JP2605200Y2 - Filter media support - Google Patents

Filter media support

Info

Publication number
JP2605200Y2
JP2605200Y2 JP1992065730U JP6573092U JP2605200Y2 JP 2605200 Y2 JP2605200 Y2 JP 2605200Y2 JP 1992065730 U JP1992065730 U JP 1992065730U JP 6573092 U JP6573092 U JP 6573092U JP 2605200 Y2 JP2605200 Y2 JP 2605200Y2
Authority
JP
Japan
Prior art keywords
filter medium
wire
filter
medium support
radial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1992065730U
Other languages
Japanese (ja)
Other versions
JPH0621708U (en
Inventor
惠一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagase and Co Ltd
Original Assignee
Nagase and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagase and Co Ltd filed Critical Nagase and Co Ltd
Priority to JP1992065730U priority Critical patent/JP2605200Y2/en
Publication of JPH0621708U publication Critical patent/JPH0621708U/en
Application granted granted Critical
Publication of JP2605200Y2 publication Critical patent/JP2605200Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、濾材を支持する濾材支
持体に関し、特に、ポリマーを濾過する濾材に用いて最
適な濾材支持体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter medium support for supporting a filter medium, and more particularly to a filter medium support most suitable for a filter medium for filtering a polymer.

【0002】[0002]

【従来の技術】溶融ポリマー中の異物やゲル等を除去す
るために、従来から各種のフィルタが用いられている。
フィルタの濾材としても各種のものが知られており、例
えば金属粉末、金属繊維を焼結したものが知られてい
る。このような金属粉末や金属繊維の焼結体からなる濾
材は、薄層でも目の小さいものに形成できる利点がある
反面、通常、濾材単独では濾圧に耐えることができない
ので、パンチングメタル等の多孔板からなる濾材支持体
によって支持される構造で使用されている。このパンチ
ングメタル等の多孔板からなる濾材支持体は、従来、一
定の大きさの孔を多数穿孔したものからなっていた。
2. Description of the Related Art Various filters have conventionally been used to remove foreign substances, gels, and the like in a molten polymer.
Various types of filter media are known, for example, those obtained by sintering metal powder and metal fibers. A filter medium made of such a sintered body of metal powder or metal fiber has the advantage that it can be formed into a thin layer even with a thin layer.However, since the filter medium alone cannot withstand the filtration pressure, a filter medium such as punching metal is usually used. It is used in a structure supported by a filter medium support made of a perforated plate. Conventionally, a filter medium support made of a perforated plate such as a punched metal has been formed by perforating a large number of holes of a fixed size.

【0003】上記のような濾材と濾材支持体との組合せ
体を、単数又は複数組み込んで濾過装置が構成されるわ
けであるが、該濾過装置においては、上記濾材と濾材支
持体との組合せ体の上流側および/または下流側におい
て、装置の構成或いは仕様上、濾過対象流体を径方向に
流すことが多い。
[0003] A filtering device is constructed by incorporating one or a plurality of the above-described combinations of the filter medium and the filter medium support. In the filter apparatus, a combination of the filter medium and the filter medium support is used. On the upstream side and / or downstream side of the device, the fluid to be filtered is often caused to flow in the radial direction due to the configuration or specifications of the device.

【0004】ところが、このような、濾材と濾材支持体
との組合せ体の上流側および/または下流側で濾過対象
流体が径方向に流れる装置においては、以下のような問
題がある。
However, such an apparatus in which the fluid to be filtered flows radially upstream and / or downstream of the combination of the filter medium and the filter medium support has the following problems.

【0005】まず、従来の、濾材支持体、濾材を用いた
フィルタ装置の代表的な構成、およびその使用態様につ
いて説明する。図8に示すように、濾材1は、多数の一
定の大きさの孔を有するパンチングメタル等の多孔板か
らなる濾材支持体2によって支持され、内部にリテーナ
3が組み込まれてフィルタエレメント4が形成される。
内周側には、孔又は溝5Aを有するハブ5、フィルタエ
レメント4間には放射状に延びるスポーク状スペーサ6
が設けられ、通常、支柱7に複数のフィルタエレメント
4が積層状態で組み込まれる。濾過対象流体である、例
えばポリマー8は、矢印で示すように、フィルタエレメ
ント4間のスペーサ6で画成されたスペース9に導入さ
れ、径方向に流れるとともに順次濾材1を通して濾過さ
れ、濾材支持体2を通った後リテーナ3内を内径側に向
かって流れ、ハブ5の孔又は溝5A、支柱7の孔7Aを
通して支柱7内に流れる。なお、図示は省略するが、ポ
リマーをフィルタエレメントの内径側から外径側に向け
て流し、濾材で濾過した後フィルタエレメントの外径側
に集める構成を採ることも可能である。
[0005] First, a typical configuration of a conventional filter medium support, a filter device using the filter medium, and a usage mode thereof will be described. As shown in FIG. 8, the filter medium 1 is supported by a filter medium support 2 made of a perforated plate such as punched metal having a large number of holes of a fixed size, and a filter element 4 is formed by incorporating a retainer 3 therein. Is done.
On the inner peripheral side, a hub 5 having a hole or groove 5A, a spoke-like spacer 6 extending radially between the filter elements 4
Is provided, and a plurality of filter elements 4 are usually assembled in a support 7 in a stacked state. The fluid to be filtered, for example, the polymer 8 is introduced into the space 9 defined by the spacers 6 between the filter elements 4 as shown by the arrows, flows in the radial direction and is sequentially filtered through the filter medium 1, and is filtered. After passing through 2, it flows inside the retainer 3 toward the inner diameter side, and flows into the column 7 through the hole or groove 5A of the hub 5 and the hole 7A of the column 7. Although not shown, it is also possible to adopt a configuration in which the polymer flows from the inner diameter side to the outer diameter side of the filter element, is filtered by a filter medium, and is collected on the outer diameter side of the filter element.

【0006】図8に示したような構造のフィルタ装置に
おいては、ポリマーはフィルタエレメント4間のスペー
ス9から濾材1、濾材支持体2を通してリテーナ3部に
入り、該リテーナ3部を内径方向に流れるが、このリテ
ーナ3部における径方向の流れにおいては、他の部分で
の流れに比較して大きな抵抗を受ける。そのため、スペ
ース9からリテーナ3の外径側に流入したポリマーは、
リテーナ3部を内径方向に流れにくく、リテーナ3の内
径側に流入したポリマーは、リテーナ3部を内径方向に
より流れ易くなる。このように外径側、内径側につい
て、径方向の流れ易さ(抵抗)に差がある結果、スペー
ス9内から濾材1内へと流入するポリマーの流量に不均
一性が生じる。つまり、濾材1の単位面積当たりについ
てみると、濾材1の外径側から濾材1に流入するポリマ
ー流量よりも、スペース9内を内径側に流れ濾材1の内
径側から濾材1に流入するポリマー流量の方が多くな
る。その結果、初期の内は濾材1の内径側がより早く目
詰まりし、該目詰まり状態によりこの部分の抵抗が徐々
に大きくなって通過流量が減り、順次濾材1のより外径
側からより多くのポリマーが流入するようになる。した
がって、結局、濾材1の内径側の目詰まり状態が進んだ
使用後期においては、濾材1の外径側も相当多くの通過
流量に対して有効に濾過作用を行うことになるのである
が、使用初期の段階でこの濾材1の外径側が殆ど有効に
使用されていなかったため、ゲル化したポリマーや劣化
したポリマーがこの部分に生じており、濾材1の外径側
が有効に活用され始める使用後期に、ゲル化したポリマ
ーや劣化したポリマーが下流に流れ出てしまうという問
題がある。とくに、リテーナ3として金網を用いた場合
には、径方向の流れ抵抗が極めて大きいため、使用初期
の段階ではスペース9からリテーナ3の外径側には殆ど
ポリマーが流入しない状態に陥るおそれが強く、上記ゲ
ル化したポリマーや劣化したポリマーの問題が顕著に現
れる。また、このような問題が生じる前にフィルタエレ
メント4の使用を中止、あるいは交換するようにすれ
ば、結局濾材1の外径側が濾過に有効に使用されないま
ま使用を中止されたり交換されたりすることになるの
で、濾材1の寿命が短くなる。
In the filter device having the structure shown in FIG. 8, the polymer enters the retainer 3 from the space 9 between the filter elements 4 through the filter medium 1 and the filter medium support 2 and flows through the retainer 3 in the radial direction. However, the flow in the radial direction in the retainer 3 receives a greater resistance than the flow in other portions. Therefore, the polymer flowing from the space 9 to the outer diameter side of the retainer 3 is
It is difficult for the polymer to flow through the retainer 3 in the radial direction, and the polymer flowing into the radial direction of the retainer 3 flows more easily through the retainer 3 in the radial direction. As described above, as a result of the difference in the ease of flow (resistance) in the radial direction between the outer diameter side and the inner diameter side, the flow rate of the polymer flowing from the space 9 into the filter medium 1 becomes non-uniform. That is, in terms of the unit area of the filter medium 1, the flow rate of the polymer flowing into the inside of the space 9 to the inner diameter side and flowing into the filter medium 1 from the inner diameter side of the filter medium 1 is larger than the flow rate of the polymer flowing into the filter medium 1 from the outer diameter side of the filter medium 1. More. As a result, the inner diameter side of the filter medium 1 is clogged earlier in the initial stage, the resistance of this portion gradually increases due to the clogged state, the flow rate decreases, and the more the outer diameter side of the filter medium 1 sequentially increases, Polymer flows in. Therefore, in the latter stage of use in which the clogging state on the inner diameter side of the filter medium 1 has advanced in the end, the outer diameter side of the filter medium 1 also effectively performs a filtering action for a considerably large flow rate. Since the outer diameter side of the filter medium 1 was hardly used effectively at the initial stage, a gelled polymer or a deteriorated polymer was generated in this portion, and the outer diameter side of the filter medium 1 began to be effectively used. In addition, there is a problem that a gelled polymer or a deteriorated polymer flows out downstream. In particular, when a wire mesh is used as the retainer 3, the flow resistance in the radial direction is extremely large. Therefore, in the early stage of use, there is a strong possibility that the polymer hardly flows into the outer diameter side of the retainer 3 from the space 9 at the initial stage. In addition, the problem of the gelled polymer and the deteriorated polymer appears remarkably. In addition, if the use of the filter element 4 is stopped or replaced before such a problem occurs, the use of the filter element 1 may be stopped or replaced without the outer diameter side of the filter medium 1 being effectively used for filtration. , The life of the filter medium 1 is shortened.

【0007】このような問題に対処するために、放射状
に延びるスポーク状スペーサ6に大きな抵抗を持たせる
方法や、スペース9内で流路抵抗を持たせるために金網
を介在させる方法が知られている。しかし、前者の方法
では、濾材1の内径側、外径側のポリマー流量を均一化
することは困難であり、後者の方法では、金網の抵抗に
よりフィルタ装置全体の抵抗が大きくなり、初期濾圧が
高くなりすぎて現実の使用が難しくなるという問題があ
る。
In order to cope with such a problem, there are known a method of giving a large resistance to the spoke-shaped spacers 6 extending radially, and a method of interposing a wire netting for giving a flow path resistance in the space 9. I have. However, in the former method, it is difficult to make the polymer flow rates on the inner diameter side and the outer diameter side of the filter medium 1 uniform, and in the latter method, the resistance of the entire filter device increases due to the resistance of the wire mesh, and the initial filtration pressure increases. However, there is a problem that the actual use becomes difficult due to the excessively high cost.

【0008】[0008]

【考案が解決しようとする課題】本考案は、上述の如き
問題点に着目し、濾材支持体に支持された濾材に対し、
濾過対象流体の濾材通過流量を内外周側について均一化
することを目的とする。
SUMMARY OF THE INVENTION The present invention focuses on the above-mentioned problems and provides a filter medium supported by a filter medium support.
An object of the present invention is to equalize the flow rate of a fluid to be filtered through a filter medium on the inner and outer peripheral sides.

【0009】[0009]

【課題を解決するための手段】この目的に沿う本考案の
濾材支持体は、濾材を支持し、濾過対象流体が通過す
る、厚み方向に貫通する多数の流体通路を有する濾材支
持体であって、前記多数の流体通路の各流路断面積を、
濾材支持体の径方向に徐々に変化させるようにしてい
る。
According to the present invention, there is provided a filter medium support according to the present invention, which supports a filter medium and has a plurality of fluid passages penetrating in a thickness direction through which a fluid to be filtered passes. , The cross-sectional area of each of the plurality of fluid passages,
Not to so that gradually changing in the radial direction of the filter medium support
You.

【0010】上記多数の流体通路を次のように形成する
ことが考えられる。つまり、上記多数の流体通路は、た
とえば、同心円状に配列された多数の孔からなり、該同
心円状に配列された多数の孔のうち、各同一同心円上に
配列された孔はそれぞれ一定の断面積を有するととも
に、異なる同心円上に配列された孔は濾材支持体の径方
向の内側又は外側のいずれかの方向に向かって孔の断面
積が徐々に小さくなっている。この流路断面積が径方向
に徐々に変化する多数の流体通路は、エッチングにより
加工できる。打ち抜きではなくエッチングによる加工と
することにより、開口率を大きくできる。
The plurality of fluid passages are formed as follows.
It is possible. That is, the large number of fluid passages include, for example, a large number of holes arranged concentrically, and among the large number of holes arranged concentrically, the holes arranged on the same concentric circle each have a predetermined cross section. The holes having an area and arranged on different concentric circles have a gradually decreasing cross-sectional area in the radial direction inside or outside the filter medium support. A large number of fluid passages whose cross-sectional area gradually changes in the radial direction can be processed by etching. By performing processing by etching instead of punching, the aperture ratio can be increased.

【0011】しかし、本考案の濾材支持体は、上記とは
異なる構成を有する。すなわち、本考案に係る濾材支持
体は、少なくとも波形の線材を含む少なくとも一種の線
材を、該波形線材の波形湾曲方向面に沿う面方向にらせ
ん状に巻いて円板状に形成した濾材支持体であって、前
記波形線材の波形のピッチを、濾材支持体径方向に、大
小関係に関し一定方向に徐々に変化させたことを特徴と
するものからなる。
However, the filter medium support of the present invention is different from the above.
Has a different configuration. That is, the filter medium support according to the present invention
The body is a filter medium support formed by winding at least one wire including at least a corrugated wire in a spiral shape in a surface direction along a corrugated surface of the corrugated wire to form a disc shape, The characteristic feature is that the pitch of the waveform is gradually changed in a constant direction with respect to the magnitude relationship in the radial direction of the filter medium support.
What you do.

【0012】上記線材は、波形線材一種から構成されて
もよいが、波形線材と真直に延びる線材との二種の線材
から構成し、それらが濾材支持体の径方向に交互に配置
されるようらせん状に巻かれていることが望ましい。ら
せん状に巻かれた線材は、隣接するらせん巻き層間で互
いに焼結により接合され、円板状の濾材支持体に形成さ
れる。
The above-mentioned wire may be composed of one kind of corrugated wire, but it is composed of two kinds of wire, that is, a corrugated wire and a wire that extends straight, and these are alternately arranged in the radial direction of the filter medium support. It is desirable to be spirally wound. The spirally wound wires are joined together by sintering between adjacent spirally wound layers to form a disk-shaped filter medium support.

【0013】波形線材の波形ピッチの変化は、濾材に対
する(濾材支持体に対する)被濾過流体(たとえばポリ
マー)の流れ方向によって決めればよい。ピッチの変化
により、濾材支持体における開口率が変化するので、よ
り抵抗を持たせたい部分(流量を抑えたい部分)では開
口率が小さくなるようにピッチの変化を決めればよい。
The change in the corrugated pitch of the corrugated wire may be determined by the flow direction of the fluid to be filtered (for example, a polymer) with respect to the filter medium (with respect to the filter medium support). Since the aperture ratio in the filter medium support changes due to the change in the pitch, the change in the pitch may be determined so that the aperture ratio becomes smaller in a portion where more resistance is desired (a portion where the flow rate is to be suppressed).

【0014】[0014]

【作用】このような濾材支持体を用いたフィルタ装置に
おいては、濾材支持体の多数の流体通路の各流路断面積
が、濾材支持体の径方向に徐々に変化され、通過流量を
より抑えたい部位の流体通路の流路断面積はより小さ
く、通過流量をより増やしたい部位の流体通路の流路断
面積はより大きく設定される。その結果、濾材支持体に
支持された濾材を通過しようとする濾過対象流体の流れ
に、流体通路の流路断面積の変化に対応する抵抗を意図
的に持たせることができ、使用初期の段階から、濾材の
内外周側について通過流量を均一化することが可能にな
る。
In the filter device using such a filter medium support, the cross-sectional area of each of the plurality of fluid passages of the filter medium support is gradually changed in the radial direction of the filter medium support, so that the flow rate can be further reduced. The flow path cross-sectional area of the fluid passage at the desired part is smaller, and the flow path cross-sectional area of the fluid passage at the part where the passing flow rate is desired to be further increased is set larger. As a result, the flow of the fluid to be filtered, which is going to pass through the filter medium supported by the filter medium support, can be intentionally given a resistance corresponding to a change in the flow path cross-sectional area of the fluid passage. Accordingly, it is possible to make the passing flow rate uniform on the inner and outer peripheral sides of the filter medium.

【0015】[0015]

【実施例】以下に、本考案の実施例を図面を参照して説
明する。図1および図2は、本考案と比較するための一
比較実施例に係る濾材支持体および該濾材支持体を用い
たフィルタ装置を示している。図1はフィルタ装置の一
部を示しており、11は濾材支持体11を示している。
金属粉末や金属繊維の焼結体等からなる濾材20が濾材
支持体11に支持され、一対の濾材20および濾材支持
体11間にリテーナ21が介在されて一組のフィルタエ
レメント22が構成されている。内周側には、孔又は溝
23Aを有するハブ23が設けられ、フィルタエレメン
ト22間には、放射状に延びる、比較的流路抵抗の小さ
なスポーク状のスペーサ24が設けられている。これら
フィルタエレメント22が、複数組支柱25に組み込ま
れる。濾過対象流体26は、矢印で示す如く、スポーク
状スペーサ24で画成されるフィルタエレメント22間
のスペース27に流入し、濾材20、濾材支持体11を
通過してリテーナ21内に流入し、内径側に流れて、ハ
ブ23の孔又は溝23Aから支柱25の孔25Aを通し
て支柱25内に流入する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 show one example for comparison with the present invention.
5 shows a filter medium support according to a comparative example and a filter device using the filter medium support. FIG. 1 shows a part of a filter device, and 11 shows a filter medium support 11.
A filter medium 20 made of a sintered body of metal powder or metal fiber or the like is supported by the filter medium support 11, and a pair of filter medium 20 and a retainer 21 are interposed between the filter medium supports 11 to form a set of filter elements 22. I have. A hub 23 having a hole or groove 23 </ b> A is provided on the inner peripheral side, and a spoke-shaped spacer 24 that extends radially and has relatively small flow resistance is provided between the filter elements 22. These filter elements 22 are incorporated into a plurality of columns 25. The fluid 26 to be filtered flows into the space 27 between the filter elements 22 defined by the spoke-shaped spacers 24 as shown by the arrows, passes through the filter medium 20 and the filter medium support 11, flows into the retainer 21, and And flows into the column 25 from the hole or groove 23A of the hub 23 through the hole 25A of the column 25.

【0016】濾材支持体11は、図2に示すように、濾
材支持体11の厚み方向に貫通し、濾材支持体11の径
方向に流路断面積が徐々に変化する多数の流体通路とし
ての多数の孔12を有している。本実施例では、孔12
の断面積は、径方向内側に向かう程徐々に小さくなるよ
うに設定されている。ただしこの断面積の変化方向は、
濾材支持体11および濾材20の上流側、下流側の流れ
方向に応じて決めればよく、後述の如く、通過流体の流
れにより抵抗を与えたい部位をより小さくするように設
定すればよい。
As shown in FIG. 2, the filter medium support 11 penetrates in the thickness direction of the filter medium support 11 and has a plurality of fluid passages whose flow path cross-sectional areas gradually change in the radial direction of the filter medium support 11. It has a number of holes 12. In this embodiment, the holes 12
Is set so as to gradually decrease toward the inside in the radial direction. However, the direction of change of this cross-sectional area is
What is necessary is just to determine according to the flow direction of the upstream side and the downstream side of the filter medium support 11 and the filter medium 20, and it may be set so that the part which wants to give resistance by the flow of the passing fluid may be made smaller as described later.

【0017】多数の孔12は、同心円状に配列され、該
同心円状に配列された多数の孔12のうち、各同一同心
円上に配列された孔12は、それぞれ一定の断面積を有
している。そして、異なる同心円上に配列された孔12
が、上記の如く、濾材支持体11の径方向内側方向に向
かって断面積を徐々に小さくされている。
The large number of holes 12 are arranged concentrically, and among the large number of holes 12 arranged concentrically, the holes 12 arranged on the same concentric circle each have a constant cross-sectional area. I have. The holes 12 arranged on different concentric circles
However, as described above, the cross-sectional area is gradually reduced toward the radially inward direction of the filter medium support 11.

【0018】この多数の孔12は、エッチングにより加
工されている。打ち抜き加工では、開口率を大きくとる
ことが難しいが、エッチング加工とすることにより、容
易に開口率を大きくとることができ、濾材支持体11全
体としての抵抗を小さく保つことができる。
The large number of holes 12 are processed by etching. In the punching process, it is difficult to increase the aperture ratio. However, by performing the etching process, the aperture ratio can be easily increased, and the resistance of the filter medium support 11 as a whole can be kept low.

【0019】このように構成された装置においては、ス
ペース27内に流入した流体は、該スペース27内での
流路抵抗が小さいため、内径側に向けて多量に流れよう
とする。しかし、濾材20、濾材支持体11を通過する
流路において、濾材支持体11の内径側程抵抗が大きく
なるように構成されているので、内径側から濾材20内
に流入する流体の流量はより抑えられる。この濾材支持
体11の径方向の抵抗の変化は、前述の如く多数の孔1
2の断面積を、径方向内側に向かう程徐々に小さくなる
ように設定することによって生じるものであり、この径
方向の抵抗変化を適切に設定することにより、濾材20
への流入流量は、径方向にみて均一化される。また、前
述の如く、リテーナ21部では、内径方向への流れに対
し、外径側程抵抗が大きく、内径側程抵抗が小さくなる
が、この抵抗の大小関係を相殺するように上記濾材支持
体11の抵抗の変化が定められる。したがって、濾材2
0からリテーナ21部終端に至るまで、場合によっては
スペース27からリテーナ21部終端に至るまで、径方
向にみて、抵抗が均一化される。
In the device configured as described above, the fluid that has flowed into the space 27 tends to flow in a large amount toward the inner diameter side because the flow resistance in the space 27 is small. However, in the flow path passing through the filter medium 20 and the filter medium support 11, the resistance is increased toward the inner diameter side of the filter medium support 11, so that the flow rate of the fluid flowing into the filter medium 20 from the inner diameter side is higher. Can be suppressed. The change in the resistance in the radial direction of the filter medium support 11 is caused by the large number of holes 1 as described above.
2 is set so as to gradually decrease toward the inside in the radial direction. By appropriately setting the change in the resistance in the radial direction, the filter medium 20 is formed.
The flow rate of flow into the tank is made uniform in the radial direction. Further, as described above, in the retainer 21 portion, the resistance to the flow in the inner diameter direction is larger on the outer diameter side and smaller on the inner diameter side, but the filter medium support is set so as to cancel the magnitude relation of the resistance. Eleven changes in resistance are determined. Therefore, filter medium 2
From 0 to the end of the retainer 21, and in some cases, from the space 27 to the end of the retainer 21, the resistance is uniform in the radial direction.

【0020】濾材20の通過流量が径方向に均一化され
ると、濾材20が、使用初期の段階から、径方向全体に
略同じ条件で使用されることになり、従来のように使用
初期の段階においてある特定部分(例えば外径側部分)
で通過流量が極めて少なく(あるいは滞留して)ポリマ
ーがゲル化したり劣化したりすることはなくなる。ま
た、濾材20は使用初期の段階から径方向全体が略同じ
条件で濾過に有効に使用されるので、濾材20の全領域
が略同じ時期に寿命に達するようになる。その結果、有
効使用の度合いが径方向に不均一であった場合に比べ、
寿命が大幅に延長される。また、通過流量の条件が径方
向に同じになることにより、濾材20による流体中の異
物等の捕捉条件も均一化され、捕捉洩れ等が防止されて
目標とする濾過性能が確実に発揮されるようにもなる。
When the flow rate through the filter medium 20 is made uniform in the radial direction, the filter medium 20 is used under substantially the same conditions in the entire radial direction from the initial stage of use, as in the prior art. A specific part in the stage (for example, the outer diameter side part)
Therefore, the flow rate of the polymer is extremely small (or stays), and the polymer does not gel or deteriorate. In addition, since the filter medium 20 is effectively used for filtration under substantially the same conditions in the entire radial direction from the initial stage of use, the entire area of the filter medium 20 reaches the end of life at substantially the same time. As a result, compared to the case where the degree of effective use was uneven in the radial direction,
Life is greatly extended. In addition, since the conditions of the passing flow rate are the same in the radial direction, the conditions for capturing the foreign matter and the like in the fluid by the filter medium 20 are also uniformed, the capture leakage and the like are prevented, and the target filtration performance is reliably exhibited. It will be like that.

【0021】なお、上記孔12の断面積の変化は、究極
的には濾材支持体の径方向における抵抗を変化させ、そ
れによって濾材の通過流量を径方向に均一化しようとす
るものであるから、たとえばフィルタエレメント間にお
ける流体の流れ方向が図2に示したものとは逆方向にな
る装置を想定すれば、その装置に応じて、濾材の通過流
量を均一化できるよう、濾材支持体の径方向における抵
抗の変化(したがって孔12の断面積の変化)をもたせ
ればよい。
The change in the cross-sectional area of the hole 12 is intended to ultimately change the radial resistance of the filter medium support, thereby making the flow rate of the filter medium uniform in the radial direction. For example, assuming an apparatus in which the flow direction of the fluid between the filter elements is opposite to that shown in FIG. 2, the diameter of the filter medium support is adjusted so that the flow rate of the filter medium can be made uniform according to the apparatus. A change in resistance in the direction (therefore, a change in the sectional area of the hole 12) may be provided.

【0022】図3ないし図5は、本考案の実施例に係
る濾材支持体を示している。フィルタ装置に関しては前
比較実施例に準じるので、ここでは濾材支持体のみに
ついて説明する。図3および図4に示すように、濾材支
持体31は、波形の線材32と、真直に延びる線材33
との二種の線材から構成されている。この二種の線材3
2、33が、波形線材32の波形湾曲方向面に沿う面方
向に、かつ濾材支持体31の径方向に交互に配置される
よう、両線材がセットでらせん状に巻かれている。らせ
ん状に巻かれた線材32、33は、線材32、33間、
および隣接するらせん巻層間で互いに焼結、ロー付けな
どにより接合されている。
FIGS. 3 to 5 show a filter medium support according to an embodiment of the present invention. Since the filter device conforms to the comparative example, only the filter medium support will be described here. As shown in FIGS. 3 and 4, the filter medium support 31 includes a corrugated wire 32 and a straight wire 33.
And two types of wire rods. These two kinds of wires 3
The two wires are spirally wound as a set such that the wires 2 and 33 are alternately arranged in the surface direction along the surface of the corrugated wire 32 in the waveform bending direction and in the radial direction of the filter medium support 31. The wires 32 and 33 wound in a spiral shape are between the wires 32 and 33,
And between the adjacent spirally wound layers are sintered or brazed to each other.

【0023】波形線材32の波型のピッチPは、濾材支
持体31の径方向にみて、内径側でより大きく、外径側
でより小さくなるよう、径方向に徐々に変化されてい
る。このような波形のピッチPの変化は、次のように線
材32、33を巻くことにより簡単に達成される。
The corrugated pitch P of the corrugated wire 32 is gradually changed in the radial direction so as to be larger on the inner diameter side and smaller on the outer diameter side when viewed in the radial direction of the filter medium support 31. Such a change in the pitch P of the waveform can be easily achieved by winding the wires 32 and 33 as follows.

【0024】すなわち、図5に示すように、巻取コア3
4上に巻取駆動源35により線材32、33をらせん状
に巻いていくに際し、巻取駆動源35の巻取トルクT、
および/又はニップロール36(又は巻出し装置:図示
略)等を介してブレーキ37により制御される供給線材
32、33の制動力Bを、巻径の増加に従って徐々に小
さくすることにより、内径側では波形線材32がより伸
ばされ、外径側では波形線材32がより縮められて、上
記のような波形のピッチPの変化が得られる。
That is, as shown in FIG.
In winding the wires 32, 33 in a spiral shape on the winding drive source 35, a winding torque T of the winding drive source 35,
And / or by gradually reducing the braking force B of the supply wires 32, 33 controlled by the brake 37 via the nip roll 36 (or unwinding device: not shown) as the winding diameter increases, The corrugated wire 32 is further elongated, and the corrugated wire 32 is further contracted on the outer diameter side, so that the above-described change in the pitch P of the waveform is obtained.

【0025】図3のように形成された円板状の濾材支持
体31においては、波形線材32の波形のピッチPを徐
々に変化させることにより、内径側程線材33間の距離
が縮まり外径側程線材33間の距離が大きくなることも
相まって、内径側程開口率が小さく、外径側程開口率が
大きくなる。したがって、通過する流体に対する抵抗
は、内径側程高く、外径側程低くなる。
In the disk-shaped filter medium support 31 formed as shown in FIG. 3, by gradually changing the pitch P of the waveform of the corrugated wire 32, the distance between the wires 33 is reduced toward the inner diameter side and the outer diameter is reduced. Coupled with the fact that the distance between the wire members 33 becomes larger toward the side, the opening ratio becomes smaller toward the inner diameter side, and becomes larger toward the outer diameter side. Therefore, the resistance to the passing fluid is higher on the inner diameter side and lower on the outer diameter side.

【0026】なお、上記濾材支持体31にあっては、図
4に示すように、各線材32、33は、その幅dが、厚
みt、t’よりも大きい偏平型の線材から構成されるこ
とが好ましい。このような構成により、濾材支持体とし
ての十分な強度を保ちながら、大きな開口率、小さな抵
抗を達成できる。
In the filter medium support 31, as shown in FIG. 4, each wire 32, 33 is formed of a flat wire having a width d larger than the thickness t, t '. Is preferred. With such a configuration, a large aperture ratio and a small resistance can be achieved while maintaining sufficient strength as a filter medium support.

【0027】上記のように構成された濾材支持体31
が、たとえば図1に示したのと同様の方法でフィルタ装
置内に組み込まれる。前述の如く、濾材への流入流体の
流量は内径側程大きくなろうとするが、濾材支持体31
の抵抗が内径側程大きくなるように構成されているの
で、この抵抗の変化を適切に設定することにより、濾材
の通過流量を径方向に均一化することが可能になる。つ
まり、前記比較実施例と同様の作用、効果が得られる。
The filter medium support 31 constructed as described above
Is incorporated into the filter device, for example, in a manner similar to that shown in FIG. As described above, the flow rate of the fluid flowing into the filter medium tends to increase toward the inner diameter side.
Is configured to increase toward the inner diameter side, and by appropriately setting the change in the resistance, it is possible to make the flow rate of the filter medium uniform in the radial direction. That is, the same operation and effect as those of the comparative example can be obtained.

【0028】なお、上記実施例においては、波形線材3
2の波形のピッチPが内径側程大きくなるように濾材支
持体31を形成したが、らせん状に巻かれる波形線材の
形状(自由状態での波形ピッチ、波形の高さ)によって
は、逆に内径側程波形のピッチを小さくする方が内径側
での開口率を小さく(従って抵抗を大きく)できる場合
もある。そのような場合には、たとえば図6に示すよう
に、内径側程巻取駆動源35の巻取トルクTおよび/又
はブレーキ37の制動力Bを小さくし、巻取りの増加に
したがってそれらを徐々に大きくするようコントロール
すればよい。
In the above embodiment, the corrugated wire 3
Although the filter medium support 31 was formed such that the pitch P of the waveform 2 became larger toward the inner diameter side, depending on the shape of the spirally wound corrugated wire (corrugated pitch in free state, corrugated height), conversely. In some cases, the smaller the pitch of the waveform toward the inner diameter, the smaller the aperture ratio (and thus the greater the resistance) on the inner diameter. In such a case, as shown in FIG. 6, for example, as shown in FIG. 6, the winding torque T of the winding drive source 35 and / or the braking force B of the brake 37 are made smaller toward the inner diameter side, and are gradually reduced as the winding is increased. You can control it to be larger.

【0029】また、上記波形線材のピッチの径方向変化
方向は、たとえばフィルタエレメント間における流体の
流れ方向に応じて定めればよく、上記と逆になる場合も
あり得る。つまり、濾材の通過流量を均一化できるよう
に、濾材支持体の径方向における抵抗の変化(したがっ
て波形線材のピッチの変化)をもたせればよい。
The direction in which the pitch of the corrugated wire is changed in the radial direction may be determined according to, for example, the flow direction of the fluid between the filter elements, and may be reversed. That is, a change in the resistance in the radial direction of the filter medium support (and a change in the pitch of the corrugated wire) may be provided so that the flow rate of the filter medium can be made uniform.

【0030】さらに、濾材支持体は波形線材のみでも構
成可能である。図7に濾材支持体41の一部を示すよう
に、波形線材42を、所定のピッチ変化を生じるようら
せん状に巻いた後、波形線材42同士を焼結、ロー付け
などにより接合することにより所望の径方向抵抗変化を
有する濾材支持体41が構成される。
Further, the filter medium support can be composed of only a corrugated wire. As shown in FIG. 7, a part of the filter medium support 41, the corrugated wire 42 is spirally wound so as to generate a predetermined pitch change, and then the corrugated wires 42 are joined together by sintering, brazing, or the like. A filter medium support 41 having a desired radial resistance change is configured.

【0031】[0031]

【考案の効果】以上説明したように、本考案の濾材支持
体によるときは、多数の流体通路の各流路断面積を、濾
材支持体の径方向に徐々に変化させることにより、濾材
支持体に、径方向における望ましい抵抗の変化をもたせ
ることができ、それによって濾材の通過流量を径方向に
均一化できる。この均一化により使用初期の段階から濾
材全体を実質的に同一条件で濾過に使用でき、ある特定
部分にポリマーのゲル化や劣化が生じるのを防止でき、
きわめて高性能かつ信頼性の高いフィルタ装置を実現で
きる。また、濾材全体を使用初期の段階から有効に活用
できるようになるので、その寿命を大幅に延長できる。
また、上記径方向の均一化は、濾材支持体自身の特性に
よって達成できるものであり、フィルタエレメント間等
に特別な部材を必要としないから、フィルタ装置全体と
しての抵抗を低く抑えつつ、上記均一化を達成できると
ともに、フィルタ装置の簡素化をはかることもできる。
As described above, when the filter medium support of the present invention is used, the cross-sectional area of each of the plurality of fluid passages is gradually changed in the radial direction of the filter medium support to thereby provide the filter medium support. In addition, a desirable change in the resistance in the radial direction can be provided, whereby the flow rate of the filter medium can be made uniform in the radial direction. By this homogenization, the entire filter medium can be used for filtration under substantially the same conditions from the initial stage of use, and it is possible to prevent gelation and deterioration of the polymer in a specific portion,
An extremely high-performance and highly reliable filter device can be realized. In addition, since the entire filter medium can be effectively used from an early stage of use, the life of the filter medium can be greatly extended.
Further, the radial uniformization can be achieved by the characteristics of the filter medium support itself, and does not require a special member between the filter elements and the like. And the filter device can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案の比較実施例に係る濾材支持体を用いた
フイルタ装置の部分縦断面図である。
FIG. 1 is a partial longitudinal sectional view of a filter device using a filter medium support according to a comparative example of the present invention.

【図2】図1の濾材支持体の平面図である。FIG. 2 is a plan view of the filter medium support of FIG.

【図3】本考案の実施例に係る濾材支持体の平面図で
ある。
FIG. 3 is a plan view of a filter medium support according to an embodiment of the present invention.

【図4】図3の濾材支持体の部分拡大斜視図である。FIG. 4 is a partially enlarged perspective view of the filter medium support of FIG. 3;

【図5】図3の濾材支持体の巻き取り状態を示す装置の
概略構成図である。
FIG. 5 is a schematic configuration diagram of an apparatus showing a winding state of a filter medium support of FIG. 3;

【図6】図3の変形例に係る濾材支持体の巻き取り状態
を示す装置の概略構成図である。
FIG. 6 is a schematic configuration diagram of an apparatus showing a wound state of a filter medium support according to a modification of FIG. 3;

【図7】図3の別の変形例に係る濾材支持体の部分斜視
図である。
FIG. 7 is a partial perspective view of a filter medium support according to another modification of FIG. 3;

【図8】従来のフィルタ装置の部分縦断面図である。FIG. 8 is a partial longitudinal sectional view of a conventional filter device.

【符号の説明】[Explanation of symbols]

11、31、41 濾材支持体 12 孔 20 濾材 21 リテーナ 22 フィルタエレメント 23 ハブ 24 スペーサ 25 支柱 26 流体 27 スペース 32、42 波形線材 33 真直な線材 34 巻き取りコア 35 巻取駆動源 36 ニップロール 37 ブレーキ 11, 31, 41 Filter medium support 12 hole 20 Filter medium 21 Retainer 22 Filter element 23 Hub 24 Spacer 25 Support 26 Fluid 27 Space 32, 42 Waveform wire 33 Straight wire 34 Winding core 35 Winding drive source 36 Nip roll 37 Brake

Claims (4)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 少なくとも波形の線材を含む少なくとも
一種の線材を、該波形線材の波形湾曲方向面に沿う面方
向にらせん状に巻いて円板状に形成した濾材支持体であ
って、前記波形線材の波形のピッチを、濾材支持体径方
向に、大小関係に関し一定方向に徐々に変化させたこと
を特徴とする濾材支持体。
Claims: 1. At least including a corrugated wire
Aspects of a type of wire rod along the surface of the corrugated wire rod
A filter media support wound spirally in the direction
Therefore, the pitch of the waveform of the corrugated wire is set to
The size relationship was gradually changed in a certain direction
A filter medium support characterized by the above-mentioned.
【請求項2】 前記線材が、前記波形の線材と、真直に
延びる線材との二種の線材からなり、該波形線材と真直
な線材とが、濾材支持体の径方向に交互に配置されるよ
う、該波形線材と真直な線材とをらせん状に巻いた請求
項1の濾材支持体。
2. The method according to claim 1 , wherein the wire is straight with the corrugated wire.
The corrugated wire and a straight wire
Wire rods are alternately arranged in the radial direction of the filter media support.
The claim in which the corrugated wire and the straight wire are spirally wound.
Item 7. The filter medium support of Item 1.
【請求項3】 前記波形線材の波形のピッチが、濾材支
持体径方向内側にいく程大きくなっている請求項1又は
2の濾材支持体。
3. The filter according to claim 2, wherein the pitch of the waveform of the corrugated wire is a filter material support.
Claim 1 or Claim 2 which becomes large so that it goes to a holding body radial direction inside.
2. Filter media support.
【請求項4】 前記らせん状に巻かれた線材が、隣接す
るらせん巻層間で互に焼結、ロー付けなどにより接合さ
れている請求項1ないし3のいずれかに記載の濾材支持
体。
4. The helically wound wire rods are adjacent to each other.
Sintered between braided layers, joined by brazing, etc.
The filter medium support according to any one of claims 1 to 3, wherein
body.
JP1992065730U 1992-08-28 1992-08-28 Filter media support Expired - Lifetime JP2605200Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1992065730U JP2605200Y2 (en) 1992-08-28 1992-08-28 Filter media support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992065730U JP2605200Y2 (en) 1992-08-28 1992-08-28 Filter media support

Publications (2)

Publication Number Publication Date
JPH0621708U JPH0621708U (en) 1994-03-22
JP2605200Y2 true JP2605200Y2 (en) 2000-06-26

Family

ID=13295434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992065730U Expired - Lifetime JP2605200Y2 (en) 1992-08-28 1992-08-28 Filter media support

Country Status (1)

Country Link
JP (1) JP2605200Y2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY142200A (en) * 2006-02-23 2010-10-29 Bunri Inc Filtering device
JP5031663B2 (en) * 2008-05-22 2012-09-19 長瀬産業株式会社 Filter retainer
JP6078848B2 (en) * 2012-11-20 2017-02-15 公益財団法人神奈川科学技術アカデミー Method for forming lipid bilayer membrane and instrument therefor
JP6109584B2 (en) * 2013-01-22 2017-04-05 長瀬フィルター株式会社 RETAINER FOR FILTER, FILTER, AND METHOD FOR PRODUCING FILTER RETAINER
CN105050683A (en) * 2013-04-26 2015-11-11 长濑过滤器股份有限公司 Retainer for filter, and filter using same
CN114111083A (en) * 2021-11-02 2022-03-01 深圳供电局有限公司 Regenerator and cold accumulation type low-temperature refrigerator adopting same

Also Published As

Publication number Publication date
JPH0621708U (en) 1994-03-22

Similar Documents

Publication Publication Date Title
US6598749B2 (en) Spiral pleated filter cartridges
EP0674931B1 (en) Hub ring and supporting plate for a filter and methods for manufacturing these members
US5100551A (en) Segmented filter disc with slotted support and drainage plate
US4902420A (en) Segmented filter disc with slotted support and drainage plate and support spacer
EP0284404A2 (en) Filter disc
JP2605200Y2 (en) Filter media support
US8640884B2 (en) Fluid treatment elements and fluid treatment arrangements with spaces between fluid treatment elements and methods for making and using them
US10799815B2 (en) High pressure resistant filter
USRE19359E (en) Filter unit
EP4082645A1 (en) Filter disk segments
US2816663A (en) Disc type filter
JP7384693B2 (en) Filters and leaf discs for filters
JP3884133B2 (en) Laminated metal filter
CN115012884A (en) Multi-stage sand-proof screen pipe
JP4295394B2 (en) Filter for filtration
US20100219139A1 (en) Fluid treatment arrangements with fluid treatment elements and methods for making and using them
JPH0545448Y2 (en)
EP2125144B1 (en) Fluid treatment arrangements with sets of fluid treatment elements and methods for making and using them
KR100323574B1 (en) Disc Filter Elements and Disc Filter Systems
JPS648565B2 (en)
US20100187189A1 (en) Fluid treatment elements and fluid treatment arrangements with posts and/or bands between fluid treatment elements and methods for making and using them
JP2004237173A (en) Filter disk and leaf filter
JPH0620588Y2 (en) Polymer distribution plate
JPH024412A (en) Manufacture of filter for micro and ultra filtration
JPH07256013A (en) Hub ring for filter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080421

Year of fee payment: 8