JP2606559B2 - LSI wiring structure and method of forming the same - Google Patents

LSI wiring structure and method of forming the same

Info

Publication number
JP2606559B2
JP2606559B2 JP5196761A JP19676193A JP2606559B2 JP 2606559 B2 JP2606559 B2 JP 2606559B2 JP 5196761 A JP5196761 A JP 5196761A JP 19676193 A JP19676193 A JP 19676193A JP 2606559 B2 JP2606559 B2 JP 2606559B2
Authority
JP
Japan
Prior art keywords
wiring
groove
lsi
sio
depositing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5196761A
Other languages
Japanese (ja)
Other versions
JPH0729907A (en
Inventor
晃 古谷
祥雄 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5196761A priority Critical patent/JP2606559B2/en
Publication of JPH0729907A publication Critical patent/JPH0729907A/en
Application granted granted Critical
Publication of JP2606559B2 publication Critical patent/JP2606559B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体素子作成プロセス
の一つであるLSI配線の構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of an LSI wiring which is one of processes for manufacturing a semiconductor device.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】従
来、LSIの配線材料にはAlあるいはAl合金が用い
られていたが、今後の微細化にはAlあるいはAl合金
では抵抗値の高さによる信号伝達速度の遅れ、マイグレ
ーション耐性の低さによる信頼性の低下が問題となる。
Au、Ag、Cuは低抵抗、高マイグレーション耐性か
らAlに代わる配線材料として期待されている。従来の
AlおよびAl合金配線は、塩素を用いたドライエッチ
ング法により蒸気圧の高いAlCl3を形成し、低温で
加工を行っていた。しかしながらAu、Ag、Cuの塩
素化合物は蒸気圧が低く、ドライエッチング法による低
温での加工は困難である。そこで埋め込み法による配線
形成が試みられている。この方法は配線形状に溝を形成
してその溝に配線材料を選択成長させるか、もしくは配
線材料を溝以外の箇所にも均一に堆積した後にエッチバ
ックすることにより配線を形成する方法である。この埋
め込み配線ではグラフォエピタキシーが期待されている
が、実際には製造プロセス温度が低温であるためグラフ
ォエピタキシーは困難である。本発明の目的は、埋め込
み配線において、低温でのグラフォエピタキシーを実現
し、大粒径、高配向のLSI配線構造とその形成方法を
提供することにある。
2. Description of the Related Art Conventionally, Al or an Al alloy has been used as a wiring material for an LSI. However, in the future miniaturization, a signal due to a high resistance value of the Al or an Al alloy is used. Problems such as a delay in transmission speed and a decrease in reliability due to low migration resistance become problems.
Au, Ag, and Cu are expected to replace Al because of their low resistance and high migration resistance. Conventional Al and Al alloy wiring have been formed at a low temperature by forming AlCl 3 having a high vapor pressure by a dry etching method using chlorine. However, the chlorine compounds of Au, Ag, and Cu have low vapor pressures, and it is difficult to perform low-temperature processing by dry etching. Therefore, wiring formation by an embedding method has been attempted. This method is a method in which a groove is formed in a wiring shape and a wiring material is selectively grown in the groove, or a wiring material is formed by uniformly depositing the wiring material in a portion other than the groove and then etching back. Graphoepitaxy is expected in this buried wiring, but in practice, graphoepitaxy is difficult because the manufacturing process temperature is low. An object of the present invention is to provide a large grain size, highly oriented LSI wiring structure which realizes graphoepitaxy at a low temperature in an embedded wiring, and a method of forming the same.

【0003】[0003]

【課題を解決するための手段】本発明は、配線形状に溝
を設けた配線パターンが基板上に形成され、該溝に配線
材料が埋め込まれたLSI配線構造であって、前記配線
パターンの溝部の側壁における底辺部の材料は、前記溝
部の底面および側壁上部の材料よりも配線材料に対する
吸着力の強い材料で構成されてなることを特徴とするL
SI配線構造である。ここで、吸着力の弱い材料と吸着
力の強い材料との組み合わせは、それぞれSiO2とS
x1-x、またはSiO2とTiN、またはSiO2とT
iW、またはSix1-xとTiN、またはSix1-x
TiWであることを好適とする。
According to the present invention, there is provided an LSI wiring structure in which a wiring pattern having a groove in a wiring shape is formed on a substrate, and a wiring material is embedded in the groove. Wherein the material at the bottom of the side wall is made of a material having a stronger attraction to the wiring material than the material at the bottom of the groove and the upper part of the side wall.
This is an SI wiring structure. Here, the combination of a material having a weak adsorption force and a material having a strong adsorption force is SiO 2 and S, respectively.
i x N 1-x , or SiO 2 and TiN, or SiO 2 and T
iW, or a suitable that the Si x N 1-x and TiN or Si x N 1-x and TiW,.

【0004】また、そのLSI配線構造を形成するため
の方法は、基板上に第1の材料を堆積する工程と、該第
1の材料上に第1の材料よりも配線材料に対する吸着力
の強い第2の材料を堆積する工程と、該第2の材料上に
第2の材料よりも配線材料に対する吸着力の弱い第3の
材料を堆積する工程と、前記第2の材料および前記第3
の材料を加工して、前記第1の材料を溝の底面とする配
線形状の溝を形成する工程と、該溝に配線材料を堆積す
る工程と、溝の外部に堆積された配線材料を除去する工
程とからなることを特徴とする。
Further, a method for forming the LSI wiring structure includes a step of depositing a first material on a substrate and a method of forming a first material on the first material, which has a stronger attraction force to the wiring material than the first material. A step of depositing a second material, a step of depositing a third material having a lower adsorbing power on the wiring material than the second material on the second material, and a step of depositing the second material and the third material.
Forming a wiring-shaped groove using the first material as the bottom surface of the groove, depositing a wiring material in the groove, and removing the wiring material deposited outside the groove. And a step of performing

【0005】[0005]

【作用】埋め込み配線のパターンの溝の底面および側壁
上部に配線材料に対する吸着力の弱い材料を、側壁の底
辺部分の材料に配線材料に対する吸着力の強い材料を用
いて配線を形成する。グラフォエピタキシーは結晶粒の
配向が下地だけでなく側壁の影響を受けることによりエ
ピタキシャル成長させるのが基本原理である。1000
℃程度以上の高温堆積の場合、埋め込みの穴の部分のど
こで核成長が生じても、結晶粒の面内回転自由度が高い
ため壁との界面エネルギーを最小にするように結晶粒が
回転し全ての結晶粒の配向が揃いグラフォエピタキシャ
ル成長が可能となる。しかしながらLSI製造プロセス
で許されるような低温堆積では埋め込み幅程度の結晶粒
の面内回転は困難であり、グラフォエピタキシーするた
めには核形成を壁と底の境界部分に生じさせ核の段階か
ら配向を揃えなければならない。本発明では溝の底面お
よび側壁上部に吸着力の弱い材料を、側壁の底辺部分に
吸着力の強い材料を用いることにより、底面を表面拡散
した配線材料粒子が壁面でトラップされ核形成は壁と底
の境界から生じ、グラフォエピタキシーが可能となる。
低温でグラフォエピタキシーを実現することにより、埋
め込み配線の大粒径化、高配向化が可能となる。大粒径
化、高配向化により配線のマイグレーション耐性が向上
し、信頼性の高い配線が可能となる。
The wiring is formed by using a material having a low attraction to the wiring material on the bottom surface of the groove and an upper portion of the side wall of the pattern of the buried wiring, and a material having a high attraction to the wiring material at the bottom of the side wall. The basic principle of graphoepitaxy is that the crystal grains are epitaxially grown by the influence of the side walls as well as the orientation of the crystal grains. 1000
In the case of high-temperature deposition of about ℃ or more, no matter where nucleus growth occurs in the buried hole, the crystal grains rotate so as to minimize the interfacial energy with the wall due to the high degree of freedom of in-plane rotation of the crystal grains. All the crystal grains have the same orientation, enabling grapho-epitaxial growth. However, in low-temperature deposition, which is allowed in LSI manufacturing processes, in-plane rotation of crystal grains with a buried width is difficult, and in order to perform graphoepitaxy, nucleation occurs at the boundary between the wall and the bottom. The orientation must be aligned. In the present invention, by using a material having a low adsorptivity on the bottom surface and the upper portion of the side wall and a material having a strong adsorptivity on the bottom portion of the side wall, wiring material particles whose surface is diffused on the bottom surface are trapped on the wall surface and nucleation is formed on the wall. Arising from the bottom boundary, graphoepitaxy is possible.
By realizing graphoepitaxy at a low temperature, it is possible to increase the grain size and orientation of the buried wiring. By increasing the grain size and increasing the orientation, the migration resistance of the wiring is improved, and a highly reliable wiring can be obtained.

【0006】[0006]

【実施例】次に、本発明の実施例について図面を参考に
して説明する。 実施例1 図1は本発明のLSI配線形成方法の一実施例を示す基
板の断面図である。まず図1(a)に示すように、Si
基板1上に吸着力の弱い第1の材料であるSiO22を
CVD法により100〜10000オングストローム堆
積し、次にSiO22上にSiO2に比べて吸着力の強い
第2の材料であるSix1-x3をCVD法により5〜1
00オングストローム堆積し、次にSix1-x3上に吸
着力の弱い第3の材料であるSiO24をCVD法によ
り100〜10000オングストローム堆積する。次に
図1(b)に示すように、通常のドライエッチング技術
によりSix1-x3およびSiO24を加工し、溝の底
がSiO22となるようにSix1-xのみを除去し、配
線形状の溝を形成する。次に配線材料のCuを室温〜5
00℃で堆積すると、堆積初期の段階で図1(c)に示
すように底部と側壁部の境界部分からのみCu核5aが
形成する。Cu核5aは底部と側壁部の両方に対し(1
11)配向するため、埋め込まれたCuはグラフォエピ
タキシャル成長する。そのまま堆積を続けると、図1
(d)に示すように、溝の内部には単結晶Cu5が、外
部には多結晶Cu6が形成される。その後、通常のエッ
チバック技術により溝の外部の多結晶Cuを除去し、図
1(e)に示すような単結晶Cu配線が形成される。
Next, embodiments of the present invention will be described with reference to the drawings. Embodiment 1 FIG. 1 is a sectional view of a substrate showing an embodiment of an LSI wiring forming method of the present invention. First, as shown in FIG.
SiO 2 2, which is a first material having a weak adsorption force, is deposited on the substrate 1 by 100 to 10000 angstroms by a CVD method, and then a second material having a stronger adsorption force than SiO 2 is formed on the SiO 2 2. the Si x N 1-x 3 by the CVD method 5-1
Then, 100 Å of SiO 2, which is a third material having a low adsorptivity, is deposited on the Si x N 1 -x 3 by CVD in a thickness of 100 to 10000 Å. Next, as shown in FIG. 1 (b), processing the Si x N 1-x 3 and SiO 2 4 by conventional dry etching technique, Si as the bottom of the groove is SiO 2 2 x N 1-x Is removed to form a wiring-shaped groove. Next, Cu of the wiring material is changed from room temperature to 5
When deposited at 00 ° C., Cu nuclei 5a are formed only at the boundary between the bottom and the side wall at the initial stage of the deposition, as shown in FIG. 1C. The Cu nucleus 5a has (1
11) The embedded Cu grows by grapho-epitaxial growth for orientation. If the deposition is continued as it is,
As shown in (d), single-crystal Cu5 is formed inside the groove, and polycrystalline Cu6 is formed outside. Thereafter, the polycrystalline Cu outside the groove is removed by a normal etch-back technique, and a single-crystal Cu wiring as shown in FIG. 1E is formed.

【0007】以上の結果は、吸着力の弱い材料と強い材
料がそれぞれSiO2とSix1-xでなく、SiO2とT
iN、またはSiO2とTiW、またはSix1-xとT
iN、またはSix1-xとTiWであっても同様の結果
を得ることができる。また配線材料の堆積方法はスパッ
タ法でもCVD法でも良い。また吸着力の弱い第1の材
料および第3の材料は、二つとも同じ材料であってもよ
いし、別の材料であってもよい。さらに、配線材料とし
ては、本実施例で用いたCuのほかに、Au,Ag,A
lなどであってもよい。
[0007] These results, rather than a SiO 2 material susceptible and strong material suction force each Si x N 1-x, SiO 2 and T
iN or SiO 2 and TiW, or Si x N 1-x and T,
iN or Si x N 1-x and TiW is a also similar result can be obtained. The wiring material may be deposited by a sputtering method or a CVD method. Further, the first material and the third material having weak adsorption powers may be the same material or different materials. Further, as the wiring material, in addition to Cu used in this embodiment, Au, Ag, A
1 or the like.

【0008】[0008]

【発明の効果】以上説明したように、本発明によれば埋
め込み配線においてグラフォエピタキシーを実現し、大
粒径、高配向のLSI配線構造を提供することができ
る。
As described above, according to the present invention, graphoepitaxy can be realized in a buried wiring, and a large grain size and highly oriented LSI wiring structure can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるLSI配線形成方法の一実施例を
示す工程断面図である。
FIG. 1 is a process sectional view showing one embodiment of an LSI wiring forming method according to the present invention.

【符号の説明】[Explanation of symbols]

1 Si基板 2 SiO2 3 Six1-x 4 SiO2 5 単結晶Cu 5a Cu核 6 多結晶Cu1 Si substrate 2 SiO 2 3 Si x N 1 -x 4 SiO 2 5 single crystal Cu 5a Cu nuclei 6 polycrystalline Cu

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 配線形状に溝を設けた配線パターンが基
板上に形成され、該溝に配線材料が埋め込まれたLSI
配線構造であって、前記配線パターンの溝部の側壁にお
ける底辺部の材料は、前記溝部の底面および側壁上部の
材料よりも配線材料に対する吸着力の強い材料で構成さ
れてなることを特徴とするLSI配線構造。
An LSI in which a wiring pattern having a groove in a wiring shape is formed on a substrate and a wiring material is embedded in the groove.
An LSI having a wiring structure, wherein a material of a bottom portion of a side wall of a groove of the wiring pattern is made of a material having a stronger attraction to a wiring material than a material of a bottom surface of the groove and an upper portion of the side wall. Wiring structure.
【請求項2】 吸着力の弱い材料と吸着力の強い材料と
の組み合わせが、それぞれSiO2とSix1-x、また
はSiO2とTiN、またはSiO2とTiW、またはS
x1-xとTiN、またはSix1-xとTiWである請
求項1記載のLSI配線構造。
2. A combination of a strong material suction force and weak adsorption force material, SiO 2 and Si x N 1-x, respectively, or SiO 2 and TiN, or SiO 2 and TiW, or S,
i x N 1-x and TiN or Si x N 1-x and the LSI wiring structure according to claim 1, wherein a TiW,.
【請求項3】 基板上に第1の材料を堆積する工程と、
該第1の材料上に第1の材料よりも配線材料に対する吸
着力の強い第2の材料を堆積する工程と、該第2の材料
上に第2の材料よりも配線材料に対する吸着力の弱い第
3の材料を堆積する工程と、前記第2の材料および前記
第3の材料を加工して、前記第1の材料を溝の底面とす
る配線形状の溝を形成する工程と、該溝に配線材料を堆
積する工程と、溝の外部に堆積された配線材料を除去す
る工程とからなることを特徴とするLSI配線の形成方
法。
3. depositing a first material on a substrate;
Depositing a second material having a higher adsorbing power on the wiring material than the first material on the first material, and weaker adsorbing power on the wiring material than the second material on the second material; Depositing a third material; processing the second material and the third material to form a wiring-shaped groove having the first material as a bottom surface of the groove; A method of forming an LSI wiring, comprising: a step of depositing a wiring material; and a step of removing the wiring material deposited outside the groove.
JP5196761A 1993-07-15 1993-07-15 LSI wiring structure and method of forming the same Expired - Lifetime JP2606559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5196761A JP2606559B2 (en) 1993-07-15 1993-07-15 LSI wiring structure and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5196761A JP2606559B2 (en) 1993-07-15 1993-07-15 LSI wiring structure and method of forming the same

Publications (2)

Publication Number Publication Date
JPH0729907A JPH0729907A (en) 1995-01-31
JP2606559B2 true JP2606559B2 (en) 1997-05-07

Family

ID=16363187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5196761A Expired - Lifetime JP2606559B2 (en) 1993-07-15 1993-07-15 LSI wiring structure and method of forming the same

Country Status (1)

Country Link
JP (1) JP2606559B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100387257B1 (en) * 1999-12-28 2003-06-11 주식회사 하이닉스반도체 Method of forming a metal line in a semiconductor device
US6566248B1 (en) * 2001-01-11 2003-05-20 Advanced Micro Devices, Inc. Graphoepitaxial conductor cores in integrated circuit interconnects
KR100783274B1 (en) * 2006-11-29 2007-12-06 동부일렉트로닉스 주식회사 Method of manufacturing semiconductor device
KR20200093514A (en) 2017-11-30 2020-08-05 라이온 가부시키가이샤 Oral biofilm formation inhibitor and oral composition
CN111417381B (en) 2017-11-30 2023-06-30 狮王株式会社 Oral scale remover, oral scale formation inhibitor, and oral composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195844A (en) * 1983-04-20 1984-11-07 Toshiba Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPH0729907A (en) 1995-01-31

Similar Documents

Publication Publication Date Title
US6720262B2 (en) Method of forming copper interconnections and thin films using chemical vapor deposition with catalyst
US5071792A (en) Process for forming extremely thin integrated circuit dice
US5168078A (en) Method of making high density semiconductor structure
KR100214852B1 (en) Forming method for metal wiring in semiconductor device
EP1204140A2 (en) Semiconductor device and method for fabricating the same
JPH04142061A (en) Formation of tungsten plug
JP2606559B2 (en) LSI wiring structure and method of forming the same
CN1110083C (en) Method for making semiconductor device
US5025304A (en) High density semiconductor structure and method of making the same
JPS60115221A (en) Manufacture of semiconductor device
JP2606548B2 (en) Cu wiring and method for forming the same
US5985754A (en) Method of forming a void-free contact plug
JP3099406B2 (en) Multilayer wiring structure of integrated circuit
JP2643793B2 (en) Semiconductor device and manufacturing method thereof
JPH09283467A (en) Manufacture of semiconductor device
JP2986884B2 (en) Method for manufacturing semiconductor device
JP2808998B2 (en) Method for manufacturing semiconductor device
JPH0810682B2 (en) Method for manufacturing semiconductor device
JPH04326521A (en) Semiconductor integrated circuit device and its manufacture
JP2592281B2 (en) Method for manufacturing semiconductor device
JP2998444B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH04132218A (en) Formation method of aluminum film
JP2606080B2 (en) Method for manufacturing semiconductor device
JPH11274106A (en) Single-wafer cvd apparatus and method therefor
JPH05243219A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140213

Year of fee payment: 17

EXPY Cancellation because of completion of term