JP2604082B2 - Combined cycle power plant - Google Patents

Combined cycle power plant

Info

Publication number
JP2604082B2
JP2604082B2 JP3332238A JP33223891A JP2604082B2 JP 2604082 B2 JP2604082 B2 JP 2604082B2 JP 3332238 A JP3332238 A JP 3332238A JP 33223891 A JP33223891 A JP 33223891A JP 2604082 B2 JP2604082 B2 JP 2604082B2
Authority
JP
Japan
Prior art keywords
steam
pressure
cooling
valve
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3332238A
Other languages
Japanese (ja)
Other versions
JPH05163961A (en
Inventor
久彦 青木
幸生 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tohoku Electric Power Co Inc
Original Assignee
Toshiba Corp
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tohoku Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP3332238A priority Critical patent/JP2604082B2/en
Publication of JPH05163961A publication Critical patent/JPH05163961A/en
Application granted granted Critical
Publication of JP2604082B2 publication Critical patent/JP2604082B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、ガスタービン部、蒸
気タービン部を組み合わせたコンバインドサイクル発電
プラントにかかり、とりわけガスタービン部の翼に冷却
媒体として高圧過熱蒸気を用いたコンバインドサイクル
発電プラントに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined cycle power plant in which a gas turbine section and a steam turbine section are combined, and more particularly to a combined cycle power plant using high-pressure superheated steam as a cooling medium for blades of the gas turbine section.

【0002】[0002]

【従来の技術】近年、電力消費は加速度的に延び、もは
や既設の蒸気タービンによる発電プラントだけでは対処
しきれない状態にあり、その代替技術としてガスタービ
ンによる発電プラントと、蒸気タービンによる発電プラ
ントとを巧みに組み合わせた、いわゆるコンバインドサ
イクル発電プラントの出現を見ている。
2. Description of the Related Art In recent years, power consumption has been increasing at an accelerating rate, and it is no longer possible to cope with existing power plants using steam turbines alone. As alternative technologies, power plants using gas turbines and power plants using steam turbines have become available. We are seeing the emergence of so-called combined cycle power plants that skillfully combine

【0003】このコンバインドサイクル発電プラント
は、蒸気タービン単体でのサイクル効率よりも一段と高
い点のほかにガスタービンの特性である急速起動・停止
が蒸気タービン単体よりもすぐれている点で好まれて採
用されている。
[0003] This combined cycle power plant is preferred because it is much higher than the cycle efficiency of a steam turbine alone, and is also preferred in that quick start / stop, which is a characteristic of a gas turbine, is superior to that of a steam turbine alone. Have been.

【0004】従来、この種タイプは、ガスタービンから
出た排熱ガスを、二つまたは三つのドラムを有する排熱
回収ボイラに送り、ここで高圧、高温の蒸気を発生せし
め、その過熱蒸気を蒸気タービンに送って回転トルクを
取り出し、その回転トルクを発電機に与えて電気出力を
出すものであり、排熱ガスを巧みに利用する点でサイク
ル効率が高くなっている。
Conventionally, in this type, exhaust gas discharged from a gas turbine is sent to an exhaust heat recovery boiler having two or three drums, where high-pressure, high-temperature steam is generated, and the superheated steam is generated. The rotating torque is sent to a steam turbine, and the rotating torque is given to a generator to generate an electric output. The cycle efficiency is high in that the exhaust heat gas is skillfully used.

【0005】しかして、サイクル効率が一段と高くなっ
たこの種タイプであっても、発電プラントから出る出力
増加はもとよりさらに一歩向上させたサイクル効率を目
指して日夜研究が進められており、その一つにガスター
ビン翼の材力保証の問題がある。
[0005] However, even with this type in which the cycle efficiency is further increased, day and night research is being conducted with the aim of increasing the output from the power plant and further improving the cycle efficiency one step further. There is a problem of guaranteeing the material strength of gas turbine blades.

【0006】一般に、この種原動機は、作動ガスの温度
が高ければ高いほど、得られる出力も比例的に増加する
ことは良く知られているところであるが、作動ガスの温
度が高いと回転トルクを作り出すガスタービン翼の材力
は、その超高温度に抗しきれない問題を抱えている。
In general, it is well known that in this type of motor, the higher the temperature of the working gas, the higher the output that can be obtained. The higher the temperature of the working gas, the lower the rotational torque. The material strength of the gas turbine blades that it produces has a problem that cannot withstand the ultra-high temperatures.

【0007】かかる問題点に対処するため、空気圧縮機
からの高圧空気の一部を利用してガスタービン翼に送り
出す、いわゆる空冷翼やボイラ等の蒸気発生器から蒸気
を一部取り出し、この蒸気をガスタービン翼に送り出
す、いわゆる蒸気冷却翼などが研究されている。
To cope with such a problem, a part of high-pressure air from an air compressor is sent to a gas turbine blade, and a part of steam is extracted from a steam generator such as a so-called air-cooled blade or boiler. The so-called steam-cooled blades, which send air to gas turbine blades, have been studied.

【0008】[0008]

【発明が解決しようとする課題】ところで、最近のガス
タービンの開発は、現状の作動ガス温度(ガスタービン
入口温度)1100℃クラスから1300℃クラスを一つのステ
ップとして、1500℃クラス以上に延ばそうとしており、
このような超高温にしても翼の空冷方式ではサイクル効
率が思った以上の成果が認められていないので、いきお
い翼の蒸気冷却方式への志向が高まっている。この場合
の蒸気源は、中圧系のドラムから引き抜く蒸気が望まし
く、試算によればガスタービン初段落の静翼を例に採っ
たとき、空冷式にくらべ空気圧縮機から燃焼器を経てガ
スタービンに送り出される作動ガス量が40%以上膨張仕
事に寄与でき、このためサイクル効率も相対的に 1.7%
以上向上することが算出されている。
By the way, the recent development of the gas turbine is to increase the working gas temperature (gas turbine inlet temperature) from the 1100 ° C class to the 1300 ° C class as one step, and extend it to the 1500 ° C class or more. So
Even at such ultra-high temperatures, the air-cooling method of the blades has not been able to achieve the expected results of cycle efficiency more than expected, and the desire for steam-cooling methods for vibrating blades is increasing. In this case, the steam source is desirably steam extracted from the medium-pressure drum.According to trial calculations, when taking the stationary blade of the first stage of the gas turbine as an example, the gas turbine passes through the combustor from the air compressor compared to the air-cooled type. The amount of working gas sent to the tank can contribute to expansion work by more than 40%, and the cycle efficiency is relatively 1.7%.
It has been calculated that the above improvement is obtained.

【0009】ところが、蒸気冷却方式の蒸気源として中
圧系のドラムからの蒸気を取り出すと、上述のように空
冷方式に比べて優れたものの、蒸気冷却による蒸気消費
が多くなるにしたがい、その増加分が高圧系のドラムに
流れず、このため高圧系のドラムから蒸気タービン部に
送られる過熱蒸気が減少し、結局、蒸気タービン部の出
力は低下する傾向にある。したがって、その蒸気消費が
多くなる場合、中圧系のドラムから蒸気を引き抜くこと
は、一定量ならともかく、必ずしも好ましくはない。
However, when the steam from the medium-pressure drum is taken out as a steam source of the steam cooling system, although the steam is superior to the air cooling system as described above, the steam consumption by the steam cooling increases, but the steam consumption increases. Therefore, the amount of superheated steam sent from the high-pressure system drum to the steam turbine unit decreases, and eventually the output of the steam turbine unit tends to decrease. Therefore, when the steam consumption increases, it is not always preferable to withdraw the steam from the drum of the medium pressure system, even if it is a fixed amount.

【0010】そこで、この発明は、この種技術分野の飛
躍的発展を求めるものであって、ガスタービン翼の冷却
に蒸気を使用してもサイクル効率は一段と高くなるよう
にするコンバインドサイクル発電プラントを提供するこ
とを目的とする。
Therefore, the present invention seeks a dramatic development in this kind of technical field, and provides a combined cycle power plant in which even if steam is used for cooling gas turbine blades, the cycle efficiency is further increased. The purpose is to provide.

【0011】[0011]

【課題を解決するための手段】この発明は、ガスタービ
ン部、蒸気タービン部、排熱回収ボイラを有し、この排
熱回収ボイラにはガスタービン部から送り出される排熱
ガスの流れ方向に沿って次順に高圧ドラム、中圧ドラ
ム、低圧ドラムを備えるとともに、高圧ドラムからの蒸
気を第1過熱器、第2過熱器を経て蒸気タービン部の高
圧タービンに送り出し、ここで膨張仕事をした蒸気を再
熱器で再び過熱し、その過熱蒸気を蒸気タービン部の中
圧タービン、低圧タービンに送り出すコンバインドサイ
クル発電プラントにおいて、上記第1過熱器から延びる
高圧蒸気冷却管と補助蒸気管との合流部から分岐し、ガ
スタービン部の翼に結ぶ冷却蒸気管を設ける一方、ガス
タービン部の翼の出口側は蒸気タービン部の高圧タービ
ンの入口に結ぶ回収管を備えたものである。
SUMMARY OF THE INVENTION The present invention has a gas turbine section, a steam turbine section, and an exhaust heat recovery boiler. The exhaust heat recovery boiler is provided along the flow direction of the exhaust gas discharged from the gas turbine section. The high pressure drum, the medium pressure drum, and the low pressure drum are provided in this order, and the steam from the high pressure drum is sent to the high pressure turbine of the steam turbine section via the first superheater and the second superheater, and the steam that has performed expansion work is discharged there. In a combined cycle power plant that superheats again with the reheater and sends out the superheated steam to the medium-pressure turbine and the low-pressure turbine of the steam turbine section, the combined-cycle section of the high-pressure steam cooling pipe and the auxiliary steam pipe extending from the first superheater is used. A cooling steam pipe that branches and connects to the blades of the gas turbine section is provided, while the outlet side of the blades of the gas turbine section is connected to the inlet of the high-pressure turbine of the steam turbine section. It is those with a.

【0012】[0012]

【作用】この発明は、ガスタービン部の翼を蒸気によっ
て冷却するとき、過熱蒸気の温度・圧力が高いこともあ
って、その消費量が比較的少なくてすむ点に着目したも
のであり、第1過熱器から延びる高圧蒸気冷却管等を経
て過熱蒸気をガスタービン部の翼に送り、翼冷却後の蒸
気を回収管を経て蒸気タービン部の高圧タービンに送る
ので、比較的高い温度・圧力で高圧タービンの膨張仕事
に寄与する。したがって、蒸気の消費に無駄が比較的少
なく、くわえて冷却に費やされた蒸気は蒸気タービン部
の高圧タービンに戻されるので、サイクル効率は一段と
高くなる。
The present invention focuses on the fact that when the blades of the gas turbine section are cooled by steam, the consumption of the superheated steam is relatively small due to the high temperature and pressure of the steam. (1) The superheated steam is sent to the gas turbine blades via a high-pressure steam cooling pipe extending from the superheater, and the steam after cooling the blades is sent to the high-pressure turbine of the steam turbine via the recovery pipe. It contributes to the expansion work of the high pressure turbine. Therefore, the waste of the steam is relatively small, and the steam used for the cooling is returned to the high-pressure turbine of the steam turbine section, so that the cycle efficiency is further increased.

【0013】なお、起動後まもないころは、第1過熱器
を通る過熱蒸気が所定の温度・圧力に達していないこと
もあって補助蒸気管からの蒸気が使用される。
Shortly after startup, the steam from the auxiliary steam pipe is used because the superheated steam passing through the first superheater has not reached the predetermined temperature and pressure.

【0014】[0014]

【実施例】以下、この発明にかかるコンバインドサイク
ル発電プラントの一実施例を、従来技術と関連させなが
ら添付図を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a combined cycle power plant according to the present invention will be described below with reference to the accompanying drawings in connection with the prior art.

【0015】図1は、この発明にかかるコンバインドサ
イクル発電プラントの代表例の一つである概略系統を示
し、このプラントでは、大別して発電機GEN、蒸気タ
ービン部ST、ガスタービン部GT、排熱回収ボイラH
RSGを備える一方、発電機GEN、蒸気タービン部S
T、ガスタービン部GTは共通軸でタンデムに結ばれて
いる。
FIG. 1 shows a schematic system which is a typical example of a combined cycle power plant according to the present invention. In this plant, a generator GEN, a steam turbine section ST, a gas turbine section GT, a waste heat Recovery boiler H
While having the RSG, the generator GEN and the steam turbine section S
T, the gas turbine unit GT is connected in tandem with a common shaft.

【0016】ガスタービン部GTは、吸気室1を有する
空気圧縮機2、燃焼器3、ガスタービン4を有し、吸気
室1で除塵後の大気を空気圧縮機2で高圧化し、その高
圧空気を燃焼器3に送り出し、ここで燃料とともに高圧
・高温の作動ガスを作り出し、その作動ガスはガスター
ビン4に送られて膨張仕事をし、熱エネルギを回転エネ
ルギに換えている。
The gas turbine section GT includes an air compressor 2 having an intake chamber 1, a combustor 3, and a gas turbine 4. The air after dust removal in the intake chamber 1 is pressurized by the air compressor 2, and the high-pressure air To the combustor 3, where a high-pressure and high-temperature working gas is produced together with the fuel, and the working gas is sent to the gas turbine 4 to perform expansion work and convert heat energy into rotational energy.

【0017】回転エネルギの消費に使用された作動ガス
は、排熱ガスとして排熱回収ボイラHRSGに送られ、
ここで蒸気が発生せしめられている。
The working gas used for consuming the rotational energy is sent as an exhaust gas to an exhaust heat recovery boiler HRSG,
Here, steam is generated.

【0018】排熱回収ボイラHRSGは、三つのドラム
を有するタイプのものであって、排熱ガスの流れに沿っ
て上流側から下流側に向かって次順に、第2高圧過熱器
HPSH−2、第2再熱器RH−2、第1再熱器RH−
1、第1高圧過熱器HPSH−1を配する。また、排熱
回収ボイラHRSGは、第1高圧過熱器HPSH−1に
直結する高圧ドラム5を有し、この高圧ドラム5は高圧
蒸発部HPEVAを備えている。
The exhaust heat recovery boiler HRSG is of a type having three drums. The exhaust heat recovery boiler HRSG includes a second high-pressure superheater HPSH-2 and a second high-pressure superheater HPSH-2. Second reheater RH-2, first reheater RH-
1. The first high pressure superheater HPSH-1 is provided. Further, the exhaust heat recovery boiler HRSG has a high-pressure drum 5 directly connected to the first high-pressure superheater HPSH-1, and the high-pressure drum 5 includes a high-pressure evaporator HPEVA.

【0019】高圧蒸発部HPEVAの排熱ガス下流側に
は、中圧過熱器IPSH、低圧過熱器LPSH、第2高
圧節炭器HPECO−2を介装して中圧蒸発部IPEV
Aを備える中圧ドラム6が配されている。
The intermediate-pressure evaporator IPSH, the low-pressure superheater LPSH, and the second high-pressure economizer HPECO-2 are provided downstream of the exhaust gas from the high-pressure evaporator HPEVA.
A medium pressure drum 6 provided with A is provided.

【0020】中圧ドラム6は、排熱ガスの熱エネルギを
あますところなく回収するために設けられたものであっ
て、この中圧ドラム6は、中圧節炭器IPECO、第1
高圧節炭器HPECO−1を介装して低圧蒸発部LPE
VAを備える低圧ドラム7に結ばれている。さらに、低
圧ドラム7の排熱ガス下流側に低圧節炭器LPECOが
配され、この低圧節炭器LPECOは蒸気タービン部S
Tからの給水を受けている。
The intermediate-pressure drum 6 is provided for recovering the heat energy of the exhaust heat gas without exhaustion. The intermediate-pressure drum 6 includes an intermediate-pressure economizer IPECO,
Low pressure evaporator LPE with high pressure economizer HPECO-1
It is tied to a low pressure drum 7 provided with VA. Further, a low-pressure economizer LPECO is disposed on the downstream side of the exhaust heat gas of the low-pressure drum 7, and the low-pressure economizer LPECO is provided in the steam turbine section S.
They are receiving water from T.

【0021】蒸気タービン部STは、排熱回収ボイラH
RSGからの蒸気を受け、その蒸気エネルギをあますと
ころなく回転エネルギに換えるため、高圧タービン8、
中圧タービン9、低圧タービン10を備えている。すなわ
ち、高圧タービン8は、排熱回収ボイラHRSGの第2
高圧過熱器HPSH−2からの過熱蒸気を受け、ここで
膨張仕事をさせ、圧力・温度の下がった蒸気を第1再熱
器RH−1、第2再熱器RH−2を通して再過熱させ、
再熱後の蒸気を中圧タービン8に送り出し、ここで再び
膨張仕事をさせ、膨張仕事後の蒸気を低圧タービン10で
も膨張仕事させている。こうして膨張仕事後の蒸気は、
復水器11で冷却され、給水としてポンプ12、グランド蒸
気熱交換器13を経て排熱回収ボイラHRSGの低圧節炭
器LPECOに戻されている。
The steam turbine section ST includes an exhaust heat recovery boiler H
In order to receive the steam from the RSG and convert the steam energy to rotational energy, the high-pressure turbine 8,
An intermediate pressure turbine 9 and a low pressure turbine 10 are provided. That is, the high-pressure turbine 8 is connected to the second heat recovery boiler HRSG.
The superheated steam from the high-pressure superheater HPSH-2 is received and expanded there, and the steam whose pressure and temperature are reduced is reheated through the first reheater RH-1 and the second reheater RH-2.
The reheated steam is sent to the medium-pressure turbine 8 where expansion work is performed again, and the steam after the expansion work is also expanded in the low-pressure turbine 10. The steam after the expansion work is thus
The water is cooled by a condenser 11 and returned to a low-pressure economizer LPECO of an exhaust heat recovery boiler HRSG via a pump 12 and a ground steam heat exchanger 13 as feed water.

【0022】上記構成にもとづく作用を説明する。The operation based on the above configuration will be described.

【0023】吸気室1を経て吸入された大気空気は、空
気圧縮機2で高圧化された後燃料とともに燃焼器3に送
られ、作動ガスを作り出す。作動ガスはその膨張力でガ
スタービン4を回転駆動させ、排熱ガスとして排熱回収
ボイラHRSGに送り出される。排熱ガスは矢印に向か
って流れ、この間、給水の予熱、気水分離、蒸発を繰り
返し、最終的に過熱蒸気を生成している。すなわち蒸気
タービン部STから案内された給水は、低圧節炭器LP
ECOで予熱され、その予熱水は一部、第1弁24を経て
低圧ドラム7に分流され、ここで気水分離、低圧蒸発部
LPEVAでの蒸発がなされ、低圧蒸気として低圧過熱
器LPSHを経て低圧タービン10に送り出されている。
また、残りの予熱水の一部は、第1高圧節炭器HPEC
O−1から第2高圧節炭器HPECO−2、第3弁26を
経て高圧ドラム5に流れる一方、第2高圧過熱器HPS
H−2に送り出されている。さらに、残りの予熱水の他
の一部は、中圧節炭器IPECO、第2弁25を経て中圧
ドラム6に流れる一方、第2再熱器RH−2にも送り出
されている。
Atmospheric air sucked through the intake chamber 1 is sent to a combustor 3 together with fuel after being pressurized by an air compressor 2 to produce working gas. The working gas drives the gas turbine 4 to rotate by its expansion force, and is sent to the waste heat recovery boiler HRSG as waste heat gas. The exhaust gas flows in the direction of the arrow, during which time the preheating of the feedwater, the separation of water and water, and the evaporation are repeated, and finally superheated steam is generated. That is, the feed water guided from the steam turbine section ST is supplied to the low-pressure economizer LP.
ECO is preheated, and the preheated water is partially diverted to the low-pressure drum 7 through the first valve 24, where it is separated into water and water, and evaporated in the low-pressure evaporator LPEVA. It is delivered to the low pressure turbine 10.
In addition, part of the remaining preheated water is the first high pressure economizer HPEC
O-1 flows to the high-pressure drum 5 via the second high-pressure economizer HPECO-2 and the third valve 26, while the second high-pressure superheater HPS
It has been sent to H-2. Further, another part of the remaining preheated water flows to the intermediate pressure drum 6 via the intermediate pressure economizer IPECO and the second valve 25, and is also sent out to the second reheater RH-2.

【0024】中圧ドラム6は予熱水の一部を受けて気水
分離を行い、この間、中圧蒸発部IPEVAで蒸発し、
中圧蒸気として中圧過熱器IPSHから第1再熱器RH
−1に送り出している。
The medium pressure drum 6 receives a part of the preheated water and separates water and water, and during this time, evaporates in a medium pressure evaporator IPEVA.
From medium pressure superheater IPSH to first reheater RH as medium pressure steam
-1.

【0025】このようにして予熱、気水分離、蒸発が繰
り返され、排熱回収ボイラHRSGから取り出された過
熱蒸気は、蒸気タービン部STで上述膨張仕事、再熱が
行なわれ、発電機GENから電気エネルギが取り出され
ている。
The superheated steam extracted from the exhaust heat recovery boiler HRSG by repeating the preheating, steam-water separation and evaporation in this way is subjected to the above-mentioned expansion work and reheating in the steam turbine section ST, and is supplied from the generator GEN. Electrical energy is being extracted.

【0026】上述従来例に対して、この発明では、ガス
タービン4の運転中、その出口側から入口側に向かって
ガスタービン動静翼の材力低下を補うため各翼に冷却蒸
気を供する冷却蒸気ラインを設けている点に特徴を有す
る。すなわち、ガスタービン4には、各翼に冷却蒸気を
供する冷却蒸気管14が設けられており、この冷却蒸気管
14は、排熱回収ボイラHRSGの第1高圧過熱器HPS
H−1の出口側C点まで延び、途中に冷却高圧蒸気止め
弁27を介装する高圧蒸気冷却管15と、図示しない補助ボ
イラに補助蒸気元弁28を介装して結ぶ補助蒸気管16とに
分岐されている。
In contrast to the conventional example described above, according to the present invention, during operation of the gas turbine 4, cooling steam for supplying cooling steam to each blade from the outlet side to the inlet side in order to compensate for a decrease in material strength of the gas turbine moving and stationary blades. The feature is that the line is provided. That is, the gas turbine 4 is provided with a cooling steam pipe 14 for supplying cooling steam to each blade.
14 is the first high-pressure superheater HPS of the waste heat recovery boiler HRSG
A high-pressure steam cooling pipe 15 extending to a point C on the outlet side of H-1 and having a cooling high-pressure steam stop valve 27 interposed therebetween, and an auxiliary steam pipe 16 connected to an auxiliary boiler (not shown) with an auxiliary steam source valve 28 interposed therebetween. And it is forked.

【0027】上記冷却蒸気管14は、流量弁32、ミストセ
パレータ33、バイパス弁17、入口弁18を備えるととも
に、各翼を冷却した蒸気を蒸気タービン部STの高圧タ
ービン8に戻す回収管19を備える。この回収管19は、戻
り冷却蒸気の圧力調整をする圧力調整弁20、起動前や停
止時にドレン水や残留ガスを処理する第1処理弁21、回
収冷却蒸気を止める阻止弁22を有している。
The cooling steam pipe 14 includes a flow valve 32, a mist separator 33, a bypass valve 17, and an inlet valve 18, and a recovery pipe 19 for returning steam having cooled each blade to the high-pressure turbine 8 of the steam turbine section ST. Prepare. The recovery pipe 19 has a pressure adjusting valve 20 for adjusting the pressure of the return cooling steam, a first processing valve 21 for processing drain water and residual gas before and after start-up, and a blocking valve 22 for stopping the recovered cooling steam. I have.

【0028】一方、ガスタービン部GTの空気圧縮機2
には、パージ管23が設けられており、このパージ管23
は、パージ弁29、冷却蒸気管14、高圧蒸気冷却管15を経
て第2処理弁30を介装するベント管31に結ばれている。
On the other hand, the air compressor 2 of the gas turbine section GT
Is provided with a purge pipe 23.
Is connected via a purge valve 29, a cooling steam pipe 14, and a high-pressure steam cooling pipe 15 to a vent pipe 31 in which a second processing valve 30 is interposed.

【0029】上記構成にかかるガスタービンの各翼への
蒸気冷却の説明に先立ち、その前段階としての各管系の
ドレン処理、ウォーミング処理について起動前、起動
後、停止後の各ステップにわけて説明しておく。
Prior to the description of the steam cooling to each blade of the gas turbine according to the above configuration, the drain processing and the warming processing of each pipe system as a preceding stage are divided into steps before starting, after starting, and after stopping. I will explain.

【0030】(1)起動前 各管系にはドレン水や不純物が残留しており、これらを
放置しておくと、ガスタービン翼は酸化スケールの発
生、目詰り等に起因する翼の熱応力過多などが発生する
ので、蒸気による各管系へのパージがなされる。このパ
ージの際、補助蒸気元弁28は開口、流量弁32は開口、バ
イパス弁17は開口、圧力調整弁20は開口、第1処理弁21
は開口、第2処理弁30は開口、入口弁18は閉口、阻止弁
22は閉口、冷却高圧蒸気止め弁27は閉口、パージ弁29は
閉口、の手順を経る。こうした手順を経た冷却蒸気ライ
ンには補助蒸気管16から蒸気が送り出され、各管系に残
留するドレン水・空気を外部に送り出す。
(1) Before start-up Drain water and impurities remain in each pipe system, and if these are left untreated, the gas turbine blades suffer from thermal stress on the blades due to the generation of oxide scale and clogging. Since excess is generated, each pipe system is purged with steam. During this purge, the auxiliary steam source valve 28 is open, the flow valve 32 is open, the bypass valve 17 is open, the pressure regulating valve 20 is open, and the first processing valve 21 is opened.
Is open, second processing valve 30 is open, inlet valve 18 is closed, check valve
22 is closed, the cooling high-pressure steam stop valve 27 is closed, and the purge valve 29 is closed. Steam is sent from the auxiliary steam pipe 16 to the cooling steam line that has gone through such a procedure, and drain water and air remaining in each pipe system are sent to the outside.

【0031】(2)起動後 (2−1)起動初期 上述パージ後、入口弁18を開口し、バイパス弁17を閉口
し、補助蒸気管16からの蒸気を各管系に送り出し、ガス
タービン4の各翼内をウォーミングする。 (2−2)起動中期 ウォーミングが終了すると、補助蒸気元弁28を閉口、第
1処理弁21を閉口、第2処理弁30を閉口し、冷却高圧蒸
気止め弁27を開口させて、第1高圧過熱器HPSH−1
からの蒸気を使用してガスタービン4の各翼の冷却が開
始される。この場合、ガスタービン4から排熱回収ボイ
ラHRSGには排熱ガスが送られているものの、第1高
圧過熱器HPSH−1から出る蒸気がガスタービン4の
各翼を冷却するに必要な圧力・温度等の蒸気条件に達し
ていないときは、補助蒸気管16からの蒸気が使用され
る。そして、補助蒸気管16からの蒸気を使ってガスター
ビン4の各翼の冷却をするときには、各弁の開閉は、補
助蒸気元弁28は開口、第1処理弁21は開口、第2処理弁
30は開口、冷却高圧蒸気止め弁27は閉口、流量弁32は開
口、バイパス弁17は閉口、入口弁18は開口、阻止弁22は
閉口、パージ弁29は閉口、の手順を経る。こうした各弁
の操作によって各翼の冷却が始まる。 (2−3)起動後期 この時期になると、ガスタービン4の出力は急速に増
し、第1高圧過熱器HPSH−1から出る蒸気は各翼を
冷却するに必要な圧力・温度等の蒸気条件に達してい
る。このため補助蒸気管16からの蒸気が切換わって第1
高圧過熱器HPSH−1からの蒸気が使用され、この切
換に際し、各弁の開閉は、補助蒸気元弁28は閉口、第1
処理弁21は閉口、第2処理弁30は閉口、阻止弁22は開
口、の諸操作を行う。こうした各弁の操作によって各翼
の冷却が好ましく行われる。
(2) After start-up (2-1) Initial start-up After the above-mentioned purging, the inlet valve 18 is opened, the bypass valve 17 is closed, and the steam from the auxiliary steam pipe 16 is sent out to each pipe system. Warm inside each wing. (2-2) Middle period of start-up When the warming is completed, the auxiliary steam source valve 28 is closed, the first processing valve 21 is closed, the second processing valve 30 is closed, and the cooling high-pressure steam stop valve 27 is opened. 1 High pressure superheater HPSH-1
The cooling of each blade of the gas turbine 4 is started using the steam from the gas turbine. In this case, although the exhaust heat gas is sent from the gas turbine 4 to the exhaust heat recovery boiler HRSG, the steam discharged from the first high-pressure superheater HPSH-1 has a pressure and a pressure required to cool each blade of the gas turbine 4. When steam conditions such as temperature have not been reached, steam from the auxiliary steam pipe 16 is used. When each blade of the gas turbine 4 is cooled using steam from the auxiliary steam pipe 16, the opening and closing of each valve is performed by opening the auxiliary steam source valve 28, opening the first processing valve 21, and opening the second processing valve.
30 is open, the cooling high pressure steam stop valve 27 is closed, the flow valve 32 is open, the bypass valve 17 is closed, the inlet valve 18 is open, the blocking valve 22 is closed, and the purge valve 29 is closed. The operation of each valve starts cooling of each blade. (2-3) Late Startup At this time, the output of the gas turbine 4 rapidly increases, and the steam discharged from the first high-pressure superheater HPSH-1 reaches steam conditions such as pressure and temperature required for cooling each blade. Has reached. For this reason, the steam from the auxiliary steam pipe 16 is switched and the first
The steam from the high pressure superheater HPSH-1 is used. In this switching, each valve is opened and closed by closing the auxiliary steam source valve 28 and closing the first steam.
The processing valve 21 is closed, the second processing valve 30 is closed, and the blocking valve 22 is opened. The operation of each valve preferably cools each blade.

【0032】(3)停止時 ガスタービン4の運転が終了し、各管系をそのまま放置
しておくと、残留蒸気のドレン化の影響を受け、また放
置中の管内に空気が流入し、各管系は、酸化・腐食の要
因になる。このため、空気圧縮機2から高圧空気を利用
して各管系内の残留物を外部にパージする操作が行われ
る。この場合、各弁の開閉は、補助蒸気元弁28は閉口、
第1処理弁21は開口、第2処理弁30は開口、冷却高圧蒸
気止め弁27は閉口、阻止弁22は閉口、パージ弁29は開
口、入口弁18は閉口、の諸操作を行い、これによって各
管系内の残留物の外部へのパージが行われる。なお、パ
ージ中、各管系内のミストはミストセパレータ33によっ
て分離・除去される。
(3) At Shutdown When the operation of the gas turbine 4 is completed and each pipe system is left as it is, it is affected by the drainage of the residual steam, and air flows into the pipe while being left. Tubing causes oxidation and corrosion. Therefore, an operation of purging the residue in each pipe system to the outside using the high-pressure air from the air compressor 2 is performed. In this case, each valve is opened and closed by closing the auxiliary steam source valve 28,
The first processing valve 21 is open, the second processing valve 30 is open, the cooling high-pressure steam stop valve 27 is closed, the blocking valve 22 is closed, the purge valve 29 is open, and the inlet valve 18 is closed. This purges the residue in each pipe system to the outside. During the purging, the mist in each pipe system is separated and removed by the mist separator 33.

【0033】ところで、この発明にかかるコンバインド
サイクル発電プラントでは、上述各弁の開閉操作後、ガ
スタービン4の各翼には冷却用の蒸気が供される。
In the combined cycle power plant according to the present invention, cooling steam is supplied to each blade of the gas turbine 4 after the opening and closing operation of each valve.

【0034】先ず、補助蒸気管16からの蒸気が冷却蒸気
管14を経てガスタービン4の各翼に送り出され、ここで
翼冷却後、回収管19、第1処理弁21を経て外部に排出さ
れ、この間、第1高圧過熱器HPSH−1から出る蒸気
が一定値以上の圧力・温度に達するまで待つ。
First, the steam from the auxiliary steam pipe 16 is sent out to each blade of the gas turbine 4 via the cooling steam pipe 14, where it is cooled and then discharged to the outside via the recovery pipe 19 and the first processing valve 21. During this period, the process waits until the steam discharged from the first high-pressure superheater HPSH-1 reaches a pressure / temperature equal to or higher than a predetermined value.

【0035】第1高圧過熱器HPSH−1の蒸気が一定
値以上に達すると、上述各弁を開閉操作し、第1高圧過
熱器HPSH−1の過熱蒸気を高圧蒸気冷却管15、冷却
蒸気管14を経てガスタービン4の各翼に送り出す。ガス
タービン4の各翼を冷却後、その蒸気は回収管19を経て
蒸気タービン部STの高圧タービン8の入口に戻され、
ここで膨張仕事に活用される。
When the steam of the first high-pressure superheater HPSH-1 reaches a certain value or more, the above-mentioned valves are opened and closed, and the superheated steam of the first high-pressure superheater HPSH-1 is supplied to the high-pressure steam cooling pipe 15, the cooling steam pipe. Through 14, it is sent to each blade of the gas turbine 4. After cooling each blade of the gas turbine 4, the steam is returned to the inlet of the high-pressure turbine 8 of the steam turbine section ST via the recovery pipe 19,
It is used here for expansion work.

【0036】このように、ガスタービン4の各翼の冷却
として、第1高圧過熱器HPSH−1の過熱蒸気を使用
し、冷却後の回収蒸気を上述高圧タービン8に戻すこと
によって、図2にも見られるように、中圧ドラムから引
き抜いた蒸気をガスタービンの各翼に冷却するよりは約
2%のサイクル効率が向上している。これは、中圧ドラ
ムから引き抜いた蒸気よりも温度・圧力が高く、しかも
冷却後の蒸気を高圧タービン8に戻して膨張仕事に活用
することによるものである。
As described above, the superheated steam of the first high-pressure superheater HPSH-1 is used for cooling each blade of the gas turbine 4 and the recovered steam after cooling is returned to the high-pressure turbine 8 as shown in FIG. As can be seen, the cycle efficiency is improved by about 2% compared to cooling the steam extracted from the medium pressure drum to each blade of the gas turbine. This is due to the fact that the temperature and pressure are higher than the steam withdrawn from the medium-pressure drum, and the steam after cooling is returned to the high-pressure turbine 8 and used for expansion work.

【0037】したがって、サイクル効率の向上は、ガス
タービン4の各翼を冷却するに要する蒸気消費が比較的
少ないことはもとより、燃料の節約に寄与し、ひいては
燃料の節約に伴う大気汚染要因であるNOxやCOの発
生も比較的少なくなる。
Therefore, the improvement in cycle efficiency contributes to the saving of fuel as well as the relatively low steam consumption required for cooling each blade of the gas turbine 4, and is an air pollution factor accompanying the saving of fuel. The generation of NOx and CO is relatively small.

【0038】[0038]

【発明の効果】この発明にかかるコンバインドサイクル
発電プラントでは、第1過熱器からの高圧蒸気冷却管と
補助蒸気管との合流部から分岐してガスタービン部の翼
に結ぶ冷却蒸気管を設ける一方、ガスタービン部の翼か
らは蒸気タービン部の高圧タービンに結ぶ回収管を備え
たもので、この発明によれば、サイクル効率の向上、燃
料の節約に伴う公害問題の抑制等すぐれた効果を奏す
る。
In the combined cycle power plant according to the present invention, while providing a cooling steam pipe which branches off from the junction of the high pressure steam cooling pipe from the first superheater and the auxiliary steam pipe and connects to the blades of the gas turbine section, The gas turbine unit is provided with a recovery pipe connected to the high-pressure turbine of the steam turbine unit from the blades. According to the present invention, there are excellent effects such as improvement of cycle efficiency and suppression of pollution problems due to fuel saving. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明にかかるコンバインドサイクル発電プ
ラントの概略系統図。
FIG. 1 is a schematic system diagram of a combined cycle power plant according to the present invention.

【図2】現有のサイクル効率、排熱回収ボイラの中圧ド
ラムからの蒸気を用いてガスタービン部の翼を蒸気冷却
した場合のサイクル効率、この発明による過熱蒸気を用
いてガスタービン部の翼を蒸気冷却した場合のサイクル
効率を、それぞれ比較する特性線図。
FIG. 2 shows the existing cycle efficiency, the cycle efficiency when steam from an intermediate pressure drum of an exhaust heat recovery boiler is used to cool the blades of a gas turbine unit, and the blade of a gas turbine unit using superheated steam according to the present invention. FIG. 4 is a characteristic diagram for comparing cycle efficiencies when steam is cooled.

【符号の説明】[Explanation of symbols]

GT ガスタービン部 HRSG 排熱回収ボイラ ST 蒸気タービン部 4 ガスタービン 5 高圧ドラム 6 中圧ドラム 7 低圧ドラム 8 高圧タービン 14 冷却蒸気管 15 高圧蒸気冷却管 16 補助蒸気管 19 回収管 HPSH−1 第1過熱器 HPSH−2 第2過熱器 GT Gas turbine section HRSG Exhaust heat recovery boiler ST Steam turbine section 4 Gas turbine 5 High pressure drum 6 Medium pressure drum 7 Low pressure drum 8 High pressure turbine 14 Cooling steam pipe 15 High pressure steam cooling pipe 16 Auxiliary steam pipe 19 Recovery pipe HPSH-1 First Superheater HPSH-2 Second superheater

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−16109(JP,A) 特開 昭62−67239(JP,A) 特開 昭63−309731(JP,A) 特公 昭63−40244(JP,B2) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-53-16109 (JP, A) JP-A-62-67239 (JP, A) JP-A-63-309731 (JP, A) 40244 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ガスタービン部、蒸気タービン部、排熱
回収ボイラを有し、この排熱回収ボイラにはガスタービ
ン部から送り出される排熱ガスの流れ方向に沿って次順
に高圧ドラム、中圧ドラム、低圧ドラムを備えるととも
に、高圧ドラムからの蒸気を第1過熱器、第2過熱器を
経て蒸気タービン部の高圧タービンに送り出し、ここで
膨張仕事をした蒸気を再熱器で再び過熱し、その過熱蒸
気を蒸気タービン部の中圧タービン、低圧タービンに送
り出すコンバインドサイクル発電プラントにおいて、上
記第1過熱器から延びる高圧蒸気冷却管と補助蒸気管と
の合流部から分岐し、ガスタービン部の翼に結ぶ冷却蒸
気管を設ける一方、ガスタービン部の翼の出口側は蒸気
タービン部の高圧タービンの入口に結ぶ回収管を備えた
ことを特徴とするコンバインドサイクル発電プラント。
1. A gas turbine section, a steam turbine section, and an exhaust heat recovery boiler. The exhaust heat recovery boiler includes a high pressure drum, a medium pressure With a drum and a low-pressure drum, the steam from the high-pressure drum is sent to the high-pressure turbine of the steam turbine section via the first superheater and the second superheater, and the steam that has been expanded is heated again by the reheater, In a combined cycle power plant that sends out the superheated steam to a medium-pressure turbine and a low-pressure turbine of a steam turbine section, a branch from a junction of a high-pressure steam cooling pipe and an auxiliary steam pipe extending from the first superheater is provided. A cooling steam pipe connected to the steam turbine section, and an outlet side of the blades of the gas turbine section is provided with a recovery pipe connected to an inlet of a high-pressure turbine of the steam turbine section. Unbound cycle power plant.
JP3332238A 1991-12-16 1991-12-16 Combined cycle power plant Expired - Fee Related JP2604082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3332238A JP2604082B2 (en) 1991-12-16 1991-12-16 Combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3332238A JP2604082B2 (en) 1991-12-16 1991-12-16 Combined cycle power plant

Publications (2)

Publication Number Publication Date
JPH05163961A JPH05163961A (en) 1993-06-29
JP2604082B2 true JP2604082B2 (en) 1997-04-23

Family

ID=18252724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3332238A Expired - Fee Related JP2604082B2 (en) 1991-12-16 1991-12-16 Combined cycle power plant

Country Status (1)

Country Link
JP (1) JP2604082B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0926318A1 (en) * 1997-12-24 1999-06-30 Asea Brown Boveri AG Cooling system for the gas turbine of a combined power plant
WO2001046576A1 (en) * 1999-12-21 2001-06-28 Siemens Aktiengesellschaft Method for operating a steam turbine, and a turbine system provided with a steam turbine that functions according to said method
JP4909112B2 (en) * 2007-02-15 2012-04-04 三菱重工業株式会社 Turbine equipment

Also Published As

Publication number Publication date
JPH05163961A (en) 1993-06-29

Similar Documents

Publication Publication Date Title
JP3068925B2 (en) Combined cycle power plant
US5577377A (en) Combined cycle with steam cooled gas turbine
US5412937A (en) Steam cycle for combined cycle with steam cooled gas turbine
US6966171B2 (en) Combined cycle gas turbine system
EP0736669A2 (en) Steamed cooled gas turbine
JPH06264763A (en) Combined plant system
US20030037534A1 (en) Steam cooled gas turbine system with regenerative heat exchange
JPH1162515A (en) Operational method for combined cycle power generating plant, and combined cycle power generating plant
JP3716188B2 (en) Gas turbine combined plant
WO2019208030A1 (en) Combined cycle plant and method for operating same
USRE36497E (en) Combined cycle with steam cooled gas turbine
JPH11247669A (en) Gas turbine combined cycle
JP3782567B2 (en) Thermal power plant
US20090126338A1 (en) Combined cycle power generating plant
US11879365B2 (en) Steam turbine plant and operation method, combined cycle plant and operation method
JP2699808B2 (en) Steam-cooled gas turbine combined plant
JP2604082B2 (en) Combined cycle power plant
JP3926048B2 (en) Combined cycle power plant
JP4004800B2 (en) Combined cycle power generation system
JPH1193693A (en) Method of operating combined cycle power plant, and combined cycle power plant
JPH10311206A (en) Combined cycle power generation plant
JPH11117712A (en) Gas turbine combined plant
JPH09280010A (en) Gas turbine, combined cycle plant provided with the gas turbine, and driving method thereof
JP4209060B2 (en) Steam cooling rapid start system
JP2001193413A (en) Combined plant and its operating method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees