抗原を測定する方法である(特開昭
54−139794号公報)。すなわち、この両者の存在する試
薬中に抗原が含まれない場合には、抗原抗体反応を介し
てヘキソキナーゼとグルコース−6−リン酸脱水素酵素
が近接し、補酵素の存在下グルコースの分解が著しく進
み、NADP→NADPHが促進される。この変化が抗原量に反
比例して起きるため、NADPHを定量して抗原濃度を求め
ることができる。A method for simply measuring a trace component in a sample has been more strongly desired than before. Currently, methods for measuring trace components of serum include a method using an isotope as a labeling substance and a method using an enzyme as a labeling substance. The method using an isotope requires expensive reagents and special equipment, and furthermore, the effect of the isotope on the human body cannot be ignored and cannot be said to be a simple method. Enzyme immunoassay using an enzyme as a labeling substance does not have the above-mentioned drawbacks, but has operational problems, and particularly, the complicated steps of repeating washing increase the burden on the operator, and also require the measurement results to be obtained. This method requires 1 to 24 hours, and requires a dedicated and expensive apparatus to process a large amount of specimen. An improvement in the enzyme immunoassay was reported by Ullman et al. In 1976 as a homogeneous enzyme immunoassay that did not require washing. In this method, two kinds of enzyme-labeled substances that catalyze a continuous series of reactions are brought close to each other via a test substance, and the amount of the test substance is determined by a continuous enzyme reaction. For example,
Antigen is measured using both a carrier in which a specific antigen and glucose-6-phosphate dehydrogenase are chemically bound to cellulose beads and an enzyme-labeled antibody in which an antibody against the antigen and hexokinase are chemically bound. Method (Japanese
54-139794). That is, when the antigen is not contained in the reagent in which both are present, hexokinase and glucose-6-phosphate dehydrogenase come close to each other via the antigen-antibody reaction, and the degradation of glucose in the presence of the coenzyme is remarkable. NADP → NADPH is promoted. Since this change occurs in inverse proportion to the amount of antigen, NADPH can be quantified to determine the antigen concentration.
本発明は、かかる技術的な背景をもとに、従来から行
われている酵素標識法により作製された酵素標識物質に
代わる新規な作製法によって作製される高感度の酵素標
識物質を用いた測定法を提供するとともに、2種類の酵
素標識物質のどちらか一方、あるいは両方をそれぞれ同
種類同士凝集させることにより高感度に試料中の被検物
質量を求める均一系による特異的結合部位を有する物質
の測定法を提供しようとするものである。The present invention is based on such a technical background, and the measurement using a highly sensitive enzyme-labeled substance produced by a novel production method replacing the enzyme-labeled substance produced by the enzyme labeling method conventionally performed. A substance having a specific binding site in a homogeneous system that provides highly sensitive determination of the amount of a test substance in a sample by aggregating one or both of the two types of enzyme-labeled substances with the same type. It is intended to provide a measuring method of the above.
本発明者らは、上記目的を達成するために種々検討を
重ねた結果、連続する一連の反応を触媒する2種類の酵
素標識物質を特異的結合部位を二つ以上有する被検物質
を介して近接させ連続した酵素反応により被検物質量を
求める測定法において、前記酵素標識物質として2種類
の異なる酵素をそれぞれ別々に、前記被検物質に対応す
る特異結合相手と共に結合させた不溶性担体を用いる測
定法を見出すとともに、当該測定法において被検物質と
これに対応する特異結合相手との反応時あるいは反応後
に、2種類の異なる酵素をそれぞれ別々に被検物質に対
応する特異結合相手と共に不溶性担体に結合したものよ
りなる、2種類の異なる酵素をそれぞれ別々に被検物質
に対応する特異結合相手と結合したものよりなる又は1
種類の酵素を被検物質に対応する特異結合相手と共に不
溶性担体に結合した酵素標識物質及び他の異なる1種類
の酵素を被検物質に対応する特異結合相手と結合したも
のよりなる2種類の酵素標識物質のどちらか一方、ある
いは両方をそれぞれ同種類同士凝集させることにより一
層の高感度となるべく均一系による特異的結合部位を有
する物質の測定法を見出し、本発明を完成するに到っ
た。The present inventors have conducted various studies in order to achieve the above object, and as a result, two types of enzyme labeling substances that catalyze a continuous series of reactions have been tested via a test substance having two or more specific binding sites. In a measuring method for determining the amount of a test substance by a continuous enzymatic reaction in close proximity, an insoluble carrier in which two different enzymes are separately used as the enzyme labeling substance and bound together with a specific binding partner corresponding to the test substance is used. In addition to finding a measurement method, in the measurement method, at or after the reaction of the test substance with the corresponding specific binding partner, two different enzymes are separately separated from the insoluble carrier together with the specific binding partner corresponding to the test substance. Or two different enzymes each separately bound to a specific binding partner corresponding to a test substance, or 1
Two types of enzymes consisting of an enzyme-labeled substance in which one type of enzyme is bound to an insoluble carrier together with a specific binding partner corresponding to the test substance, and one in which another different type of enzyme is bound to the specific binding partner corresponding to the test substance By aggregating one or both of the labeling substances of the same kind with each other, a method for measuring a substance having a specific binding site in a homogeneous system to obtain higher sensitivity has been found, and the present invention has been completed.
即ち、本発明によれば、2種類の酵素標識物質は特異
的結合部位を二つ以上有する被検物質を介して結合し、
従って第1の酵素標識物質と第2の酵素標識物質とが近
接する。ここで第1の酵素の基質を加えることにより、
第1の酵素と第2の酵素の反応が連続して進行し、被検
物質量に依存した第2酵素の生成物が得られ信号とな
る。この時、もし被検物質が存在しない場合において
は、第1酵素の反応、第2酵素の反応が連続して進行せ
ず、大きな信号を得ることができない。ここで用いるこ
とのできる第1の酵素と第2の酵素の組合わせは次の条
件が必要である。即ち、第1の酵素に基質を加え、そこ
から得られる生成物が第2の酵素の基質となり、第2の
酵素の生成物が検出可能な信号を与えることである。こ
のような第1酵素と第2酵素の組合わせは、例えば第1
表に示したようなものを用いることができる。That is, according to the present invention, the two types of enzyme-labeled substances bind via a test substance having two or more specific binding sites,
Therefore, the first enzyme-labeled substance and the second enzyme-labeled substance come close to each other. Here, by adding the substrate of the first enzyme,
The reaction between the first enzyme and the second enzyme proceeds continuously, and a product of the second enzyme depending on the amount of the test substance is obtained as a signal. At this time, if the test substance does not exist, the reaction of the first enzyme and the reaction of the second enzyme do not proceed continuously, and a large signal cannot be obtained. The combination of the first enzyme and the second enzyme that can be used here requires the following conditions. That is, a substrate is added to the first enzyme, and the product obtained therefrom becomes a substrate for the second enzyme, and the product of the second enzyme gives a detectable signal. Such a combination of the first enzyme and the second enzyme is, for example, the first enzyme.
Those shown in the table can be used.
連続する一連の反応を触媒する2種類の酵素標識物質
を特異的結合部位を二つ以上有する被検物質を介して近
接させ連続した酵素反応により被検物質量を求める測定
法において、試量中に被検物質が存在するとき、2種類
の酵素標識物質は被検物質と特異的に、かつ濃度依存性
的に結合する。すなわち、被検物質量に依存した、被検
物質を介して2種類の酵素標識物質の近接状態を形成す
る。基質を添加することにより得られる信号量は、この
近接した酵素量に依存するため被検物質を定量化するこ
とが可能となる。この時、反応に関与しない第1酵素標
識物質から生成された(一次)生成物を除去すればより
明確な信号が得られる。たとえば第1の酵素標識物質と
して過酸化水素を産生する酵素を用いた場合、この除去
法としては第2表に示す第3の物質を添加すればよい。 In a measurement method in which two types of enzyme-labeled substances that catalyze a continuous series of reactions are brought close to each other through a test substance having two or more specific binding sites to determine the amount of the test substance by a continuous enzymatic reaction, When the test substance is present, the two types of enzyme-labeled substances bind to the test substance specifically and in a concentration-dependent manner. That is, a proximity state of two types of enzyme-labeled substances is formed via the test substance depending on the amount of the test substance. Since the amount of signal obtained by adding the substrate depends on the amount of the nearby enzyme, the test substance can be quantified. At this time, a more clear signal can be obtained by removing the (primary) product generated from the first enzyme-labeled substance that does not participate in the reaction. For example, when an enzyme that produces hydrogen peroxide is used as the first enzyme labeling substance, the third substance shown in Table 2 may be added as a removing method.
第 2 表 カタラーゼ シトクロームCオキシダーゼ アスコルビン酸 アスコルビン酸誘導体 ダルタチオン システイン N−アセチルシステイン ジチオスレイトール しかし、この測定法によって得られる信号量は比較的
小さく、満足いく測定感度が得られない場合もしばしば
あり、測定系の高感度化が大きな課題であった。そこで
本発明者らは、上記の測定原理から、一分子の被検物質
に反応して、近接状態を形成する酵素の量を増大させる
ことが信号量増幅に有効であると考え、この仮説をもと
に以下の方法を試みた。Table 2 Catalase Cytochrome C oxidase Ascorbic acid Ascorbic acid derivative Dartathione cysteine N-acetylcysteine dithiothreitol However, the signal amount obtained by this measurement method is relatively small, and in many cases, satisfactory measurement sensitivity cannot be obtained. High sensitivity of the system was a major issue. Therefore, the present inventors believe that increasing the amount of an enzyme that forms a proximity state in response to one molecule of a test substance in response to the above-described measurement principle is effective for signal amount amplification, and hypothesized this hypothesis. The following method was tried based on it.
その第一は、従来の2種類の酵素標識抗体よりなる酵
素標識物質に代わって、酵素標識物質として2種類の異
なる酵素をそれぞれ別々に、被検物質に対応する特異結
合相手と共に不溶性担体に結合した2種類の酵素標識物
質を用いる方法である。First, instead of the conventional enzyme-labeled substance consisting of two kinds of enzyme-labeled antibodies, two different enzymes are separately bound as enzyme labeling substances to an insoluble carrier together with a specific binding partner corresponding to the test substance. This is a method using two kinds of enzyme labeling substances.
一つの担体上には多数の酵素が結合しているため、ひ
とたび被検物質と(これに対応する特異結合相手と)の
反応が生起すれば多くの酵素がこれに関わり、従って、
一定量の被検物質によって形成される近接する酵素の量
が増大することが期待される。Since a large number of enzymes are bound on one carrier, once a reaction between the test substance and the corresponding specific binding partner occurs, many enzymes are involved in this, and therefore,
It is expected that the amount of nearby enzymes formed by a certain amount of the test substance will increase.
第2の方法は、被検物質とこれに対応する特異結合相
手との反応時、或いは反応後に第1の酵素標識物質と第
2の酵素標識物質のどちらか一方あるいは両方をそれぞ
れ同種類同士を凝集させる方法である。この結果、従来
法では被検物質との反応に参加し得かった酵素(標識物
質)もこれに参加することになり、つまり、被検物質を
介して近接する酵素量が二次的に増幅され、より高感度
な測定が可能となる。In the second method, one or both of the first enzyme-labeled substance and the second enzyme-labeled substance are used during the reaction of the test substance with the corresponding specific binding partner or after the reaction. This is a method of aggregation. As a result, the enzyme (labeled substance) that could not participate in the reaction with the test substance in the conventional method also participates in this, that is, the amount of the enzyme approaching via the test substance is secondarily amplified. Thus, measurement with higher sensitivity becomes possible.
異なる2種類の酵素標識物質を、同種類同士に凝集さ
せる方法は、それぞれの酵素に対する抗酵素抗体、使用
する蛋白質に対する抗蛋白質抗体又は被検物質に対応す
る特異結合相手に対する抗特異結合相手抗体の凝集剤の
どれかひとつ、又はふたつ以上を用いることにより行な
う。The method of aggregating two different enzyme-labeled substances into the same kind is performed by using an anti-enzyme antibody against each enzyme, an anti-protein antibody against the protein to be used, or an anti-specific binding partner antibody against the specific binding partner corresponding to the test substance. It is carried out by using any one of the coagulants or two or more thereof.
例えば、第1の酵素標識物質の酵素がグルコースオキ
シダーゼ(以下、GODと記す)であり、使用した蛋白質
がウシ血清アルブミンであり、かつ被検物質に対応する
特異結合相手がマウスより得られたものより成り、第2
の酵素標識物質の酵素がパーオキシダーゼ(以下、POD
と記す)であり、使用した蛋白質がカゼインであり、か
つ被検物質に対応する特異結合相手がウサギより得られ
たものより成るものと仮定すれば、第1の酵素標識物質
は抗GOD抗体、抗ウシ血清アルブミン抗体又は抗マウス
特異結合相手抗体のどれかひとつ、又はそれらのふたつ
以上を用いることにより凝集でき、第2の酵素標識物質
は抗POD抗体、抗カゼイン抗体又は抗ウサギ特異結合相
手抗体のどれかひとつ、又はそれらのふたつ以上を用い
ることにより凝集させることができる。For example, the first enzyme-labeled substance is glucose oxidase (hereinafter referred to as GOD), the protein used is bovine serum albumin, and the specific binding partner corresponding to the test substance is obtained from a mouse. The second
Enzyme labeling enzyme is peroxidase (hereinafter POD)
Assuming that the protein used is casein and that the specific binding partner corresponding to the test substance is that obtained from a rabbit, the first enzyme-labeled substance is an anti-GOD antibody, Aggregation can be achieved by using any one of anti-bovine serum albumin antibody or anti-mouse specific binding partner antibody, or two or more thereof, and the second enzyme labeling substance is an anti-POD antibody, anti-casein antibody or anti-rabbit specific binding partner antibody Aggregation can be achieved by using any one of them or two or more of them.
あるいは、一方の不溶性担体上にビオチンを直接的又
は間接的に固定しておきアビジンを添加することにより
一方の酵素標識物質を凝集させることもできる。Alternatively, one enzyme-labeled substance can be aggregated by immobilizing biotin directly or indirectly on one insoluble carrier and adding avidin.
凝集に関係しない第1の酵素標識物質から生成される
生成物を除去するために、第2表に示した物質を添加す
ることによりさらに高感度化できる。The sensitivity can be further increased by adding the substances shown in Table 2 in order to remove products generated from the first enzyme-labeled substance not related to aggregation.
さらに、このように第1の酵素標識物質と第2の酵素
標識物質のどちらか一方、あるいは両方をそれぞれ同種
類同士特異的に凝集させることによって酵素標識物質を
団塊状に形成させることは、不溶性担体上に固定された
酵素よりなる標識物質であろうとなかろうと、その効果
にはなんら関係しない。従って、本発明の第1の酵素標
識物質と第2の酵素標識物質のどちらか一方、あるいは
両方をそれぞ同種類同士特異的に凝集させることによっ
て酵素標識物質を団塊状に形成させることにおいて、2
種類の酵素標識物質としては、:2種類の異なる酵素を
それぞれ別々に、被検物質に対応する特異結合相手と共
に不溶性担体に結合した酵素標識物質、:2種類の異な
る酵素をそれぞれ別々に、被検物質に対応する特異結合
相手と結合した酵素標識物質、:1種類の酵素を被検物
質に対応する特異結合相手と共に不溶性担体に結合した
酵素標識物質及び他の異なる1種類の酵素を被検物質に
対応する特異結合相手と結合した酵素標識物質、のいず
れにおいても目的を達成することができる。Furthermore, forming one or both of the first enzyme-labeled substance and the second enzyme-labeled substance into a nodular form by specifically aggregating the same kind with each other is insoluble. Regardless of whether the substance is a label consisting of an enzyme immobilized on a carrier, the effect is not related at all. Therefore, in forming one or more of the first enzyme-labeled substance and the second enzyme-labeled substance of the present invention in the form of a nodule by specifically aggregating the same kind with each other, 2
The two types of enzyme-labeled substances include: two different types of enzymes, each separately, and an enzyme-labeled substance bound to an insoluble carrier together with a specific binding partner corresponding to the test substance. Enzyme-labeled substance bound to the specific binding partner corresponding to the test substance: One enzyme is tested together with the specific binding partner corresponding to the test substance, an enzyme-labeled substance bound to an insoluble carrier, and another different enzyme is tested. The objective can be achieved with any of the enzyme-labeled substances bound to the specific binding partner corresponding to the substance.
また、酵素標識物質を凝集させる方法も、前記した方
法に限らず、同一種の酵素標識物質同士を凝集し得れば
化学的、物理的な方法を問わずあらゆる方法が可能であ
る。In addition, the method of aggregating the enzyme-labeled substance is not limited to the above-described method, and any method can be used regardless of a chemical or physical method as long as the same kind of enzyme-labeled substance can be aggregated.
以上の通り本発明は、連続する一連の反応を触媒する
2種類の酵素標識物質を特異的結合部位を二つ以上有す
る被検物質を介して近接させ連続した酵素反応により被
検物質量を求める場合、まず被検物質試料と第1の酵素
標識物質と第2の酵素標識物質を37℃で混合し、1次凝
集を起こさせ、その後あるいは同時に、該異なる2種類
の酵素標識物質のどちらか一方、あるいは両方をそれぞ
れ同種類同士凝集させるための凝集剤を加える。その
後、定量信号を与えるための基質類を添加し、一定時間
インキュベーションして、その吸光度を測定する。これ
を予め作製された検量線に適用して被検物質量を求める
ことができる。As described above, according to the present invention, two kinds of enzyme-labeled substances that catalyze a continuous series of reactions are brought close to each other via a test substance having two or more specific binding sites, and the amount of the test substance is determined by a continuous enzyme reaction. In this case, first, the test substance sample, the first enzyme-labeled substance, and the second enzyme-labeled substance are mixed at 37 ° C. to cause primary aggregation, and then or simultaneously, one of the two different enzyme-labeled substances is used. On the other hand, a coagulant for coagulating one or both of the same types is added. Thereafter, substrates for giving a quantitative signal are added, and the mixture is incubated for a certain period of time, and the absorbance is measured. This can be applied to a previously prepared calibration curve to determine the amount of the test substance.
本発明で用いる不溶性担体としては、例えばポリスチ
レン、スチレン−ブタジエン共重合体、スチレン−ジビ
ニルベンゼン、ポリビニルトルエン、ポリ塩化ビニー
ル、ポリエチレン、ポリプロピレンあるいはそれらにカ
ルボキシル基、水酸基又はアミノ基等を一部有するラテ
ックス粒子等の合成高分子化合物、多孔性ガラス、シリ
カゲル、アルミナ、活性炭等公知のものを使用できる。
これらの担体を使用して被検物質に対応する特異結合相
手と共に酵素と結合させた酵素標識物質は次のようにし
て得る。例えば、被検物質に対応する特異結合相手と酵
素とを化学的に結合させた後、これを不溶性担体と結合
させる。その際、必要に応じてアルブミン、カゼイン、
スキムミルク及びゼラチン等の適当なブロッキング剤で
処理する。この方法は本発明者らが先に出願した特願昭
62−123907号に詳細に記載されている。他の方法では、
不溶性担体と被検物質に対応する特異結合相手とを公知
の共有結合法あるいは物理的吸着法で結合し、その後酵
素と混合する。もちろん、酵素と特異結合相手と不溶性
担体とはそれぞれに対しどのような順序で結合させて
も、あるいは同時に結合させてよい。ただ、酵素が分子
表面にアルキル鎖、又はフェニル基等の疎水的な部分を
有するものは直接的に結合に供することができるが、比
較的親水的な酵素は、直接結合できないため酵素自身に
疎水性置換基を導入してから結合を行なう。この方法に
ついては本発明者らが先に出願した特願昭61−103830号
に詳細に記載されている。As the insoluble carrier used in the present invention, for example, polystyrene, styrene-butadiene copolymer, styrene-divinylbenzene, polyvinyl toluene, polyvinyl chloride, polyethylene, polypropylene or a latex partially having a carboxyl group, a hydroxyl group or an amino group or the like in them Known compounds such as synthetic polymer compounds such as particles, porous glass, silica gel, alumina, and activated carbon can be used.
An enzyme-labeled substance bound to an enzyme using these carriers together with a specific binding partner corresponding to the test substance is obtained as follows. For example, after a specific binding partner corresponding to a test substance is chemically bound to an enzyme, this is bound to an insoluble carrier. At that time, if necessary, albumin, casein,
Treat with a suitable blocking agent such as skim milk and gelatin. This method is described in Japanese Patent Application No.
It is described in detail in 62-123907. Otherwise,
The insoluble carrier and the specific binding partner corresponding to the test substance are bound by a known covalent bonding method or physical adsorption method, and then mixed with the enzyme. Of course, the enzyme, the specific binding partner, and the insoluble carrier may be bound to each other in any order or may be bound simultaneously. If the enzyme has a hydrophobic moiety such as an alkyl chain or a phenyl group on the molecular surface, it can be directly used for binding. Bonding is performed after the introduction of a sex substituent. This method is described in detail in Japanese Patent Application No. 61-103830 filed earlier by the present inventors.
本発明における被検物質としては、試料中の抗原及び
抗体、あるいは特異的結合部位を2つ以上有する物質を
挙げることができる。例えば、抗原としIgG,IgM,IgA,Ig
E等のイムノグロブリン、α−FP,CRP,CEA,トランスフェ
リン,β2ミクログロブリン等の蛋白質、HBs抗原,風
疹抗原等のウイルス抗原、抗体としては、抗HBs抗体,
抗HBc抗体,抗HBe抗体,抗HTL抗体,抗HIV抗体,抗風疹
抗体等の抗ウィルス抗体、抗マイコプラズマ抗体、他の
特異的結合部位を2つ以上有する物質としては、コンカ
ナバリンA,PHA等のレクチンおよびプロティンA等のイ
ムノグロブリン結合性菌体蛋白質を挙げることができ
る。Examples of the test substance in the present invention include an antigen and an antibody in a sample, or a substance having two or more specific binding sites. For example, IgG, IgM, IgA, Ig as antigens
Immunoglobulin E etc., alpha-FP, CRP, CEA, transferrin, proteins such as beta 2-microglobulin, HBs antigen, viral antigens such as rubella antigen, antibody, anti-HBs antibody,
Anti-viral antibodies such as anti-HBc antibody, anti-HBe antibody, anti-HTL antibody, anti-HIV antibody, anti-rubella antibody, anti-mycoplasma antibody, and other substances having two or more specific binding sites include concanavalin A and PHA. Examples include immunoglobulin-binding cell proteins such as lectin and protein A.
また、本発明で酵素標識物質という場合、被検物質が
抗原のときはそれに対応する抗体が被検物質に対応する
特異結合相手として酵素標識化され、被検物質が特異抗
体のときはそれに対応する抗原が被検物質に対応する特
異結合相手として酵素標識化され、被検物質が他の特異
的結合部位を2つ以上有する物質のときはそれと特異的
に結合する相手が被検物質に対応する特異結合相手とし
て酵素標識化される。そして、その酵素標識化には不溶
性担体を介する場合と介さない場合がある。In the present invention, when the test substance is an antigen, when the test substance is an antigen, the corresponding antibody is enzyme-labeled as a specific binding partner corresponding to the test substance, and when the test substance is a specific antibody, the corresponding antibody is used. Enzyme is labeled as a specific binding partner corresponding to the test substance, and if the test substance has two or more other specific binding sites, the partner that specifically binds to it corresponds to the test substance. Enzyme labeling as a specific binding partner. The enzyme labeling may or may not be performed via an insoluble carrier.
以下、本発明を実施例により説明する。 Hereinafter, the present invention will be described with reference to examples.
実施例1 パーオキシダーゼ標識抗HBs抗体結合ラテックスの作製 パーオキシダーゼ5mgを1mlの0.3M炭酸水素ナトリウム
に溶解し、これに0.2mlの1%2−ジニトロフルオロベ
ンゼンを加えて1時間撹拌した後、1mlの0.06M過ヨウ素
酸ナトリウムを加え、30分撹拌、さらに1mlの0.16Mエチ
レングリコールを加えて1時間撹拌する。これを炭酸緩
衝液(pH9.5)で一昼夜透析する。これを炭酸緩衝液(p
H9.5)に溶解した抗HBsモノクロナール抗体(5mg/ml)1
mlと混合し、室温で3時間反応後(PBS透析)セファク
リルS−200でゲル濾過してパーオキシダーゼ標識抗HBs
抗体を得る。このパーオキシダーゼ標識抗体(250μg/m
l)を1mlと粒径0.22μmの0.2%ラテックス懸濁液1mlを
混合し、37℃3時間放置した後、14000rpm×20分遠心
し、その沈澱部分を0.5%カゼインを含む50mMトリス緩
衝液(pH8.0)にサスペンドし、1時間ブロッキングし
た後、同溶液で洗浄し、パーオキシダーゼ標識抗HBs抗
体結合ラテックスを得る。Example 1 Preparation of peroxidase-labeled anti-HBs antibody-bound latex 5 mg of peroxidase was dissolved in 1 ml of 0.3 M sodium bicarbonate, 0.2 ml of 1% 2-dinitrofluorobenzene was added, and the mixture was stirred for 1 hour, and then 1 ml. 0.06M sodium periodate is added, and the mixture is stirred for 30 minutes. Further, 1 ml of 0.16M ethylene glycol is added, and the mixture is stirred for 1 hour. This is dialyzed overnight in a carbonate buffer (pH 9.5). Add this to the carbonate buffer (p
Anti-HBs monoclonal antibody (5mg / ml) dissolved in H9.5) 1
After reacting for 3 hours at room temperature (PBS dialysis), the mixture was subjected to gel filtration with Sephacryl S-200 and peroxidase-labeled anti-HBs.
Obtain antibodies. This peroxidase-labeled antibody (250 μg / m
l) and 1 ml of a 0.2% latex suspension having a particle size of 0.22 μm were mixed, allowed to stand at 37 ° C. for 3 hours, centrifuged at 14,000 rpm × 20 minutes, and the precipitated portion was subjected to 50 mM Tris buffer solution containing 0.5% casein ( After suspending at pH 8.0) and blocking for 1 hour, the mixture was washed with the same solution to obtain a peroxidase-labeled anti-HBs antibody-bound latex.
実施例2 グルコースオキシダーゼ標識抗HBs抗体結合ラテックス
の作製 グルコースオキシダーゼ180mgをPBS4mlに溶解し、こ
れに400μの30mM n−サクシンイミジル3−(2−ピ
リジルジチオ)プロピオネート(以下SPDPと記す)を加
えて、23℃で30分放置してセファデックスG−25でゲル
濾過後、グルコースオキシダーゼ活性画分を集める。こ
れに100mMジチオスレイトールを400μを加え、20分放
置後再びゲル濾過してSPDPグルコースオキシダーゼを得
る。次に、抗HBsモノクローナル抗体(25mg/ml)1.5ml
及び20mMSPDP150μと混合し、30分放置後、セファデ
ックス25でゲル濾過してSPDP抗HBsモノクローナル抗体
を得る。このようにして得たSPDPグルコースオキシダー
ゼとSPDP抗HBsモノクロナール抗体を等量混合し、一夜
放置後、ゲル濾過してグルコースオキシダーゼ標識抗HB
s抗体を得る。このグルコースオキシダーゼ標識抗体(2
5μg/ml)1mlと粒径0.22μmの0.2%ラテックス懸濁液1
mlを混合し、37℃3時間放置した後、14000rpm×20分遠
心し、その沈澱部分を0.5%カゼインを含む50mMトリス
塩酸緩衝液(pH8.0)に再懸濁し、1時間ブロッキング
した後、再び14000rpm×20分遠心し、同溶液で洗浄し、
グルコースオキシダーゼ標識抗HBs抗体結合ラテックス
を得る。Example 2 Preparation of glucose oxidase-labeled anti-HBs antibody-bound latex 180 mg of glucose oxidase was dissolved in 4 ml of PBS. After leaving the mixture at 30 ° C. for 30 minutes and performing gel filtration on Sephadex G-25, a glucose oxidase active fraction is collected. To this is added 400 μm of 100 mM dithiothreitol, and after standing for 20 minutes, gel filtration is performed again to obtain SPDP glucose oxidase. Next, 1.5 ml of anti-HBs monoclonal antibody (25 mg / ml)
And 150 mM of 20 mM PDP, left for 30 minutes, and gel-filtered with Sephadex 25 to obtain SPDP anti-HBs monoclonal antibody. An equal amount of the SPDP glucose oxidase thus obtained and an SPDP anti-HBs monoclonal antibody are mixed, left overnight, and then subjected to gel filtration to perform glucose oxidase-labeled anti-HBs.
Obtain s antibody. This glucose oxidase-labeled antibody (2
5ml / ml) 1ml and 0.2% latex suspension 0.2% particle size 1
After mixing at 37 ° C. for 3 hours, the mixture was centrifuged at 14000 rpm × 20 minutes, and the precipitate was resuspended in 50 mM Tris-HCl buffer (pH 8.0) containing 0.5% casein, and blocked for 1 hour. Centrifuge again at 14000 rpm × 20 minutes, wash with the same solution,
A glucose oxidase-labeled anti-HBs antibody-bound latex is obtained.
実施例3 HBs抗原の測定 実施例1,2で作製されたPOD標識抗HBs抗体結合ラテッ
クスとGOD標識抗HBs抗体結合ラテックスをそれぞれ0.01
%を含むトリス緩衝液100μ(0.5%カゼイン含有)と
HBs抗原を含む血清10μを混合して37℃で30分間放置
後、グルコース33mM、4−アミノアンチピリン0.82mM、
TOOS2mM、カタラーゼ13000U/mlよりなる基質液2mlを加
え、37℃で550nmにおける吸光度の変化を測定した。そ
の結果を第1図に示す。これより明らかなように、被検
物質の定量が可能となった。Example 3 Measurement of HBs Antigen Each of the POD-labeled anti-HBs antibody-bound latex and the GOD-labeled anti-HBs antibody-bound latex prepared in Examples 1 and 2 was 0.01%.
100% Tris buffer (containing 0.5% casein)
After mixing 10 μm of serum containing HBs antigen and standing at 37 ° C. for 30 minutes, glucose 33 mM, 4-aminoantipyrine 0.82 mM,
2 ml of a substrate solution consisting of 2 mM TOOS and 13000 U / ml catalase was added, and the change in absorbance at 550 nm at 37 ° C. was measured. The result is shown in FIG. As is clear from this, the determination of the test substance became possible.
実施例4 HBs抗原の測定 実施例1,2で作製されたPOD標識抗HBs抗体結合ラテッ
クスとGOD標識抗HBs抗体結合ラテックスをそれぞれ0.01
%を含むトリス緩衝液100μ(0.5%カゼイン含有)と
HBs抗原を含む血清10μを混合して37℃で10分間放置
後、10μの抗GOD抗体を含むトリス緩衝液を加え、20
分間37℃で混和しグルコース33mM、4−アミノアンチピ
リン0.82mM、TOOS2mM、カタラーゼ13000U/mlよりなる基
質液2mlを加え、37℃、550nmにおける吸光度の変化を測
定した。その結果を第1図に示す。これより明らかなよ
うに、被検物質が高感度に定量できた。Example 4 Measurement of HBs Antigen Each of the POD-labeled anti-HBs antibody-bound latex and the GOD-labeled anti-HBs antibody-bound latex prepared in Examples 1 and 2 was 0.01%.
100% Tris buffer (containing 0.5% casein)
After mixing 10 μm of serum containing HBs antigen and standing at 37 ° C. for 10 minutes, 10 μl of Tris buffer containing anti-GOD antibody was added, and
After mixing at 37 ° C for 2 minutes, 2 ml of a substrate solution consisting of 33 mM glucose, 0.82 mM 4-aminoantipyrine, 2 mM TOOS, and 13000 U / ml catalase was added, and the change in absorbance at 550 nm at 37 ° C was measured. The result is shown in FIG. As is clear from this, the test substance could be quantified with high sensitivity.
実施例5 HBs抗原の測定 実施例1,2で作製されたPOD標識抗HBs抗体結合ラテッ
クスとGOD標識抗HBs抗体結合ラテックスをそれぞれ0.01
%を含むトリス緩衝液100μ(0.5%カゼイン含有)と
HBs抗原を含む血清10μを混合し37℃で10分間放置
後、10μの抗GOD抗体と抗POD抗体を含むトリス緩衝液
を加え、20分間37℃で混和しグルコース33mM、4−アミ
ノアンチピリン0.82mM、TOOS2mM、カタラーゼ13000U/ml
よりなる基質液2mlを加え、37℃、550nmにおける吸光度
の変化を測定した。その結果を第1図に示す。これより
明らかなように、被検物質が高感度に定量できた。Example 5 Measurement of HBs Antigen Each of the POD-labeled anti-HBs antibody-bound latex and the GOD-labeled anti-HBs antibody-bound latex prepared in Examples 1 and 2 was 0.01%.
100% Tris buffer (containing 0.5% casein)
After mixing 10 μm of serum containing HBs antigen and leaving at 37 ° C. for 10 minutes, 10 μl of Tris buffer containing anti-GOD antibody and anti-POD antibody was added, and mixed for 20 minutes at 37 ° C., glucose 33 mM, 4-aminoantipyrine 0.82 mM , TOOS2mM, catalase 13000U / ml
2 ml of a substrate solution was added, and the change in absorbance at 550 nm at 37 ° C. was measured. The result is shown in FIG. As is clear from this, the test substance could be quantified with high sensitivity.
実施例6 POD標識抗CRP抗体結合ラテックスの作製 精製抗CRPヤギ抗体を用いて実施例1と同様にPOD標識
抗CRP抗体結合ラテックスを作製した。Example 6 Preparation of POD-labeled anti-CRP antibody-bound latex A POD-labeled anti-CRP antibody-bound latex was prepared in the same manner as in Example 1 using a purified anti-CRP goat antibody.
実施例7 GOD標識抗CRP抗体結合ラテックスの作製 精製抗CRPヤギ抗体を用いて実施例2と同様にGOD標識
抗CRP抗体結合ラテックスを作製した。Example 7 Preparation of GOD-labeled anti-CRP antibody-bound latex A GOD-labeled anti-CRP antibody-bound latex was prepared in the same manner as in Example 2 using a purified anti-CRP goat antibody.
実施例8 CPRの測定 実施例6,7で作製されたPOD標識抗CRP抗体結合ラテッ
クスとGOD標識抗CRP抗体結合ラテックスを用いて実施例
3の方法に準じてCRPを測定した。その結果を第2図に
示す。これから明らかなようにCRPが高感度に測定でき
た。Example 8 Measurement of CPR CRP was measured according to the method of Example 3 using the POD-labeled anti-CRP antibody-bound latex and the GOD-labeled anti-CRP antibody-bound latex prepared in Examples 6 and 7. The result is shown in FIG. As is clear from this, CRP could be measured with high sensitivity.
実施例9 HBs抗原の測定 実施例1,2で作成したPOD標識抗HBs抗体とGOD標識抗HB
s抗体100μとHBs抗原を含む血清10μを混合し37℃
で10分間放置後10μの抗GOD抗体と抗POD抗体を含むト
リス緩衝液を加え、20分間、37℃で混和し実施例3で用
いた基質液2mlを加え、37℃、550nmにおける吸光度の変
化を測定した。その結果を第3図に示す。Example 9 Measurement of HBs antigen POD-labeled anti-HBs antibody and GOD-labeled anti-HB prepared in Examples 1 and 2
Mix s antibody 100μ and serum 10μ containing HBs antigen, 37 ° C
After 10 minutes, add 10 μl of Tris buffer containing anti-GOD antibody and anti-POD antibody, mix for 20 minutes at 37 ° C., add 2 ml of the substrate solution used in Example 3, and change the absorbance at 550 nm at 37 ° C. Was measured. FIG. 3 shows the results.
第3図より明らかなように、被検物質の定量が可能と
なった。As is clear from FIG. 3, the determination of the test substance became possible.
実施例10 ヘキソナーゼ(以下HK)標識抗HBs抗体結合ラテックス
の作製 HK標識抗HBs抗体を実施例2記載のSPDP法により作製
し、前記の方法によりHK標識抗HBs抗体結合ラテックス
を作製した。Example 10 Preparation of Hexonase (HK) -Labeled Anti-HBs Antibody-Bound Latex An HK-labeled anti-HBs antibody was prepared by the SPDP method described in Example 2, and an HK-labeled anti-HBs antibody-bound latex was prepared by the method described above.
実施例11 グルコース−6−リン酸脱水素酵素(以下G6PDH)標識
抗HBs抗体結合ラテックスの作製 G6PDH標識抗HBs抗体を実施例2記載のSPDP法により作
製し、前記の方法によりG6PDH標識抗HBs抗体結合ラテッ
クスを作製した。Example 11 Preparation of Glucose-6-Phosphate Dehydrogenase (G6PDH) -Labeled Anti-HBs Antibody-Binding Latex A G6PDH-labeled anti-HBs antibody was prepared by the SPDP method described in Example 2, and the G6PDH-labeled anti-HBs antibody was prepared by the method described above. A bonded latex was made.
実施例12 HBs抗原の測定 実施例10,11で作製されたHK標識抗HBs抗体結合ラテッ
クスとG6PDH標識抗HBs抗体結合ラテックスをそれぞれ0.
01%を含むトリス緩衝液100μとHBs抗原を含む血清10
0μを混合し37℃で10分間放置後10μの抗HK抗体と
抗G6PDH抗体を含むトリス緩衝液を加え、20分間、37℃
で混和しグルコース40mM、ATP3mM、NAD+3mM、ホスホフ
ルクトキナーゼ3.0U/ml、イソメラーゼ1.5U/mlよりなる
基質液2mlを加え、37℃、340nmにおける吸光度の変化を
測定した。その結果を第4図に示す。Example 12 Measurement of HBs Antigen The HK-labeled anti-HBs antibody-bound latex and the G6PDH-labeled anti-HBs antibody-bound latex prepared in Examples 10 and 11, respectively, were used.
Tris buffer containing 100% 01% and serum containing HBs antigen 10
After mixing 0μ and leaving at 37 ° C for 10 minutes, add 10μ of Tris buffer containing anti-HK antibody and anti-G6PDH antibody, and
And 2 ml of a substrate solution consisting of 40 mM glucose, 3 mM ATP, 3 mM NAD + , 3.0 U / ml phosphofructokinase, and 1.5 U / ml isomerase were added, and the change in absorbance at 340 nm at 37 ° C was measured. The result is shown in FIG.
第4図より明らかなように、被検物質の定量が可能と
なった。As is clear from FIG. 4, the determination of the test substance became possible.
実施例13 パーオキシダーゼ・HBs抗原結合ラテックスの作製 実施例1で作製した活性化PODと正常ウサギ血清より
得られたイムノグロブリンを実施例1と同様に操作して
パーオキシダーゼ標識正常ウサギイムノグロブリンを作
製した。パーオキシダーゼ標識正常ウサギイムノグロブ
リン1mlと精製HBs抗原1mlを混合し、これに0.2%ラテッ
クス2mlを混合し、1.5時間シェイキングした後14000rpm
×20分遠心し、その後沈澱部分を0.5%カゼインを含む5
0mMトリス緩衝液(pH8.0)にサスペンドし、1時間ブロ
ッキングした後、洗浄し、パーオキシダーゼとHBs抗原
とがそれぞれ独立してラテックスに結合したパーオキシ
ダーゼ・HBs抗原結合ラテックスを作製した。Example 13 Preparation of peroxidase / HBs antigen-bound latex The activated POD prepared in Example 1 and immunoglobulin obtained from normal rabbit serum were processed in the same manner as in Example 1 to prepare peroxidase-labeled normal rabbit immunoglobulin. did. 1 ml of peroxidase-labeled normal rabbit immunoglobulin and 1 ml of purified HBs antigen were mixed, 2 ml of 0.2% latex was mixed, and shaking was performed for 1.5 hours.
Centrifuge for 20 minutes, then remove the sedimented part with 0.5% casein
After suspending in 0 mM Tris buffer (pH 8.0) and blocking for 1 hour, washing was performed to prepare a peroxidase / HBs antigen-bound latex in which peroxidase and HBs antigen were independently bound to latex.
実施例14 グルコースオキシダーゼ・HBs抗原結合ラテックスの作
製 実施例2で作製した活性化GODと正常ウサギ血清より
得られたイムノグロブリンを実施例2と同様に操作して
GOD標識正常ウサギイムノグロブリンを作製した。更に
実施例13に従い、グルコースオキシダーゼとHBs抗原と
がそれぞれ独立してラテックスに結合したグルコースオ
キシダーゼ・HBs抗原結合ラテックスを作製した。Example 14 Preparation of Glucose Oxidase / HBs Antigen-Binding Latex The activated GOD prepared in Example 2 and immunoglobulin obtained from normal rabbit serum were treated in the same manner as in Example 2.
GOD-labeled normal rabbit immunoglobulin was prepared. Further, according to Example 13, a glucose oxidase / HBs antigen-bound latex in which glucose oxidase and HBs antigen were independently bound to latex was produced.
実施例15 抗HBs抗体の測定 実施例13,14で作製されたPOD・HBs抗原結合ラテック
スとGOD・HBs抗原結合ラテックスをそれぞれ0.01%を含
むトリス緩衝液100μと抗HBs抗体を含む血清10μを
混合し37℃で10分間放置後10μの抗GOD抗体と抗POD抗
体を含むトリス緩衝液を加え、20分間、37℃で混和し、
実施例3で用いた基質液2mlを加え、37℃、550nmにおけ
る吸光度の変化を測定した。その結果を第5図に示す。Example 15 Measurement of Anti-HBs Antibody Mixing 100 μl of Tris buffer containing 0.01% each of POD / HBs antigen-bound latex and GOD / HBs antigen-bound latex prepared in Examples 13 and 14, and 10 μm of serum containing anti-HBs antibody After 10 minutes at 37 ° C, add 10μ of Tris buffer containing anti-GOD antibody and anti-POD antibody, mix for 20 minutes at 37 ° C,
2 ml of the substrate solution used in Example 3 was added, and the change in absorbance at 550 nm at 37 ° C. was measured. The results are shown in FIG.
第5図より明らかなように、被検物質が高感度に定量
できた。As is clear from FIG. 5, the test substance was quantified with high sensitivity.
実施例16 HBs抗体の測定 実施例2で作製したGOD標識抗HBs抗体結合ラテックス
100μと実施例1で作製したPOD標識抗HBs抗体100μ
(1U/ml)にHBs抗原を含む血清10μを混和し、10分間
37℃に放置後、抗GOD抗体と抗POD抗体100μを加え、
再び20分間放置後実施例3で用いた基質液を加えて37
℃、550nmの吸光度の変化を測定した。その結果を第6
図に示す。その結果より明らかなように被検物質が高感
度に測定できた。Example 16 Measurement of HBs antibody Latex bound to GOD-labeled anti-HBs antibody prepared in Example 2
100μ and POD-labeled anti-HBs antibody 100μ prepared in Example 1
(1U / ml) and 10μm serum containing HBs antigen and mix for 10 minutes
After leaving at 37 ° C, add anti-GOD antibody and anti-POD antibody 100μ,
After standing again for 20 minutes, the substrate solution used in Example 3 was added and 37
The change in absorbance at 550 nm was measured at 550C. The result is the sixth
Shown in the figure. As is clear from the results, the test substance could be measured with high sensitivity.
第1図は、本発明の実施例3,4及び5において、第3
図、第4図及び第6図は、それぞれ本発明の実施例9,12
及び16において測定したHBs抗原濃度と吸光度との関係
を示す、第2図は、本発明の実施例8において測定した
CRP濃度と吸光度との関係を示し、第5図は、本発明の
実施例15において測定した抗HBs抗体濃度と吸光度との
関係を示した検量線を示すものである。 第1図中の記号は下記の意味を有する。 FIG. 1 shows the third embodiment in the third, fourth and fifth embodiments of the present invention.
FIG. 4, FIG. 4 and FIG. 6 show Embodiments 9 and 12 of the present invention, respectively.
FIG. 2 shows the relationship between the HBs antigen concentration and the absorbance measured in Examples 1 and 2, and FIG. 2 shows the results measured in Example 8 of the present invention.
FIG. 5 shows the relationship between the CRP concentration and the absorbance, and FIG. 5 shows a calibration curve showing the relationship between the anti-HBs antibody concentration and the absorbance measured in Example 15 of the present invention. The symbols in FIG. 1 have the following meanings.
Claims (4)
素標識物質を特異的結合部位を二つ以上有する被検物質
を介して近接させ連続した酵素反応により被検物質量を
求める測定法において、前記酵素標識物質として2種類
の異なる酵素をそれぞれ別々に、前記被検物質に対応す
る特異結合相手と共に不溶性担体に結合した2種類の酵
素標識物質を用いることを特徴とする均一系による特異
的結合部位を有する物質の測定法。A method for determining the amount of a test substance by a continuous enzymatic reaction by bringing two kinds of enzyme-labeled substances, which catalyze a continuous series of reactions, into close proximity via a test substance having two or more specific binding sites. Wherein two different enzymes are separately used as the enzyme labeling substances, and two enzyme labeling substances bound to an insoluble carrier together with a specific binding partner corresponding to the test substance are used. Of a substance having a specific binding site.
素標識物質を特異的結合部位を二つ以上有する被検物質
を介して近接させ連続した酵素反応により被検物質量を
求める測定法において、前記酵素標識物質として2種類
の異なる酵素をそれぞれ別々に、前記被検物質に対応す
る特異結合相手と共に不溶性担体に結合した酵素標識物
質を用い、かつ被検物質とこれに対応する特異結合相手
との反応時あるいは反応後に、前記2種類の酵素標識物
質のどちらか一方、あるいは両方をそれぞれ同種類同士
凝集させることを特徴とする均一系による特異的結合部
位を有する物質の測定法。2. A method for determining the amount of a test substance by a continuous enzymatic reaction by bringing two types of enzyme-labeled substances, which catalyze a continuous series of reactions, into close proximity via a test substance having two or more specific binding sites. In the above, two kinds of different enzymes are separately used as the enzyme labeling substance, and an enzyme labeling substance bound to an insoluble carrier together with a specific binding partner corresponding to the test substance is used, and the test substance and the specific binding corresponding thereto are used. A method for measuring a substance having a specific binding site in a homogeneous system, wherein one or both of the two types of enzyme-labeled substances are agglutinated with each other during or after the reaction with a partner.
素標識物質を特異的結合部位を二つ以上有する被検物質
を介して近接させ連続した酵素反応により被検物質量を
求める測定法において、前記酵素標識物質として2種類
の異なる酵素をそれぞれ別々に、前記被検物質に対応す
る特異結合相手と結合した酵素標識物質を用い、かつ被
検物質とこれに対応する特異結合相手との反応時あるい
は反応後に、前記2種類の酵素標識物質のどちらか一
方、あるいは両方をそれぞれ同種類同士凝集させること
を特徴とする均一系による特異的結合部位を有する物質
の測定法。3. A method for determining the amount of a test substance by bringing two enzyme-labeled substances catalyzing a continuous series of reactions into close proximity via a test substance having two or more specific binding sites, and performing a continuous enzymatic reaction. In the above, two kinds of different enzymes are separately used as the enzyme labeling substance, an enzyme labeling substance bound to a specific binding partner corresponding to the test substance is used, and the test substance and a specific binding partner corresponding thereto are used. A method for measuring a substance having a specific binding site in a homogeneous system, wherein one or both of the two enzyme labeling substances are agglutinated with each other during or after the reaction.
素標識物質を特異的結合部位を二つ以上有する被検物質
を介して近接させ連続した酵素反応により被検物質量を
求める測定法において、前記酵素標識物質として1種類
の酵素を前記被検物質に対応する特異結合相手と共に不
溶性担体に結合した酵素標識物質及び他の異なる1種類
の酵素を前記被検物質に対応する特異結合相手と結合し
た酵素標識物質を用い、かつ被検物質とこれに対応する
特異結合相手との反応時あるいは反応後に、前記2種類
の酵素標識物質のどちらか一方、あるいは両方をそれぞ
れ同種類同士凝集させることを特徴とする均一系による
特異的結合部位を有する物質の測定法。4. A measuring method for determining the amount of a test substance by a continuous enzymatic reaction by bringing two types of enzyme-labeled substances catalyzing a continuous series of reactions into close proximity via a test substance having two or more specific binding sites. In the above, an enzyme-labeled substance in which one kind of enzyme is bound to an insoluble carrier together with a specific binding partner corresponding to the test substance, and another different enzyme is a specific binding partner corresponding to the test substance. And using the enzyme-labeled substance bound to the test substance and, during or after the reaction of the test substance with the corresponding specific binding partner, aggregating one or both of the two types of enzyme-labeled substances with each other. A method for measuring a substance having a specific binding site by using a homogeneous system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62280302A JP2607102B2 (en) | 1987-11-07 | 1987-11-07 | Assay method for substances with specific binding sites using a homogeneous system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62280302A JP2607102B2 (en) | 1987-11-07 | 1987-11-07 | Assay method for substances with specific binding sites using a homogeneous system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01123148A JPH01123148A (en) | 1989-05-16 |
JP2607102B2 true JP2607102B2 (en) | 1997-05-07 |
Family
ID=17623094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62280302A Expired - Lifetime JP2607102B2 (en) | 1987-11-07 | 1987-11-07 | Assay method for substances with specific binding sites using a homogeneous system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2607102B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU531777B2 (en) * | 1978-04-05 | 1983-09-08 | Syva Co. | Label/solid conjugate immunoassay system |
-
1987
- 1987-11-07 JP JP62280302A patent/JP2607102B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01123148A (en) | 1989-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1123336A (en) | Method for the demonstration and determination of an antigen or antibody | |
US4347311A (en) | Enzyme immunoassay for determining antigen specific antibodies and test kit for carrying out this assay | |
GB2074727A (en) | Immunological diagnostic method | |
JP3623657B2 (en) | Nonspecific reaction inhibitor, immunoassay reagent and immunoassay method | |
US4743536A (en) | Method for enzyme immuno-determinations in heterogeneous phase | |
AU676469B2 (en) | Method for the elimination of non-specific reactions in immunoassays | |
CA1262228A (en) | Pretreatment method and composition | |
US4272504A (en) | Antibody adsorbed support method for carcinoembryonic antigen assay | |
EP0096463B1 (en) | Immunoglobulin half-molecules and process for producing hybrid antibodies | |
JP2607102B2 (en) | Assay method for substances with specific binding sites using a homogeneous system | |
WO1999060401A1 (en) | Immunoassay reagents and immunoassay method | |
JP3684454B2 (en) | Heterogeneous immunoassay using a precipitable solid phase | |
EP0308235B1 (en) | Attachment of compounds to polymeric particles using carbamoylonium compounds | |
JP3337575B2 (en) | Method for determining anti-streptolysin O antibody | |
JP2651438B2 (en) | Enzyme-labeled antibody-sensitized latex and enzyme immunoassay using the same | |
JPH0727764A (en) | Antibody for immunological measurement blocking fc part, reagent for immunological measurement containing said antibody, immunological measuring method using said reagent for immunological measurement and block reagent blocking fc part | |
JPH0750110B2 (en) | Immunoassay | |
EP0529057B1 (en) | Denatured vehicular proteins to improve enzyme linked immunosorbent assays | |
JP3783084B2 (en) | Reduced denatured serum albumin, production method thereof, treponema antigen sensitization material, and measurement method of treponema antibody | |
JP2000329768A (en) | Immunoassay reagent and production thereof | |
JP2001330611A (en) | Immunoassay reagent | |
JP2001349893A (en) | Immunoassay reagent | |
JPS62261960A (en) | Labeled immune carrier and its using method | |
JPH08254532A (en) | Determination of steptolysin o | |
JPH07128335A (en) | Production of carrier for immunoassay |