JP2606409B2 - Vehicle monitoring method and device - Google Patents
Vehicle monitoring method and deviceInfo
- Publication number
- JP2606409B2 JP2606409B2 JP10183890A JP10183890A JP2606409B2 JP 2606409 B2 JP2606409 B2 JP 2606409B2 JP 10183890 A JP10183890 A JP 10183890A JP 10183890 A JP10183890 A JP 10183890A JP 2606409 B2 JP2606409 B2 JP 2606409B2
- Authority
- JP
- Japan
- Prior art keywords
- vehicle
- white line
- parking
- parking area
- edge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Closed-Circuit Television Systems (AREA)
- Signal Processing Not Specific To The Method Of Recording And Reproducing (AREA)
- Traffic Control Systems (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は駐車場等で空である駐車エリヤの位置を運転
者に通知するとき等に必要となる車両監視技術に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a vehicle monitoring technique necessary for notifying a driver of a position of an empty parking area in a parking lot or the like.
駐車場画像を処理して駐車エリヤ毎に車の有無を判定
するのに、文献[長尾真(著):画像認識論,コロナ
社,P.105,昭和58年2月15日初版]に記載されている2
つの画像f(x,y),a(x,y)の差S S=Σ|f(x,y)−a(x,y)| (1) を利用した技術がある。Processing of parking lot images to determine the presence or absence of a car for each parking area is described in a document [Shin Nagao (author): Image Recognition Theory, Corona, P.105, First Edition on February 15, 1983]. 2
There is a technique using a difference S S = Σ | f (x, y) −a (x, y) | (1) between two images f (x, y) and a (x, y).
例えば第2図(A)に例示する白線で区切られた駐車
エリヤ101に車が有る情景を、例えばTVカメラで撮像し
た画像103を第2図(B)に示す。画像103を処理して見
えている車104を発見するのに、従来技術では、第1段
階として、駐車エリヤ101内で値が1、それ以外では値
が0となる第2図(C)に示すマスク画像(m(x,
y))105を予め作成する。第2段階として駐車エリヤ10
1に車が無い場合の画像をf0(x,y)としたとき、次式で
駐車エリヤ101のモデル画像a(x,y)を予め合成する。For example, FIG. 2B shows a scene in which a car is present in a parking area 101 separated by a white line illustrated in FIG. In order to find a visible car 104 by processing the image 103, in the prior art, as a first step, FIG. 2 (C) in which the value is 1 in the parking area 101 and 0 otherwise. The mask image (m (x,
y)) 105 is created in advance. Second stage parking area 10
Assuming that an image when there is no car in 1 is f 0 (x, y), a model image a (x, y) of the parking area 101 is synthesized in advance by the following equation.
a(x,y)=f0(x,y)・m(x,y) (2) 第3段階として画像103をi(x,y)と表したとき、次
式で駐車エリヤ101の駐車エリヤ画像f(x,y)を合成す
る。a (x, y) = f 0 (x, y) · m (x, y) (2) When the image 103 is expressed as i (x, y) as the third stage, the parking area 101 is parked by the following equation. The area image f (x, y) is synthesized.
f(x,y)=i(x,y)・m(x,y) (3) 第4段階として式(1)を用いてa(x,y)とf(x,
y)の差Sを算出する。第5段階として例えば差Sが予
め設定された閾値S0より大きければ、駐車エリヤ101に
は車があるものと判断していた。f (x, y) = i (x, y) · m (x, y) (3) As the fourth step, a (x, y) and f (x,
Calculate the difference S in y). Larger than the threshold S 0, for example, the difference S is set in advance as the fifth step, the parking Elijah 101 had determined that there is a car.
しかしながら、前記従来技術を用いて、例えば第3図
(A)に例示する駐車場の画像106に写っている、例え
ば車107に多くの部分を隠された駐車エリヤ108の車の有
無を判定する場合、例えば先と同様にして合成した駐車
エリヤ108を表す第3図(B)に例示したマスク画像109
を用いて式(3)により合成した駐車エリヤ画像に、車
107の一部が写るため、先と同様にして算出された差S
が閾値S0よりも大きくなる。その結果、駐車エリヤ108
に車が有るという誤った判定を下す問題点があった。However, using the above-described conventional technique, for example, it is determined whether or not there is a car in a parking area 108 in which a large portion of the car 107 is hidden, for example, in a parking lot image 106 illustrated in FIG. 3A. In this case, for example, the mask image 109 illustrated in FIG. 3B showing the parking area 108 synthesized in the same manner as above.
To the parking area image synthesized by Equation (3) using
Since a part of 107 is captured, the difference S calculated in the same manner as above
There is larger than the threshold value S 0. As a result, parking area 108
There was a problem of making an erroneous determination that there was a car.
本発明の目的は、車に隠された駐車エリヤの車の有無
を正しく判定する車両監視方法及び装置を提供すること
にある。SUMMARY OF THE INVENTION An object of the present invention is to provide a vehicle monitoring method and apparatus for correctly determining the presence or absence of a vehicle in a parking area hidden in the vehicle.
本発明の車両監視方法は、 車両長さと車両幅に対応する複数の縦白線および複数
の横白線による白線群によって車両1台分の駐車エリア
の複数が区画されており、定点観察して得た撮像により
各駐車エリアにおける駐車車両の有無を監視するにあた
り、予め記憶されている前記複数の駐車エリヤが無駐車
状態のときの前記白線群の各位置に基づいて、撮像を走
査して前記縦白線と交差する車両輪郭線であるエッジの
全てを検出し、この検出されたエッジの数に基づいて駐
車エリアに駐車した車両の有無を判定することを特徴と
する。According to the vehicle monitoring method of the present invention, a plurality of parking areas for one vehicle are defined by a white line group including a plurality of vertical white lines and a plurality of horizontal white lines corresponding to a vehicle length and a vehicle width, and are obtained by observing fixed points. In monitoring the presence or absence of a parked vehicle in each parking area by imaging, based on each position of the white line group when the plurality of parking areas stored in advance is in the non-parking state, scan the image and scan the vertical white line. It detects all the edges that are the vehicle outlines that intersect with the vehicle, and determines the presence or absence of a vehicle parked in the parking area based on the number of detected edges.
本発明の車両監視装置は、 車両長さと車両幅に対応する複数の縦白線および複数
の横白線による白線群によって車両1台分の駐車エリア
の複数が区画されており、定点観察して得た撮像により
各駐車エリアにおける駐車車両の有無を監視するもので
あって、定点観察位置を基点にした撮像の範囲で予め各
駐車エリアで無駐車状態のときの前記縦白線の位置を記
憶する遠方白線記憶手段と、 撮像を走査して前記縦白線と交差する車両輪郭線であ
るエッジの数を算出するエッジ算出手段と、前記エッジ
を記憶するエッジ記憶手段と、前記エッジと前記遠方白
線記憶手段に記憶された前記縦白線との画素上の交点を
求めて画素値として処理する交差検出手段と、交差検出
手段からの処理信号に基づいて各駐車エリアにおける車
両の有無を判断して通知する制御手段と、を備えたこと
を特徴とする。According to the vehicle monitoring device of the present invention, a plurality of parking areas for one vehicle are defined by a white line group including a plurality of vertical white lines and a plurality of horizontal white lines corresponding to the vehicle length and the vehicle width, and are obtained by observing fixed points. A distant white line that monitors the presence or absence of a parked vehicle in each parking area by imaging and stores the position of the vertical white line when there is no parking in each parking area in advance in the imaging range based on the fixed point observation position Storage means, edge calculation means for scanning an image to calculate the number of edges which are vehicle contour lines intersecting the vertical white line, edge storage means for storing the edges, and the edge and the distant white line storage means. Intersection detection means for obtaining an intersection on the pixel with the stored vertical white line and processing the pixel value as a pixel value; and determining presence or absence of a vehicle in each parking area based on a processing signal from the intersection detection means. Characterized by comprising control means for knowledge, the.
本発明は、例えば前記従来技術で車が有ると判定され
た駐車エリヤを囲む白線群のうち、定点撮影位置から遠
方に位置する縦白線の全てが画像上で隠れているとき、
その駐車エリヤには車両が駐車中と判断し、その縦白線
の全てが画像上で現れているときは、その駐車エリアに
車両が駐車していないと判断する。The present invention, for example, among the white line group surrounding the parking area determined to have a car in the prior art, when all of the vertical white line located far from the fixed point shooting position is hidden on the image,
It is determined that the vehicle is parked in the parking area, and when all of the vertical white lines appear on the image, it is determined that the vehicle is not parked in the parking area.
例えば、前記第3図(A)に例示した車107が駐車し
ている駐車エリヤ111の場合、この駐車エリヤ111を囲む
白線群のうち、定点撮影位置を基点にした遠方に位置す
る縦白線の1つである白線113は、車107を構成する輪郭
線112を境界として隠される。一方、第3図(A)に例
示した車が停車していない駐車エリヤ108の場合、駐車
エリヤ108を囲む白線群のうち、視点から遠方に位置す
る白線110は車107に隠されずに見えている。そこで、ま
ず例えば駐車エリヤ111の車の有無を判定するとき、駐
車場の画像106から白線110と113に平行でないエッジを
見つけるため白線110と113がx軸方向となす角度θの微
分マスク を駐車場の画像106に施した画像を2値化することによ
り、第3図(C)に例示するエッジ群114を検出する。
次に、エッジ群114のうち第3図(D)に例示する車107
が無い場合の白線113に対応する白線115と交わる車107
の輪郭線すなわちエッジを調べることにより、輪郭線11
2を発見し、その結果、駐車エリア111には車が駐車中で
あると判定する。For example, in the case of the parking area 111 where the car 107 illustrated in FIG. 3 (A) is parked, among the white line group surrounding the parking area 111, a vertical white line located far away from the fixed point photographing position as a base point. One white line 113 is hidden with the outline 112 constituting the car 107 as a boundary. On the other hand, in the case of the parking area 108 in which the vehicle illustrated in FIG. 3A is not stopped, the white line 110 located far from the viewpoint among the white lines surrounding the parking area 108 is seen without being hidden by the car 107. I have. Therefore, first, for example, when determining the presence or absence of a car in the parking area 111, to find an edge that is not parallel to the white lines 110 and 113 from the parking lot image 106, a differential mask of the angle θ formed by the white lines 110 and 113 with the x-axis direction Is binarized from the image of the parking lot image 106 to detect the edge group 114 illustrated in FIG. 3C.
Next, the car 107 illustrated in FIG.
Car 107 crossing white line 115 corresponding to white line 113 when there is no
By examining the contour, ie, the edge of
2 is found, and as a result, it is determined that the car is parked in the parking area 111.
同様の処理を白線110について行った場合、エッジ群1
14のうち、白線110と交わるエッジは存在しないので、
白線110を隠す輪郭線は無いと考え、その結果、駐車エ
リア108には車は無いと判定する。When the same processing is performed on the white line 110, the edge group 1
Of 14, there is no edge that intersects the white line 110, so
It is considered that there is no contour line that hides the white line 110, and as a result, it is determined that there is no car in the parking area.
以下、本発明の実施例を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
第1図は、本発明の車両監視装置の一実施例を示すブ
ロック図である。FIG. 1 is a block diagram showing one embodiment of a vehicle monitoring device of the present invention.
この車両監視装置は、TVカメラ等で入力した駐車場の
画像を記憶する画像記憶手段1と、定点観察位置を基点
にした撮像の範囲で予め各駐車エリヤで無駐車状態のと
きの前記縦白線の位置を記憶する遠方白線記憶手段4
と、撮像を走査して前記縦白線と交差する車両輪郭線で
あるエッジの数を算出するエッジ算出手段2と、前記エ
ッジを記憶するエッジ記憶手段3と、前記エッジと前記
遠方白線記憶手段に記憶された前記縦白線との画素上の
交点を求めて画素値として処理する交差検出手段5と、
後述する交差表を記憶する交差表記憶手段6と、表示手
段7と、エッジ算出手段2,交差検出手段5,表示手段7を
制御する制御手段8とを具備している。制御手段8はメ
モリとマイクロプロセッサで実現でき、画像記憶手段1
とエッジ記憶手段3と遠方白線記憶手段4と交差表記憶
手段6はメモリで構成でき、表示手段7はCRTとメモリ
で実現できる。The vehicle monitoring device includes an image storage unit 1 that stores an image of a parking lot input by a TV camera or the like, and the vertical white line when no parking is performed in each parking area in advance in an imaging range based on a fixed point observation position. Distant white line storage means 4 for storing the position of
An edge calculation unit 2 that scans an image and calculates the number of edges that are vehicle contour lines that intersect the vertical white line, an edge storage unit 3 that stores the edge, and an edge and the far white line storage unit. Intersection detection means 5 for finding an intersection on the pixel with the stored vertical white line and processing it as a pixel value;
An intersection table storage means 6 for storing an intersection table described later, a display means 7, and a control means 8 for controlling the edge calculation means 2, the intersection detection means 5, and the display means 7 are provided. The control means 8 can be realized by a memory and a microprocessor.
The edge storage means 3, the far white line storage means 4, and the intersection table storage means 6 can be constituted by a memory, and the display means 7 can be realized by a CRT and a memory.
以上の構成の車両監視装置により、例えば第3図
(A)に例示した駐車エリヤ111と108の車の有無を判定
する場合について詳細に説明する。A case will be described in detail in which the vehicle monitoring device having the above configuration determines whether or not there are vehicles in the parking areas 111 and 108 illustrated in FIG. 3A, for example.
この場合、画像記憶手段1は、TVカメラ等で入力した
第3図(A)に例示する駐車場の画像106を記憶する。
交差表記憶手段6は、第4図(A)に例示した形式の交
差表120のうち、エッジ数の列を0にリセットされた交
差表を記憶する。遠方白線記憶手段4は、例えばTVカメ
ラで駐車エリヤ111と108に車が無い時に撮像した画像
で、第3図(D)に例示した白線110が通過する画素群
と白線115が通過する画素群を例えばそれぞれ1と2で
塗りつぶし、他の画素値に0を代入した遠方白線画素を
記憶する。第4図(B)は、この遠方白線画像116を示
しており、117は白線110が通過する画素群を、118は白
線115が通過する画素群を示している。遠方白線記憶手
段4は、さらに、第4図(B)に例示した画素群117,11
8の方向θ1,θ2を第4図(C)に例示した形式で記憶
する。In this case, the image storage unit 1 stores an image 106 of the parking lot illustrated in FIG. 3A input by a TV camera or the like.
The intersection table storage means 6 stores the intersection table in which the column of the number of edges is reset to 0 in the intersection table 120 of the format illustrated in FIG. 4A. The distant white line storage unit 4 stores, for example, a group of pixels through which the white line 110 passes and a group of pixels through which the white line 115 passes as shown in FIG. Are filled with, for example, 1 and 2, respectively, and distant white line pixels in which 0 is substituted for other pixel values are stored. FIG. 4B shows the distant white line image 116, wherein 117 denotes a pixel group through which the white line 110 passes, and 118 denotes a pixel group through which the white line 115 passes. The distant white line storage unit 4 further stores the pixel groups 117 and 11 illustrated in FIG.
The eight directions θ 1 and θ 2 are stored in the format illustrated in FIG. 4 (C).
さて、第1図の車両監視装置の動作は、制御手段8が
エッジ算出手段2を起動して始まる。起動されたエッジ
算出手段2は、第1段階として遠方白線記憶手段4が記
憶する画素群の方向θ1,θ2の平均値 を算出する。The operation of the vehicle monitoring apparatus shown in FIG. 1 starts when the control means 8 activates the edge calculation means 2. The started edge calculation means 2 calculates the average value of the directions θ 1 and θ 2 of the pixel group stored in the far white line storage means 4 as the first stage. Is calculated.
第2段階として画像記憶手段1が記憶する駐車場の画
像106をf(x,y)と表したとき、f(x,y)と式(4)
におけるθの値に式(5)に示す平均値を代入した微
分マスク d(x,y;) (6) を用いて算出される下記強度画像a(x,y;)を算出す
る。As a second step, when the image 106 of the parking lot stored in the image storage means 1 is represented by f (x, y), f (x, y) is expressed by the following equation (4).
The following intensity image a (x, y;) is calculated using a differential mask d (x, y;) (6) in which the average value shown in Expression (5) is substituted for the value of θ in.
a(x,y;) =|∫∫f(x−u,y−v)・d(u,v;)dudv|
(7) 第3段階として強度画像a(x,y;)を例えば適当に
定められた閾値Tで2値化した第3図(C)に例示する
2値画像 を算出する。a (x, y;) = | ∫∫f (x−u, y−v) · d (u, v;) dudv |
(7) As a third step, a binary image illustrated in FIG. 3C in which the intensity image a (x, y;) is binarized by, for example, an appropriately determined threshold value T Is calculated.
第4段階として例えば従来技術で容易に実現できるレ
ーベリング技術を用いて、2値画像に含まれる各エッジ
が通過する画素群に例えば第4図(D)に例示する番号
を代入してエッジ画像118をエッジ記憶手段3に記憶
し、処理を終了する。As a fourth step, for example, by using a labeling technique which can be easily realized by a conventional technique, for example, a number exemplified in FIG. 118 is stored in the edge storage means 3 and the process is terminated.
エッジ算出手段2が処理を終了すると、制御手段8は
交差検出手段5を起動する。起動された交差検出手段5
は第1段階として、例えば遠方白線記憶手段4が記憶す
る遠方白線画像をw(x,y)と表し、エッジ記憶手段3
が記憶するエッジ画像118をe(x,y)と表したとき、w
(x,y)とe(x,y)の各画素値を例えばx方向を主走査
方向、y方向を副走査方向として順に走査しつつ、例え
ば第4図(E)に例示する下記条件が満たされる画素P1
の位置(x1,y1) w(x1,y1)>0かつe(x1,y1)>0 (9) をみつけ、各画素値 を得る。第2段階として交差表記憶手段6が記憶する交
差表120のうち、画素値Lmが指す2番目の行として見つ
かる駐車エリヤ111のエッジ数に1を加算した後、第1
エッジの項に画素値Leの値7を記憶する。When the edge calculation means 2 ends the processing, the control means 8 activates the intersection detection means 5. Activated intersection detection means 5
In the first stage, for example, the distant white line image stored in the distant white line storage unit 4 is represented by w (x, y), and the edge storage unit 3
When the edge image 118 stored by is represented by e (x, y), w
Each pixel value of (x, y) and e (x, y) is sequentially scanned, for example, with the x direction as a main scanning direction and the y direction as a sub scanning direction. Filled pixel P 1
(X 1 , y 1 ) w (x 1 , y 1 )> 0 and e (x 1 , y 1 )> 0 (9) Get. Of cross table 120 for storing cross-table storage means 6 as the second stage, after adding 1 to the number of edges parking Elijah 111 found as second line pointed to pixel values L m, first
Stores the value 7 of the pixel value L e in section edge.
第3段階として第1段階で説明した手順と同様に処理
を続けることにより第4図(E)に例示する画素P2の位
置(x2,y2)と画素値 を得る。第4段階として画素値Leの値と同じエッジ番号
がすでに駐車エリヤ111の行に記憶されていない場合、
第2段階で説明した手順と同様に動作して交差表120の
駐車エリヤ111に関するエッジ数に1を加算した後、第
2エッジの項に画素値Leの値8を記憶し、以上の処理を
すべての画素を走査し終えるまでくり返した後、処理を
終了する。交差検出手段5が処理を終了した時点で、交
差表120は第4図(F)に例示する交差表121を記憶して
いる。As the third step, the processing is continued in the same manner as the procedure described in the first step, whereby the position (x 2 , y 2 ) of the pixel P 2 and the pixel value illustrated in FIG. Get. If the value in the same edge number of a pixel value L e as the fourth stage is not stored already in the line of parking Elijah 111,
After adding 1 to the number of edges about parking Elijah 111 cross table 120 operates similarly to the procedure described in the second stage, stores the values 8 pixel values L e in the section second edge, the above process Is repeated until scanning of all pixels is completed, and then the processing is terminated. At the time when the intersection detecting means 5 ends the processing, the intersection table 120 stores the intersection table 121 illustrated in FIG. 4 (F).
交差検出手段5が処理を終了すると、制御手段8は表
示手段7を起動する。起動された表示手段7は交差表記
憶手段6が記憶する交差表121の各行を走査しつつ、例
えば第1行目が表す駐車エリヤ108のエッジ数が0であ
るので駐車エリヤ108には車が無いと判断して例えばCRT
上に文字列 「駐車エリヤ108…車無し」 を出力し、第2行目が表す駐車エリヤ111のエッジ数2
が1以上であるので駐車エリヤ111には車が有ると判断
して例えばCRT上に文字列 「駐車エリヤ111…車有り」 を出力し、以上ですべての処理を終了する。When the intersection detecting means 5 ends the processing, the control means 8 activates the display means 7. The activated display means 7 scans each row of the intersection table 121 stored by the intersection table storage means 6 and, for example, the parking area 108 represented by the first row has 0 edges, so that no car is stored in the parking area 108. Judge that there is no such as CRT
The character string "parking area 108 ... no cars" is output above, and the number of edges of the parking area 111 represented by the second line is 2
Is greater than or equal to one, it is determined that there is a car in the parking area 111, and the character string "parking area 111 ... there is a car" is output on the CRT, for example, and all the processing is completed.
本発明によれば、前方にある車で一部が隠される視線
方向から撮像した駐車場の画像を処理して各駐車エリヤ
の車の有無を正しく判定できる効果がある。ADVANTAGE OF THE INVENTION According to this invention, the effect of being able to correctly determine the presence or absence of the car of each parking area by processing the image of the parking lot imaged from the line of sight direction in which a part of the car in front is hidden.
第1図は本発明の車両監視装置の一実施例を示すブロッ
ク図、 第2図は従来技術を説明するための図、 第3図は本発明の原理を説明するための図、 第4図は実施例の動作を説明するための図である。 2……エッジ算出手段 3……エッジ記憶手段 4……遠方白線記憶手段 5……交差検出手段 106……駐車場の画像 118……検出されたエッジ画像 121……算出された交差表FIG. 1 is a block diagram showing an embodiment of a vehicle monitoring device according to the present invention, FIG. 2 is a diagram for explaining the prior art, FIG. 3 is a diagram for explaining the principle of the present invention, FIG. FIG. 4 is a diagram for explaining the operation of the embodiment. 2 ... Edge calculation means 3 ... Edge storage means 4 ... Distance white line storage means 5 ... Intersection detection means 106 ... Parking lot image 118 ... Detected edge image 121 ... Calculated intersection table
Claims (2)
および複数の横白線による白線群によって車両1台分の
駐車エリアの複数が区画されており、定点観察して得た
撮像により各駐車エリアにおける駐車車両の有無を監視
する車両監視方法であって、 予め記憶されている前記複数の駐車エリアが無駐車状態
のときの前記白線群の各位置に基づいて、撮像を走査し
て前記縦白線と交差する車両輪郭線であるエッジの全て
を検出し、この検出されたエッジの数に基づいて駐車エ
リアに駐車した車両の有無を判定することを特徴とする
車両監視方法。A plurality of vertical parking lines corresponding to a vehicle length and a vehicle width define a plurality of vertical white lines and a plurality of horizontal white lines to define a plurality of parking areas for one vehicle. A vehicle monitoring method for monitoring the presence or absence of a parked vehicle in a parking area, wherein the plurality of parking areas stored in advance are scanned based on each position of the white line group when there is no parking, and A vehicle monitoring method comprising: detecting all edges that are vehicle contour lines intersecting a vertical white line, and determining whether there is a vehicle parked in a parking area based on the number of detected edges.
および複数の横白線による白線群によって車両1台分の
駐車エリアの複数が区画されており、定点観察して得た
撮像により各駐車エリアにおける駐車車両の有無を監視
する車両監視装置であって、 定点観察位置を基点にした撮像の範囲で予め各駐車エリ
アで無駐車状態のときの前記縦白線の位置を記憶する遠
方白線記憶手段と、 撮像を走査して前記縦白線と交差する車両輪郭線である
エッジの数を算出するエッジ算出手段と、 前記エッジを記憶するエッジ記憶手段と、 前記エッジと前記遠方白線記憶手段に記憶された前記縦
白線との画素上の交点を求めて画素値として処理する交
差検出手段と、 交差検出手段からの処理信号に基づいて各駐車エリアに
おける車両の有無を判断して通知する制御手段と、 を備えたことを特徴とする車両監視装置。2. A plurality of parking areas for one vehicle are defined by a white line group including a plurality of vertical white lines and a plurality of horizontal white lines corresponding to a vehicle length and a vehicle width. A vehicle monitoring device for monitoring the presence or absence of a parked vehicle in a parking area, wherein a far white line storage that stores a position of the vertical white line in a non-parking state in each parking area in advance in an imaging range based on a fixed point observation position. Means, an image scanning means, an edge calculating means for calculating the number of edges that are vehicle contour lines intersecting the vertical white line, an edge storing means for storing the edge, and an edge storing means for storing the edge and the far white line storing means. Intersection detecting means for obtaining an intersection of the vertical white line with the pixel and processing the pixel value as a pixel value; and determining whether there is a vehicle in each parking area based on a processing signal from the intersection detecting means. Vehicle monitoring device for a control means for, further comprising a said.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10183890A JP2606409B2 (en) | 1990-04-19 | 1990-04-19 | Vehicle monitoring method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10183890A JP2606409B2 (en) | 1990-04-19 | 1990-04-19 | Vehicle monitoring method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH041900A JPH041900A (en) | 1992-01-07 |
JP2606409B2 true JP2606409B2 (en) | 1997-05-07 |
Family
ID=14311214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10183890A Expired - Fee Related JP2606409B2 (en) | 1990-04-19 | 1990-04-19 | Vehicle monitoring method and device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2606409B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001202596A (en) * | 2000-01-18 | 2001-07-27 | Sumitomo Densetsu Corp | Parking detection device |
CN108257414A (en) * | 2018-01-25 | 2018-07-06 | 贵州宜行智通科技有限公司 | Parking position information of park management method and device |
-
1990
- 1990-04-19 JP JP10183890A patent/JP2606409B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH041900A (en) | 1992-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0626655A2 (en) | Vehicle recognition apparatus | |
US6317057B1 (en) | Method for detecting lane deviation of vehicle | |
US20010002936A1 (en) | Image recognition system | |
JP2004112144A (en) | Front car tracking system and method for tracking front car | |
JP2004117078A (en) | Obstacle detection device and method | |
JPH11203445A (en) | Image processor for vehicle | |
JP2013137767A (en) | Obstacle detection method and driver support system | |
JP3993259B2 (en) | Image processing device | |
JPH0792423B2 (en) | Headlight optical axis adjustment method | |
JPH1173514A (en) | Recognition device for vehicle | |
JPH1144533A (en) | Preceding vehicle detector | |
JP2002087160A (en) | Vehicular surrounding image processing device and recording medium | |
JP3099691B2 (en) | Object position measurement method on traveling road | |
JP5155204B2 (en) | White line detector | |
JP2606409B2 (en) | Vehicle monitoring method and device | |
JP2798349B2 (en) | Vehicle position detection device | |
JP3267105B2 (en) | Object recognition device | |
JPH07114689A (en) | Method for recognizing vehicle registered number | |
JP4106163B2 (en) | Obstacle detection apparatus and method | |
JP3436224B2 (en) | Vehicle end detection device | |
JP2576669B2 (en) | Vehicle monitoring method and device | |
JP2001116545A (en) | Distance image calculator | |
JP2001092979A (en) | Unsuitable image detecting method | |
JP2883131B2 (en) | Driving lane identification method | |
JPH0520593A (en) | Travelling lane recognizing device and precedence automobile recognizing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |