JP2605948B2 - Flying object accelerator - Google Patents

Flying object accelerator

Info

Publication number
JP2605948B2
JP2605948B2 JP28403890A JP28403890A JP2605948B2 JP 2605948 B2 JP2605948 B2 JP 2605948B2 JP 28403890 A JP28403890 A JP 28403890A JP 28403890 A JP28403890 A JP 28403890A JP 2605948 B2 JP2605948 B2 JP 2605948B2
Authority
JP
Japan
Prior art keywords
voltage electrode
hole
flying object
electrode
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28403890A
Other languages
Japanese (ja)
Other versions
JPH04158196A (en
Inventor
昌広 宮本
公 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP28403890A priority Critical patent/JP2605948B2/en
Publication of JPH04158196A publication Critical patent/JPH04158196A/en
Application granted granted Critical
Publication of JP2605948B2 publication Critical patent/JP2605948B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Elimination Of Static Electricity (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、アーク放電による圧力上昇によって飛翔
体を高速に加速させて発射する飛翔体の加速装置に関す
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flying object acceleration device that accelerates and launches a flying object at high speed by a pressure increase due to arc discharge.

〔従来の技術〕[Conventional technology]

毎秒数キロメートルという高速で飛翔体を発射させ、
例えば他の材料に衝突させて衝撃反応や衝撃合成を起こ
させることによって新材料を生成させることが行われて
いる。
Launch a flying object at a high speed of several kilometers per second,
For example, a new material is produced by causing an impact reaction or impact synthesis by colliding with another material.

第5図はこのような目的のため使用される従来の加速
装置の構成例を示す断面図である。図において砲身1
は、例えばエポキシ樹脂よりなり、内部に断面円形の孔
2を備え、この孔は一方端に高圧電極3によって外部と
閉塞され、他方端は開口されている。高圧電極3からd
だけ離れた位置に低圧電極4が孔2の内面に露出するよ
うに設けられ、高圧電極3と低圧電極4との間はヒュー
ズや細い導体などの可溶性導体5によって孔2の内部で
短絡されるとともにパルスを発生させる電源6に接続さ
れている。
FIG. 5 is a sectional view showing a configuration example of a conventional accelerator used for such a purpose. In the figure, barrel 1
Is made of, for example, epoxy resin, and has a hole 2 having a circular cross section inside. This hole is closed at one end from the outside by a high-voltage electrode 3, and the other end is open. High voltage electrode 3 to d
A low-voltage electrode 4 is provided at a position only apart from the inner surface of the hole 2, and the high-voltage electrode 3 and the low-voltage electrode 4 are short-circuited inside the hole 2 by a soluble conductor 5 such as a fuse or a thin conductor. And a power source 6 for generating a pulse.

かかる構成の装置において、絶縁性の飛翔体8を孔2
内の低圧電極4の近傍に装填し、電源6を投入して大電
流を可溶性導体5に流すと、可溶性導体5が溶けてプラ
ズマ化し、飛翔体8の左側の孔2の内部圧力が急上昇
し、飛翔体8はX方向に加速され開口部から外部に発射
される。孔2はその内部で飛翔体8を加速させるととも
にX方向に向いて外部に発射させるようにガイドする役
目を担う。第5図の構成はピストルの構成と比較すれ
ば、砲身の孔の最奥部における空間に火薬を装填し、そ
の火薬を点火させて発生するその爆轟力によって飛翔体
となる弾丸を加速させるのと同じである。第5図の構成
によって、数グラムの物体を毎秒数キロメートルの速度
で砲身1から発射できることが知られている(例えば、
M.J.Loffler他「Mass Acceleration by Plasma Pulse
s」,IEEE Trans.on Magnetics,vol.25,No.1,Jan.P.495
−499,1989)。
In the device having such a configuration, the insulating flying object 8 is
When the power supply 6 is turned on and a large current flows through the soluble conductor 5, the soluble conductor 5 is melted and turned into plasma, and the internal pressure of the hole 2 on the left side of the flying object 8 rapidly rises. The flying object 8 is accelerated in the X direction and is fired outside through the opening. The hole 2 has a function of accelerating the flying object 8 therein and guiding the flying object 8 to be emitted outward in the X direction. Compared with the configuration of the pistol, the configuration of FIG. 5 charges a gunpowder into the space at the innermost part of the barrel hole, ignites the gunpowder, and accelerates a bullet that becomes a flying object by the detonation force generated. Is the same as It is known that with the configuration of FIG. 5, several grams of objects can be fired from the barrel 1 at a speed of several kilometers per second (for example,
MJLoffler et al. `` Mass Acceleration by Plasma Pulse
s '', IEEE Trans.on Magnetics, vol. 25, No. 1, Jan. P. 495
−499, 1989).

なお、孔2の形状は、飛翔体8の形状に従って必ずし
も断面円形である必要はなく、方形の場合もある。
The shape of the hole 2 does not necessarily have to be circular in cross section in accordance with the shape of the flying object 8, but may be square.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、前述したような従来の装置はアーク発
生位置が孔の最奥端部に限られているために、所定の速
度で飛翔体を発射させるためにかなりのエネルギーが必
要である。すなわち、飛翔体が孔の出口に進むにしたが
って、最奥端部と飛翔体との空間は増す。例えば、加速
孔の途中で電源の注入エネルギーを停止させると、それ
以後は飛翔体は慣性のみで進み(速度一定、加速度
零)、孔内の圧力は空間が増加する分だけ低下する。従
って飛翔体を孔内で常に加速させるためには、飛翔体が
出口端に来るまで、電源からの注入エネルギーを増やし
続ける必要がある。
However, in the conventional apparatus as described above, since the arc generating position is limited to the innermost end of the hole, a considerable amount of energy is required to fire the flying object at a predetermined speed. That is, as the flying object advances to the exit of the hole, the space between the innermost end and the flying object increases. For example, if the injection energy of the power supply is stopped in the middle of the acceleration hole, the flying object thereafter proceeds only by inertia (constant speed, zero acceleration), and the pressure in the hole decreases by the amount of space increase. Therefore, in order to constantly accelerate the flying object in the hole, it is necessary to continuously increase the energy injected from the power supply until the flying object reaches the exit end.

この発明の目的は、飛翔体を発射加速させるアークエ
ネルギーを飛翔体が砲身を離れるまで維持もしくは増大
するような加速装置を得ることにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an acceleration device that maintains or increases arc energy for launching and accelerating a flying object until the flying object leaves the barrel.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、この発明によれば、一方
端が閉塞され、他方端が開口された孔を備えた砲身と、
この砲身に取り付けられ、前記孔内面に露出する一対の
電極と、この一対の電極に接続され、孔内にアーク放電
を発生させる電源とにより構成され、前記電源を投入す
ることにより前記孔内にアークを発生させ、このアーク
による圧力上昇によって前記孔内に配置された飛翔体を
加速する装置において、前記一対の電極が前記孔の閉塞
側最奥端に配された高圧電極と開口側出口端に配された
低圧電極とによりなり、この両電極の間の前記孔内面に
アーク放電の熱によって蒸発する電解液の含浸された導
電シートを備えてなるものとし、かかる構成に加えて、
高圧電極は低圧電極側に向かって先端の尖った形状の導
体を備えたものとする、或いは導電シートは低圧電極と
接触し、高圧電極とは電源の電圧によって絶縁破壊する
ような距離だけ離隔されているものとする。
To achieve the above object, according to the present invention, one end is closed, the other end is provided with a hole with a hole opened,
Attached to the gun barrel, a pair of electrodes exposed on the inner surface of the hole, and a power supply connected to the pair of electrodes and generating an arc discharge in the hole, and the power supply is turned on to form in the hole. In a device for generating an arc and accelerating a flying object arranged in the hole by a pressure increase caused by the arc, the pair of electrodes is connected to a high-voltage electrode disposed at the innermost end on the closed side of the hole and an outlet end on the opening side. And a conductive sheet impregnated with an electrolytic solution that evaporates due to the heat of the arc discharge on the inner surface of the hole between the two electrodes.
The high-voltage electrode shall have a conductor with a pointed shape toward the low-voltage electrode, or the conductive sheet will be in contact with the low-voltage electrode and separated from the high-voltage electrode by such a distance as to cause dielectric breakdown by the voltage of the power supply. It is assumed that

また、高圧電極より低圧電極側に向けて所定間隔を介
して砲身の孔内面に露出する補助電極を設け、前記所定
間隔にアーク放電を発生させるような補助電源を前記高
圧電極と前記補助電極との間に接続し、前記導電シート
を前記補助電極と前記低圧電極の双方に接触してつなが
るように配したものとし、かかる構成に加えて、補助電
源の通電によって溶けアーク放電を発生させる可溶性導
体を高圧電極と補助電極との間を短絡するように砲身の
孔内部に配したものとする。
Further, an auxiliary electrode exposed to the inner surface of the gun barrel is provided at a predetermined interval from the high voltage electrode toward the low voltage electrode side, and an auxiliary power supply for generating arc discharge at the predetermined interval is provided between the high voltage electrode and the auxiliary electrode. And the conductive sheet is arranged so as to be in contact with and connected to both the auxiliary electrode and the low-voltage electrode. In addition to this configuration, a fusible conductor that generates a melting arc discharge when energized by an auxiliary power supply Are arranged inside the hole of the gun barrel so as to short-circuit between the high-voltage electrode and the auxiliary electrode.

〔作用〕[Action]

この発明の構成によれば、高圧電極を砲身の孔の閉塞
側最奥端に配し、低圧電極を前記孔の開口側出口端に配
すとともに、前記孔内面に電解液で含浸された導電シー
トを備えたので、電源からの大電流パルスが導電シート
を流れると同時に高圧電極の孔内部における露出部から
トリガとなるアーク放電が発生し、このアーク放電の熱
によって飛翔体と高圧電極との間に敷かれた部分の導電
シートの電解液が蒸発し、電解液の熱化学反応による膨
張力がアークプラズマの熱膨張力に加わって、飛翔体後
部の圧力が上昇する。従って飛翔体が出口端の方へ進む
につれて飛翔体後部の空間が増えても電解液が蒸発し続
けるので、孔内部の圧力は低下することはなく、飛翔体
は出口端に来るまで押され続け高速で発射される。
According to the configuration of the present invention, the high-voltage electrode is disposed at the innermost end on the closed side of the hole of the gun barrel, the low-voltage electrode is disposed at the outlet end of the hole on the opening side, and the inner surface of the hole is impregnated with an electrolytic solution. Since the sheet is provided, a large current pulse from the power supply flows through the conductive sheet, and at the same time, an arc discharge is generated from the exposed portion inside the hole of the high-voltage electrode, and the heat of this arc discharge causes the flying object and the high-voltage electrode to be in contact with each other. The electrolytic solution of the conductive sheet in the portion placed therebetween evaporates, and the expansion force due to the thermochemical reaction of the electrolyte solution is added to the thermal expansion force of the arc plasma, so that the pressure at the rear of the flying object increases. Therefore, even if the space behind the projectile increases as the projectile advances toward the exit end, the electrolyte continues to evaporate, so the pressure inside the hole does not decrease, and the projectile continues to be pushed until it reaches the exit end Fired at high speed.

上記の構成に加えて、高圧電極は低圧電極側に向かっ
て先端の尖った針端導体を備えると、高圧電極側の電界
が極端に高くなるので高圧電極からトリガとなるアーク
放電が出やすくなり飛翔体の初期加速力が大きくなる。
In addition to the above configuration, if the high-voltage electrode has a needle-point conductor with a sharp tip toward the low-voltage electrode side, the electric field on the high-voltage electrode side becomes extremely high, so that arc discharge that triggers from the high-voltage electrode is likely to occur. The initial acceleration of the flying object increases.

上記の構成において、導電シートを高圧電極と低圧電
極の双方に接触させる代わりに、導電シートを低圧電極
とのみ接触させ、高圧電極とは電源の電圧によって絶縁
破壊するような距離だけ離隔させて配したことにより、
この離隔距離が絶縁破壊するまで加速開始の時刻は遅れ
るが、一旦絶縁破壊するとその離隔距離の間隙に大きな
エネルギーが注入され、アーク放電が非常に大きくなる
現象があるので飛翔体の初期加速力により大きくなる。
In the above configuration, instead of bringing the conductive sheet into contact with both the high-voltage electrode and the low-voltage electrode, the conductive sheet is brought into contact only with the low-voltage electrode, and is separated from the high-voltage electrode by such a distance as to cause dielectric breakdown by the voltage of the power supply. By doing,
The time of acceleration start is delayed until this separation distance causes dielectric breakdown, but once dielectric breakdown occurs, large energy is injected into the gap of the separation distance and arc discharge becomes very large.Therefore, there is a phenomenon that the initial acceleration force of the flying object causes growing.

また、高圧電極を孔の閉塞側最奥端に配し、低圧電極
を孔の開口側出口端に配すとともに、補助電極を高圧電
極より低圧電極側に向けて所定間隔を介して配し、補助
電極と高圧電極との間に補助電極を接続し、導電シート
を補助電極と低圧電極の双方に接触してつながるように
配したので、補助電源によるパルス電圧によって高圧電
極と補助電極間の所定間隔を絶縁破壊させてトリガとな
るアーク放電を起こさせ、このアーク放電の熱によって
導電シートが蒸発し始める。飛翔体が出口端の方へ進み
飛翔体後部の空間が増えても、電解液が蒸発し続けるの
で、孔内部の圧力が低下することはなく、飛翔体は出口
に来るまで押され続け高速で発射される。
Further, the high-voltage electrode is disposed at the innermost end of the hole on the closed side, the low-voltage electrode is disposed at the opening end of the hole, and the auxiliary electrode is disposed at a predetermined interval from the high-voltage electrode toward the low-voltage electrode, The auxiliary electrode is connected between the auxiliary electrode and the high-voltage electrode, and the conductive sheet is arranged so as to be in contact with and connected to both the auxiliary electrode and the low-voltage electrode. An arc discharge serving as a trigger is caused by dielectric breakdown of the space, and the heat of the arc discharge causes the conductive sheet to start evaporating. Even if the projectile moves toward the exit end and the space behind the projectile increases, the electrolyte continues to evaporate, so the pressure inside the hole does not decrease, and the projectile continues to be pushed until it comes to the exit at high speed. Fired.

この構成に加えて、孔内部に高圧電極と補助電極との
間を短絡するように補助電極の導電によって溶ける可溶
性導体を配したので、トリガとなるアーク放電が非常に
出やすくなる。
In addition to this configuration, a fusible conductor that is melted by the conduction of the auxiliary electrode is disposed inside the hole so as to short-circuit the high-voltage electrode and the auxiliary electrode, so that arc discharge serving as a trigger becomes very easy to occur.

〔実施例〕〔Example〕

以下この発明を実施例に基づき説明する。 Hereinafter, the present invention will be described based on examples.

第1図(a)はこの発明の実施例にかかる飛翔体の加
速装置の構成を示す断面図、第1図(b)は第1図
(a)のA−A断面図、第1図(c)は第1図(a)の
砲身を半割して内部を見たB矢視図である。
FIG. 1A is a cross-sectional view showing a configuration of a flying object accelerator according to an embodiment of the present invention, FIG. 1B is a cross-sectional view taken along line AA of FIG. 1A, and FIG. FIG. 3C is a view taken in the direction of the arrow B when the barrel of FIG.

第1図(a)はエポキシ樹脂体よりなる砲身9に一方
端が貫通していない円形の孔10を設け、この孔10の閉塞
側最奥端に高圧電極11が埋め込まれるとともに開口側出
口端に低圧電極12が取り付けられてある。高圧電極11と
低圧電極12はいずれもその一方端は孔10の内面で露出す
るとともに他方端は電源13に接続されている。砲身9は
孔10が水平になるように配され、孔10の内面下部には電
解液の含浸された導電シート14が配され高圧電極11と低
圧電極12との双方に接触するように形成されている。球
形の飛翔体15は孔10の高圧電極11側に装填されている。
第1図(b)は導電シート14が円形の加速孔10の下面に
約4分の1周の幅(W)で配されており、高圧電極11お
よび低圧電極12の幅(点線)も同じである。第1図
(c)は高圧電極11が先端の尖鋭な形状に形成され飛翔
体15の方向に向けられている。
FIG. 1 (a) shows a barrel 9 made of an epoxy resin body provided with a circular hole 10 whose one end does not penetrate. The low-voltage electrode 12 is attached to the power supply. One end of each of the high-voltage electrode 11 and the low-voltage electrode 12 is exposed on the inner surface of the hole 10, and the other end is connected to the power supply 13. The gun barrel 9 is arranged so that the hole 10 is horizontal, and a conductive sheet 14 impregnated with an electrolytic solution is arranged below the inner surface of the hole 10 so as to be in contact with both the high-voltage electrode 11 and the low-voltage electrode 12. ing. The spherical flying object 15 is loaded on the high-voltage electrode 11 side of the hole 10.
FIG. 1 (b) shows that the conductive sheet 14 is arranged on the lower surface of the circular acceleration hole 10 with a width (W) of about a quarter of the circumference, and the widths (dotted lines) of the high voltage electrode 11 and the low voltage electrode 12 are also the same. It is. In FIG. 1C, the high voltage electrode 11 is formed in a sharp shape at the tip and is directed toward the flying object 15.

導電シート14の電解液は例えば低抵抗に調整された食
塩水が使用され、含浸基材となるシートは紙や保水性の
プラスチックシートなどが用いられ、孔10の開口側より
挿入した後に電解液に一旦砲身9ごと浸漬させることに
よって充分に電解液を含浸することができる。飛翔体15
も孔10の開口側より装填される。
The electrolyte of the conductive sheet 14 is, for example, a saline solution adjusted to have a low resistance, and the sheet serving as the impregnated base material is a sheet of paper or a water-retaining plastic sheet. Once the gun barrel 9 is immersed, the electrolyte solution can be sufficiently impregnated. Flying object 15
Are also loaded from the opening side of the hole 10.

電源13からの大電流パルスが導電シート14を流れると
同時に高圧電極11先端の尖鋭部からトリガとなるアーク
放電が発生し、このアーク放電の熱によって導電シート
14の電解液が蒸発する。アークプラズマの熱膨張力に電
解液の熱化学反応による膨張力が加わって、飛翔体15が
進むときの後部圧力は上昇する。飛翔体15が出口端へ進
むにつれて飛翔体15の後部空間が増えても電解液の方も
蒸発し続けるので、孔内部の圧力が低下することはな
く、飛翔体15は出口に来るまで押され続け高速で発射さ
れる。なお、飛翔体15の進行方向の前方に敷かれている
導電シートの部分は電流を供給するだけでアーク放電は
発生しない。
At the same time as a large current pulse from the power supply 13 flows through the conductive sheet 14, an arc discharge serving as a trigger is generated from the sharp point at the tip of the high-voltage electrode 11, and the heat of the arc discharge causes the conductive sheet to generate heat.
14 electrolytes evaporate. The expansion force due to the thermochemical reaction of the electrolytic solution is added to the thermal expansion force of the arc plasma, and the rear pressure when the flying object 15 advances increases. As the flying object 15 advances to the exit end, the electrolyte continues to evaporate even if the rear space of the flying object 15 increases, so the pressure inside the hole does not decrease, and the flying object 15 is pushed until it reaches the exit It is fired at high speed. The portion of the conductive sheet laid forward in the traveling direction of the flying object 15 only supplies current, and does not generate arc discharge.

第2図(a)はこの発明の異なる実施例にかかる飛翔
体の加速装置の構成を示す断面図、第2図(b)は第2
図(a)の砲身を半割して内部を見たC矢視図である。
FIG. 2A is a cross-sectional view showing the configuration of a flying object accelerating apparatus according to a different embodiment of the present invention, and FIG.
FIG. 4 is a view taken in the direction of the arrow C when the gun barrel of FIG.

第2図(a),(b)は導電シート16が高圧電極11と
離隔距離gだけ離れて配されており、その他の構成はそ
れぞれ第1図(a),(c)と同一である。
2 (a) and 2 (b), the conductive sheet 16 is arranged at a distance g from the high voltage electrode 11, and the other configurations are the same as those in FIGS. 1 (a) and 1 (c).

電源13の電圧によってこの離隔距離gが絶縁破壊する
まで加速の開始時刻は遅れるが、一旦絶縁破壊するとそ
の離隔距離の間隙に大きなエネルギーが注入され、アー
ク放電が非常に大きくなる現象があるので、飛翔体15の
初期加速力は第1図の構成の場合より大きくなり、結果
として孔10の出口端からの飛翔体15の発射速度も増す。
The start time of the acceleration is delayed until the separation distance g is broken down by the voltage of the power supply 13, but once the dielectric breakdown occurs, large energy is injected into the gap of the separation distance, and the arc discharge becomes very large. The initial acceleration force of the projectile 15 becomes greater than in the case of the configuration of FIG. 1, and as a result, the launch speed of the projectile 15 from the exit end of the hole 10 also increases.

第3図はこの発明のさらに異なる構成を示す断面図で
あり、高圧電極17が先端が尖鋭な金属を特に備えず、所
定間隔Dだけ離れた位置に補助電極18を備え、補助電極
18と高圧電極17との間に補助電源19が接続され、補助電
極18と低圧電極12との双方に接触してつながる導電シー
ト20を備えている。それ以外の構成は第1図(a)のそ
れと同一である。
FIG. 3 is a cross-sectional view showing a further different structure of the present invention. The high-voltage electrode 17 does not particularly have a sharp-pointed metal, and has an auxiliary electrode 18 at a position separated by a predetermined distance D.
An auxiliary power supply 19 is connected between the high voltage electrode 18 and the high voltage electrode 17, and includes a conductive sheet 20 which is in contact with and connected to both the auxiliary electrode 18 and the low voltage electrode 12. The other configuration is the same as that of FIG. 1 (a).

補助電源19のパルス電圧によって所定間隙Dを絶縁破
壊させてトリガとなるアーク放電を起こさせ、以下第1
図の構成で説明したようなメカニズムで飛翔体15が加速
される。第1図の構成の場合と比べると、飛翔体15の加
速開始時点における注入エネルギーが補助電源19より充
分に供給されるので、飛翔体15の初期加速力が大きくな
り、結果として孔10の出口端からの飛翔体15の発射速度
が増す。
The predetermined gap D is broken down by the pulse voltage of the auxiliary power supply 19 to cause an arc discharge serving as a trigger.
The flying object 15 is accelerated by the mechanism described in the configuration of the drawing. Compared with the configuration of FIG. 1, the injection energy at the start of acceleration of the flying object 15 is sufficiently supplied from the auxiliary power supply 19, so that the initial acceleration force of the flying object 15 increases, and as a result, the exit of the hole 10 The firing speed of the flying object 15 from the end increases.

第4図はこの発明のさらに異なる構成例を示す断面図
であり、高圧電極17と補助電極18とを孔10の内部で可溶
性導体21によって短絡させるように構成し、それ以外の
構成は第3図のそれと同じである。可溶性導体21の介在
によってトリガとなるアーク放電が非常に出やすくなる
ので、飛翔体15の加速開始時点の初期加速力が増加し、
結果として孔10の出口端における飛翔体15の発射速度は
第3図の場合より大きくなる。
FIG. 4 is a cross-sectional view showing still another configuration example of the present invention, in which the high-voltage electrode 17 and the auxiliary electrode 18 are configured to be short-circuited by the fusible conductor 21 inside the hole 10, and the other configuration is the third configuration. It is the same as that of the figure. Since the presence of the fusible conductor 21 makes it very easy to generate an arc discharge as a trigger, the initial acceleration force at the start of acceleration of the flying object 15 increases,
As a result, the firing speed of the projectile 15 at the exit end of the hole 10 is higher than in the case of FIG.

〔発明の効果〕〔The invention's effect〕

第6図は、第1図ないし第5図の構成のそれぞれにお
ける孔内の飛翔体速度vおよび飛翔体後部の圧力Pを示
す特性線図であり、横軸に飛翔体の位置X(出発位置を
X=O、出口端をX=Lとする)であり、縦軸の圧力P
は砲身内の孔の上面に埋め込まれた圧電素子によって求
められ、速度vはX線をエポキシ樹脂に透過させて飛翔
体の影を監視し、飛翔体の通過時間から求められてい
る。特性曲線31,32,33,34,35はそれぞれ第1図ないし第
5図の構成において同一エネルギーを、電源6,13より注
入した場合(補助電源19がある場合はこれも含める)の
特性例である。
FIG. 6 is a characteristic diagram showing the velocity v of the projectile in the hole and the pressure P at the rear of the projectile in each of the configurations shown in FIGS. 1 to 5, and the horizontal axis represents the position X (starting position) of the projectile. Is X = O and the exit end is X = L), and the pressure P on the vertical axis is
Is determined by a piezoelectric element embedded in the upper surface of the hole in the barrel, and the velocity v is determined from the passage time of the flying object by monitoring the shadow of the flying object by transmitting X-rays through epoxy resin. The characteristic curves 31, 32, 33, 34, and 35 are characteristic examples when the same energy is injected from the power supplies 6 and 13 in the configuration of FIGS. It is.

従来の装置における構成例は特性曲線35のように飛翔
体の始発時点では圧力Pは高いが、進むにつれて圧力が
低下するために、速度vも途中から慣性だけとなり、加
速されなくなる。
In the configuration example of the conventional apparatus, the pressure P is high at the time of the first departure of the flying object as indicated by the characteristic curve 35, but the pressure decreases as the flight progresses, so that the velocity v also becomes inertia only halfway and is not accelerated.

第1図の構成は特性曲線31のように、始発時点におけ
る圧力Pは従来の装置のそれより低いが、飛翔体が進む
にしたがって、圧力が上昇するために速度vも結果的に
は従来の装置のそれよりも約5割増している。
1, the pressure P at the start is lower than that of the conventional device, as shown by the characteristic curve 31, but as the flying object advances, the pressure v increases, and consequently the speed v also increases. It is about 50% more than that of the device.

第2図の構成も特性曲線32のように第1図の構成にお
ける場合とほぼ同様であるが、高圧電極と導電シートと
の離隔距離gの介在によって圧力Pが飛翔体の始発時点
で第1図のものより多少高くなるために、結果として速
度vも第1図の構成のそれよりも多少増えている。
The configuration in FIG. 2 is almost the same as that in the configuration in FIG. 1 as shown by the characteristic curve 32, but the pressure P is increased by the first distance at the start of the flying object due to the interposition of the separation distance g between the high-voltage electrode and the conductive sheet. The speed v is somewhat higher than that of the arrangement of FIG.

第3図の構成は特性曲線33のように、始発時点におけ
る圧力Pは補助電源の介装により第3図の構成よりも高
くなり、結果として速度vは従来の構成のそれよりも約
2倍に増加している。
In the configuration of FIG. 3, as shown by the characteristic curve 33, the pressure P at the time of starting is higher than that of the configuration of FIG. 3 due to the interposition of the auxiliary power supply. As a result, the speed v is about twice that of the conventional configuration. Has increased.

第4図の構成は特性曲線34のように第3図の構成にお
ける場合とほぼ同様であるが、可溶性導体の介装によっ
て圧力Pが飛翔体の始発時点で第3図のものより多少高
くなるために、結果として速度vも第3図の構成のそれ
よりも多少増えている。
The configuration of FIG. 4 is almost the same as that of the configuration of FIG. 3 as shown by the characteristic curve 34, but the pressure P becomes slightly higher than that of FIG. As a result, the speed v is slightly higher than that of the configuration shown in FIG.

上述のようにこの発明は、高圧電極を孔の最奥端に配
するとともに低圧電極を出口端に配し、孔の内部下面に
電解液の含浸した導電シートを敷いたので、飛翔体が進
行しても進行方向後部の圧力が低下することがないの
で、飛翔体を非常に高速に出口端から発射する装置を提
供することができる。
As described above, according to the present invention, the high-voltage electrode is disposed at the innermost end of the hole, the low-voltage electrode is disposed at the outlet end, and the conductive sheet impregnated with the electrolyte is laid on the inner lower surface of the hole, so that the flying object advances. Even if the pressure in the rear part in the traveling direction does not decrease, it is possible to provide a device that launches the flying object from the exit end at a very high speed.

また、高圧電極が先端に尖鋭な導体を備えるととも
に、導電シートを高圧電極と低圧電極との双方に接触さ
せる或いは高圧電極側から電源電圧で絶縁破壊する距離
だけ離隔させることによって、従来の装置より約5割も
高速で飛翔体を発射させることができる。
In addition, the high voltage electrode is provided with a sharp conductor at the tip, and the conductive sheet is brought into contact with both the high voltage electrode and the low voltage electrode, or is separated from the high voltage electrode by a distance that causes a dielectric breakdown at the power supply voltage, thereby making it possible to reduce the electric power consumption. A flying object can be launched at a high speed of about 50%.

さらに、高圧電極から所定間隔離して配された補助電
極を設け、高圧電極と補助電極との間にも補助電源から
エネルギーを注入するとともに導電シートを補助電極と
低圧電極との双方に接触させることによって、従来の装
置より約2倍も高速で飛翔体を発射させることができ、
この構成に加えて、高圧電極と補助電極とを可溶性導体
で短絡させておくことにより、さらに高速で飛翔体を発
射させることができる。
Further, an auxiliary electrode provided at a predetermined distance from the high-voltage electrode is provided, energy is injected from the auxiliary power source between the high-voltage electrode and the auxiliary electrode, and the conductive sheet is brought into contact with both the auxiliary electrode and the low-voltage electrode. As a result, the projectile can be fired about twice as fast as the conventional device,
In addition to this configuration, by short-circuiting the high-voltage electrode and the auxiliary electrode with the soluble conductor, the flying object can be fired at a higher speed.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a),第2図(a),第3図および第4図はこ
の発明の互いに異なる実施例にかかる飛翔体の加速装置
の構成を示す断面図、第1図(b)は第1図(a)のA
−A断面図、第1図(c)は第1図(a)のB矢視図、
第2図(b)は第2図(a)のC矢視図、第5図は従来
の加速装置の構成例を示す断面図、第6図は孔内の飛翔
体速度および飛翔体進行方向後部の圧力を示す特性線図
である。 1,9:砲身、2,10:孔、3,11,17:高圧電極、4,12:低圧電
極、5,21:可溶性導体、6,13:電源、8,15:飛翔体、14,1
6,20:導電シート、18:補助電極、19:補助電源、31〜35:
各特性曲線。
FIGS. 1 (a), 2 (a), 3 and 4 are cross-sectional views showing the configuration of a flying object accelerating device according to different embodiments of the present invention, and FIG. A in FIG. 1 (a)
FIG. 1 (c) is a cross-sectional view taken along arrow B of FIG. 1 (a);
2 (b) is a view taken in the direction of the arrow C in FIG. 2 (a), FIG. 5 is a cross-sectional view showing a configuration example of a conventional acceleration device, and FIG. 6 is a projectile speed and a flight direction in the hole. It is a characteristic diagram which shows the pressure of a rear part. 1,9: gun barrel, 2,10: hole, 3,11,17: high voltage electrode, 4,12: low voltage electrode, 5,21: soluble conductor, 6,13: power source, 8,15: flying object, 14, 1
6, 20: conductive sheet, 18: auxiliary electrode, 19: auxiliary power supply, 31 to 35:
Each characteristic curve.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一方端が閉塞され、他方端が開口された孔
を備えた砲身と、この砲身に取り付けられ、前記孔内面
に露出する一対の電極と、この一対の電極に接続され、
孔内にアーク放電を発生させる電源とにより構成され、
前記電源を投入することにより前記孔内にアークを発生
させ、このアークによる圧力上昇によって前記孔内に配
置された飛翔体を加速する装置において、前記一対の電
極が前記孔の閉塞側最奥端に配された高圧電極と開口側
出口端に配された低圧電極とによりなり、この両電極の
間の前記孔内面にアーク放電の熱によって蒸発する電解
液の含浸された導電シートを備えてなることを特徴とす
る飛翔体の加速装置。
A barrel having a hole closed at one end and an opening at the other end, a pair of electrodes attached to the barrel and exposed on the inner surface of the hole, and connected to the pair of electrodes;
A power supply that generates an arc discharge in the hole,
In a device for generating an arc in the hole by turning on the power and accelerating a flying object arranged in the hole by a pressure increase due to the arc, the pair of electrodes are located at the innermost end on the closed side of the hole. And a low-pressure electrode disposed at the opening-side exit end, and a conductive sheet impregnated with an electrolyte that evaporates due to the heat of arc discharge is provided on the inner surface of the hole between the two electrodes. A flying object acceleration device, characterized in that:
【請求項2】請求項1記載のものにおいて、高圧電極は
低圧電極側に向かって先端の尖った形状の導体を備えた
ことを特徴とする飛翔体の加速装置。
2. A flying object accelerating device according to claim 1, wherein said high-voltage electrode has a conductor having a pointed shape toward the low-voltage electrode.
【請求項3】請求項1または2記載のものにおいて、導
電シートは低圧電極と接触し、高圧電極とは電源の電圧
によって絶縁破壊するような距離だけ離隔されているこ
とを特徴とする飛翔体の加速装置。
3. The flying object according to claim 1, wherein the conductive sheet is in contact with the low-voltage electrode and is separated from the high-voltage electrode by such a distance as to cause dielectric breakdown by the voltage of the power supply. Accelerator.
【請求項4】請求項1記載のものにおいて、高圧電極よ
り低圧電極側に向けて所定間隔を介して砲身の孔内面に
露出する補助電極を設け、前記所定間隔にアーク放電を
発生させるような補助電源を前記高圧電極と前記補助電
極との間に接続し、前記導電シートを前記補助電極と前
記低圧電極の双方に接触してつながるように配したこと
を特徴とする飛翔体の加速装置。
4. An apparatus according to claim 1, further comprising an auxiliary electrode exposed at a predetermined distance from the high-voltage electrode toward the low-voltage electrode on the inner surface of the bore of the gun barrel to generate an arc discharge at the predetermined distance. A flying object acceleration device, wherein an auxiliary power supply is connected between the high-voltage electrode and the auxiliary electrode, and the conductive sheet is arranged so as to be in contact with and connected to both the auxiliary electrode and the low-voltage electrode.
【請求項5】請求項4記載のものにおいて、補助電源の
通電によって溶けアーク放電を発生させる可溶性導体を
高圧電極と補助電極との間を短絡するように砲身の孔内
部に配したことを特徴とする飛翔体の加速装置。
5. A gun according to claim 4, wherein a fusible conductor for generating a melting arc discharge when the auxiliary power supply is supplied is disposed inside the bore of the barrel so as to short-circuit between the high-voltage electrode and the auxiliary electrode. Flying object acceleration device.
JP28403890A 1990-10-22 1990-10-22 Flying object accelerator Expired - Lifetime JP2605948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28403890A JP2605948B2 (en) 1990-10-22 1990-10-22 Flying object accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28403890A JP2605948B2 (en) 1990-10-22 1990-10-22 Flying object accelerator

Publications (2)

Publication Number Publication Date
JPH04158196A JPH04158196A (en) 1992-06-01
JP2605948B2 true JP2605948B2 (en) 1997-04-30

Family

ID=17673496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28403890A Expired - Lifetime JP2605948B2 (en) 1990-10-22 1990-10-22 Flying object accelerator

Country Status (1)

Country Link
JP (1) JP2605948B2 (en)

Also Published As

Publication number Publication date
JPH04158196A (en) 1992-06-01

Similar Documents

Publication Publication Date Title
US4913029A (en) Method and apparatus for accelerating a projectile through a capillary passage with injector electrode and cartridge for projectile therefor
US5183956A (en) Projectile-launching device
US7905180B2 (en) Long range electrified projectile immobilization system
US20070019358A1 (en) Immobilization weapon
US4907487A (en) Apparatus for and method of accelerating a projectile through a capillary passage and projectile therefor
US4625618A (en) Electromagnetic rail gun system and cartridge therefor
US7640839B2 (en) Method and apparatus for improving the effectiveness of electrical discharge weapons
US4555972A (en) Electromagnetic launcher with powder driven projectile insertion
US4433607A (en) Switch for very large DC currents
US3982347A (en) Trigger mechanism for electrically ignited weapons
US20060207466A1 (en) Ammunition for electrical discharge weapon
US4967637A (en) Projectile accelerating device
RU2609183C1 (en) Handheld multi-charge electroshock weapon and cartridge to it
US4621577A (en) Miniature plasma accelerating detonator and method of detonating insensitive materials
JPS62248999A (en) Accelerator for projectile by electrically heated plasma
JPS62252897A (en) Accelerator of missile by electrically heated plasma
US3373687A (en) Wire mounting for an electric fuze of a shaped-charge projectile
JP2605948B2 (en) Flying object accelerator
US5042359A (en) Projectile accelerating device
GB2332736A (en) Plasma burning device for weapon systems
US4975606A (en) Projectile launch package for arc driven electromagnetic launchers
JPS5935798A (en) Electromagnetic type projectile launcher
US5003884A (en) Hollow or projectile charge
GB2217820A (en) Electrothermal cannon
RU2778685C1 (en) Remote shock device cartridge