JP2603921B2 - Receiving coil for magnetic resonance diagnostic equipment - Google Patents

Receiving coil for magnetic resonance diagnostic equipment

Info

Publication number
JP2603921B2
JP2603921B2 JP60292047A JP29204785A JP2603921B2 JP 2603921 B2 JP2603921 B2 JP 2603921B2 JP 60292047 A JP60292047 A JP 60292047A JP 29204785 A JP29204785 A JP 29204785A JP 2603921 B2 JP2603921 B2 JP 2603921B2
Authority
JP
Japan
Prior art keywords
coils
magnetic resonance
receiving coil
coil
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60292047A
Other languages
Japanese (ja)
Other versions
JPS62152109A (en
Inventor
浩 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60292047A priority Critical patent/JP2603921B2/en
Publication of JPS62152109A publication Critical patent/JPS62152109A/en
Application granted granted Critical
Publication of JP2603921B2 publication Critical patent/JP2603921B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、磁気共鳴診断装置の受信コイルに関するも
のである。
Description: TECHNICAL FIELD The present invention relates to a receiving coil of a magnetic resonance diagnostic apparatus.

[発明の技術的背景とその問題点] 従来における磁気共鳴診断装置においては、被検体の
所要撮影部位に一様な静磁場を印加するとともに送信用
コイルによってこの静磁場と直角方向にRF磁場を印加す
ることにより、断層像を得るための特定のスライス部分
のみに磁気共鳴(MR)現象を生じさせ、さらに、前記RF
磁場の解除後に原子核から発生する磁気共鳴信号(以
下、FID信号と称する)を受信コイルによって検出し、
このFID信号をフーリエ変換することにより特定の原子
核スピンの回転周波数についての単一のスペクトルを得
ている。そして、前記スライス部分を励起してMR現象を
生じさせた後、さらに、静磁場にX′軸方向(X軸より
θ゜回転した座標系)に対し直線的な傾斜を持つ線型磁
場勾配を作用させて合成FID信号を得るとともに、このF
ID信号をフーリエ変換することにより前記スライス部分
の投影情報を得ている。そしてX′軸をX−Y平面内で
回転させて上述したような操作を繰り返すことによりX
−Y平面内の各方向への投影情報が得られ、これらの情
報に基づいて被検体の断層像を合成することができる。
[Technical Background of the Invention and its Problems] In a conventional magnetic resonance diagnostic apparatus, a uniform static magnetic field is applied to a required imaging region of a subject, and an RF magnetic field is applied in a direction perpendicular to the static magnetic field by a transmission coil. The application causes a magnetic resonance (MR) phenomenon only in a specific slice portion for obtaining a tomographic image.
A magnetic resonance signal (hereinafter, referred to as an FID signal) generated from the nucleus after the release of the magnetic field is detected by a receiving coil,
By performing Fourier transform on this FID signal, a single spectrum for a specific nuclear spin rotation frequency is obtained. Then, after exciting the slice portion to cause an MR phenomenon, a linear magnetic field gradient having a linear gradient with respect to the X′-axis direction (a coordinate system rotated θ ゜ from the X-axis) is further applied to the static magnetic field. To obtain a composite FID signal,
The projection information of the slice portion is obtained by Fourier transforming the ID signal. Then, by rotating the X ′ axis in the XY plane and repeating the above-described operation, X
Projection information in each direction in the −Y plane is obtained, and a tomographic image of the subject can be synthesized based on the information.

ここで、上述した受信コイルの従来例を鞍型のタイプ
を例にとって以下に説明する。
Here, a conventional example of the above-described receiving coil will be described below taking a saddle type as an example.

第5図に示すように従来の受信コイル20は、例えばN
回巻(Nは正の整数)で電気的には直列接続構造となる
ものが用いられている。
As shown in FIG. 5, the conventional receiving coil 20 is, for example, N
A wound (N is a positive integer) electrically connected in series is used.

このような受信コイル20では、インダクタンスを変え
るために巻数を多くすると受信信号を大きくすることが
できるが、同時に抵抗値も増大するためこの受信コイル
のQ(尖鋭度)が低下する。
In such a receiving coil 20, the received signal can be increased by increasing the number of turns in order to change the inductance, but at the same time, the resistance value also increases, so that the Q (sharpness) of the receiving coil decreases.

また、インダクタンスも増加するため共振周波数も低
下し高周波用の受信コイルとして適さないという問題が
ある。
In addition, since the inductance increases, the resonance frequency also decreases, which is not suitable as a high-frequency receiving coil.

[発明の目的] 本発明は上記事情に鑑みてなされたものであり、共振
周波数を高くでき、高周波帯における表皮効果によるQ
の低下を等価断面積を増すことで防ぐことができる磁気
共鳴診断装置の受信コイルを提供することを目的とする
ものである。
[Object of the Invention] The present invention has been made in view of the above circumstances, and has a high resonance frequency, and a high Q value due to a skin effect in a high frequency band.
It is an object of the present invention to provide a receiving coil of a magnetic resonance diagnostic apparatus, which can prevent the decrease in noise by increasing the equivalent sectional area.

[発明の概要] 上記目的を達成するため、本発明に係る磁気共鳴診断
装置の受信コイルは互いに並列接続された複数のコイル
単体を積層した状態で該被検体の被撮影領域近傍に配置
し、これら複数のコイル単体の並列接続により合成され
る磁気共鳴信号を磁気共鳴断層像の構成に供する様に構
成した。
[Summary of the Invention] In order to achieve the above object, a receiving coil of a magnetic resonance diagnostic apparatus according to the present invention is arranged near an imaging area of the subject in a state where a plurality of coils connected in parallel with each other are stacked, The magnetic resonance signal synthesized by the parallel connection of the plurality of coils alone is used for the construction of a magnetic resonance tomographic image.

[発明の実施例] 以下に本発明の原理及び実施例を詳細に説明する。[Examples of the Invention] The principles and examples of the present invention will be described in detail below.

第3図は本発明の原理を示す説明図であり、巻数N1,N
2の2個のコイル1a,1bを相対向して配置した状態を示し
ている。
FIG. 3 is an explanatory view showing the principle of the present invention.
2 shows a state where two coils 1a and 1b are arranged to face each other.

このコイル1a,1bのインダクタンスをL1,L2、両コイル
1a,1b間の相互インダクタンスをM、両コイル1a,1bに流
れる電流をI1,I2、磁界の強さをH、鎖交磁束数をφ、
両コイルL1,L2の有効半径をrとすると、両コイル1a,1b
による起磁力NIは下記(1)式で表すことができる。
The inductance of these coils 1a, 1b is L1, L2, and both coils
The mutual inductance between 1a and 1b is M, the current flowing through both coils 1a and 1b is I1 and I2, the strength of the magnetic field is H, the number of interlinkage magnetic flux is φ,
Assuming that the effective radius of both coils L1 and L2 is r, both coils 1a and 1b
Can be expressed by the following equation (1).

NI=SIdφ=Hdl=2πrH ……(1) ただし、I=I1+I2である。NI = S Idφ = Hdl = 2πrH (1) where I = I1 + I2.

また、鎖交磁束数φは下記(2)式で表すことができ
る。
The number of interlinkage magnetic fluxes φ can be represented by the following equation (2).

φ=BS=μHS ……(2) ただし、μは透磁率、Bは磁束密度である。φ = BS = μHS (2) where μ is the magnetic permeability and B is the magnetic flux density.

また、両コイル1a,1bによる誘起電圧Vは下記(3)
式で表すことができる。
The induced voltage V generated by both coils 1a and 1b is given by (3)
It can be represented by an equation.

V=−∂φ/∂t= =−μSN1N2/2πr・∂I/∂t ……(3) さらにコイル1a,1bの誘起電圧V1,V2は下記(4),
(5)式で表すことができる。
V = −∂φ / ∂t == − μSN1N2 / 2πr∂I / ∂t (3) Further, the induced voltages V1 and V2 of the coils 1a and 1b are as follows (4),
It can be expressed by equation (5).

V1=L1∂I1/∂t+M∂I2/∂t ……(4) V2=M∂I1/∂t+L∂I2/∂t ……(5) したがって、コイル1a,1bが直列接続のときの全誘起
電圧Vsは、下記(6)式となる。
V1 = L1∂I1 / ∂t + M∂I2 / ∂t (4) V2 = M∂I1 / ∂t + L∂I2 / ∂t (5) Therefore, total induction when the coils 1a and 1b are connected in series The voltage Vs is represented by the following equation (6).

Vs=V1+V2=(L1+M)∂I1/∂t +(L2+M)∂I2/∂t ……(6) 一方、コイル1a,1bが並列接続のときの全誘起電圧Vp
は下記(7)式となる。
Vs = V1 + V2 = (L1 + M) ∂I1 / ∂t + (L2 + M) ∂I2 / ∂t (6) On the other hand, the total induced voltage Vp when the coils 1a and 1b are connected in parallel
Is given by the following equation (7).

Vp=V1=V2=L1∂I1/∂t+M(∂I/∂t−∂I1/∂t) =M∂I1/∂t+L2(∂I/∂t−∂I1/∂t)……(7) 但し、I2=I−I1である。Vp = V1 = V2 = L1∂I1 / ∂t + M (∂I / ∂t-∂I1 / ∂t) = M∂I1 / ∂t + L2 (∂I / ∂t-∂I1 / ∂t) (7) However, I2 = I−I1.

上記(7)式より、 ∂I1=(L2−M)∂I/(L1+L2−2M) ……(8) (8)式を(7)式に代入して整理すると、下記
(9)式になる。
From the above equation (7), ∂I1 = (L2−M) ∂I / (L1 + L2−2M) (8) By substituting equation (8) into equation (7) and rearranging, the following equation (9) is obtained. Become.

Vp=(L1L2−M2)/(L1+L2−2M)・∂I/∂t…(9) ここで結合度kを考慮すると、 Vp∝(N21N22−kN21N22)/ (N21+N22−2kN1N2)・∂I/∂t ……(10) そして、両コイル1a,1bの並列インダクタンスLpは下
記(11)式となる。
When Vp = (L1L2-M 2) / (L1 + L2-2M) · ∂I / ∂t ... (9) Considering the degree of coupling k where, Vpα (N 2 1N 2 2 -kN 2 1N 2 2) / ( N 2 1 + N 2 2−2kN1N2) · ∂I / ∂t (10) And the parallel inductance Lp of both coils 1a and 1b is expressed by the following equation (11).

Lp=(L1L2−M2)/(L1+L2−2M) ∝(N21N22−kN21N22)/(N21+N22−2kN1N2)……(1
1) 上記(11)式より、両コイル1a,1bの間の結合度kが
ゼロ(M=0)のときは、両コイル1a,1bの並列インダ
クタンスLpは下記(12)式となる。
Lp = (L1L2-M 2) / (L1 + L2-2M) α (N 2 1N 2 2-kN 2 1N 2 2) / (N 2 1 + N 2 2-2kN1N2) ...... (1
1) From the above equation (11), when the degree of coupling k between both coils 1a and 1b is zero (M = 0), the parallel inductance Lp of both coils 1a and 1b is expressed by the following equation (12).

Lp=L1L2/(L1+L2) ……(12) 特にL1=L2のときには、Lp=L1/2となる。また、L1=
L2でかつN1=N2であれば、このときの並列インダクタン
スLpが下記(13)式となる。
Lp = L1L2 / (L1 + L2) (12) Especially when L1 = L2, Lp = L1 / 2. Also, L1 =
If L2 and N1 = N2, the parallel inductance Lp at this time is given by the following equation (13).

Lp=(1−k2)/2(1−k)=(1+k)/2……(13) この(13)式に示す結合度kと並列インダクタンスLp
との関係を第4図に示す。
Lp = (1−k 2 ) / 2 (1−k) = (1 + k) / 2 (13) The coupling k and the parallel inductance Lp shown in the equation (13)
Is shown in FIG.

以上説明したようにコイル1a,1bを相互インダクタン
スMが関係しない程度に十分離してやればLp=L1/2(L1
=L2のとき)とすることができ、また、相互インダクタ
ンスMがある程度存在していても1/2<Lp<1の範囲で
並列インダクタンスLpの値を低く抑えることができる。
As described above, if the coils 1a and 1b are sufficiently separated so that the mutual inductance M is not related, Lp = L1 / 2 (L1
= L2), and the value of the parallel inductance Lp can be kept low in the range of 1/2 <Lp <1 even if the mutual inductance M exists to some extent.

次に上記原理を実現するための実施例を第1図を参照
して説明する。
Next, an embodiment for realizing the above principle will be described with reference to FIG.

第1図に示す受信コイル10は、被検体Pを挟むように
相対向して配置され、かつ、それぞれの一方の端子が一
方の電極15aに、他方の端子が他方の電極15bに接続され
たコイル11a,11bからなるからなる第1のコイル単体11
と、第1のコイル11a,11bと同様に被検体Pを挟むよう
に相対向して配置され、かつ、それぞれの一方の端子が
一方の電極15aに、他方の端子が他方の電極15bに接続さ
れたコイル12a,12bとからなる第2のコイル単体12とか
らなり、これらが並列接続となるように構成されてい
る。
The receiving coils 10 shown in FIG. 1 are arranged to face each other so as to sandwich the subject P, and one terminal of each is connected to one electrode 15a, and the other terminal is connected to the other electrode 15b. First coil unit 11 composed of coils 11a and 11b
Like the first coils 11a and 11b, the first coil 11a and the first coil 11b are arranged so as to sandwich the subject P, and one terminal is connected to one electrode 15a and the other terminal is connected to the other electrode 15b. And a second coil unit 12 composed of the coils 12a and 12b, which are connected in parallel.

前記第1,第2のコイル単体11,12はそれぞれ任意の巻
数(N1,N2)を有し、かつ、コイル11aとコイル11bとが
任意の間隔α(例えば数cm)を有するように、またコイ
ル11bとコイル12bも間隔αを有するように配置され、か
つ、両コイル単体11,12は図示しない2重構造の導電性
リングによって相互の位置関係が調整可能になってい
る。
The first and second coil units 11 and 12 each have an arbitrary number of turns (N1, N2), and the coil 11a and the coil 11b have an arbitrary interval α (for example, several cm). The coils 11b and 12b are also arranged so as to have an interval α, and the mutual positional relationship between the two coils 11 and 12 can be adjusted by a conductive ring having a double structure (not shown).

次に上記構成の受信コイル10の作用を第2図(a),
(b)に示す各コイル単体11,12の被検体Mに対する配
置関係を示す説明図をも参照して説明する。
Next, the operation of the receiving coil 10 having the above configuration will be described with reference to FIGS.
A description will be given also with reference to an explanatory diagram showing the arrangement relationship of the individual coils 11 and 12 with respect to the subject M shown in FIG.

第1のコイル単体11と第2のコイル単体12とが第2図
(a)に示すように被検体Pを挟んで上下対称配置にあ
るときは、被検体Pからの磁気共鳴信号は両コイル単体
11,12によりほぼ同位相をもって検出される。このと
き、コイル単体11のインダクタンスをL1,コイル単体12
のインダクタンスをL2,両者間の相互インダクタンスを
Mとすれば、この検出コイル10の並列インダクタンスLp
は前記(11)式からLp=(L1L2−M2)/(L1+L2−2M)
となる。
When the first coil unit 11 and the second coil unit 12 are vertically symmetrical with respect to the subject P as shown in FIG. 2A, the magnetic resonance signal from the subject P Simple substance
Detected with almost the same phase by 11,12. At this time, the inductance of the coil 11 is L1, the coil 12 is
Assuming that the inductance of the detection coil 10 is L2 and the mutual inductance between the two is M,
Said (11) Lp = from equation (L1L2-M 2) / ( L1 + L2-2M)
Becomes

ここで、相互インダクタンスMはコイル単体11,12間
の距離αにより調整できるものとする。
Here, it is assumed that the mutual inductance M can be adjusted by the distance α between the coils 11 and 12.

一方、両コイル単体11,12の位置関係がずれた場合、
すなわち、第2図(b)に示すように第2のコイル単体
12のみが同図において時計方向に回転した状態にあると
きには、両者間の相互インダクタンスがM′となり、こ
の結果、このときの並列インダクタンスLp′はLp′=
(L1L2−M2′)/(L1+L2−2M′)となる。
On the other hand, if the positional relationship between the two coils 11 and 12 is shifted,
That is, as shown in FIG.
When only 12 is rotated clockwise in the figure, the mutual inductance between them becomes M '. As a result, the parallel inductance Lp' at this time becomes Lp '=
Become (L1L2-M 2 ') / (L1 + L2-2M').

尚、この場合には両コイル単体11,12の配置関係に応
じて受信信号の位相補正の必要がある。ここで、M′は
コイル単体間の角度θにより調整できる。
In this case, it is necessary to correct the phase of the received signal according to the positional relationship between the two coils 11 and 12 alone. Here, M ′ can be adjusted by the angle θ between the single coils.

上述したように両コイル単体11,12の配置関係を必要
に応じて調整することにより、並列インダクタンスLpの
値を減少させて共振周波数を高い値に設定できる。
As described above, by adjusting the positional relationship between the two coils 11 and 12 as necessary, the value of the parallel inductance Lp can be reduced and the resonance frequency can be set to a high value.

また、両コイル単体11,12が並列接続であるため、等
価断面積が増加しその抵抗値が従来の受信コイル20の場
合より減少するので、これによりQの値を大きくするこ
とができる。
In addition, since the two coils 11 and 12 are connected in parallel, the equivalent sectional area increases and the resistance value decreases compared to the case of the conventional receiving coil 20, so that the value of Q can be increased.

本発明は上述した実施例に限定されるものではなく、
その要旨の範囲内で種々の変形が可能である。例えば、
上述した実施例では、2個のコイル単体の並列接続によ
り受信コイルを構成する場合について説明したが、その
個数を3個以上としても同様に実施できる。
The present invention is not limited to the embodiments described above,
Various modifications are possible within the scope of the gist. For example,
In the above-described embodiment, the case where the receiving coil is configured by connecting two coils alone in parallel has been described. However, the present invention can be similarly implemented when the number of the coils is three or more.

[発明の効果] 以上説明した本発明によれば、従来の受信コイルに比
較し、共振周波数及びQをそれぞれ高い値に設定でき、
かつ、表皮効果の影響を受けることのない磁気共鳴診断
装置の受信コイルを提供することができる。
[Effects of the Invention] According to the present invention described above, the resonance frequency and Q can be set to higher values, respectively, as compared with the conventional receiving coil.
Further, it is possible to provide a receiving coil of the magnetic resonance diagnostic apparatus which is not affected by the skin effect.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例を示す説明図、第2図は
(a),(b)はそれぞれ本実施例におけるコイル単体
の配置関係を示す説明図、第3図は本発明の原理を示す
説明図、第4図はコイルの結合度とインダクタンスとの
関係を示すグラフ、第5図は従来の受信コイルを示す説
明図である。 10……受信コイル、 11……第1のコイル単体、 12……第2のコイル単体。
FIG. 1 is an explanatory view showing an embodiment of the present invention, FIGS. 2 (a) and (b) are explanatory views each showing an arrangement relationship of a single coil in this embodiment, and FIG. 3 is a view showing the principle of the present invention. FIG. 4 is a graph showing the relationship between the coupling degree of the coil and the inductance, and FIG. 5 is an explanatory diagram showing a conventional receiving coil. 10: Receive coil, 11: First coil, 12: Second coil

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被検体から発生する磁気共鳴信号を検出す
る磁気共鳴診断装置の受信コイルであって、互いに並列
接続された複数のコイル単体を積層した状態で該被検体
の被撮影領域近傍に配置し、これら複数のコイル単体の
並列接続により合成される磁気共鳴信号を磁気共鳴断層
像の構成に供する磁気共鳴診断装置の受信コイル。
1. A receiving coil of a magnetic resonance diagnostic apparatus for detecting a magnetic resonance signal generated from a subject, wherein the receiving coil is located near an imaging region of the subject in a state where a plurality of coils connected in parallel with each other are stacked. A receiving coil of a magnetic resonance diagnostic apparatus that is arranged and that provides a magnetic resonance tomographic image with a magnetic resonance signal synthesized by connecting a plurality of coils in parallel.
【請求項2】前記各コイル単体は相互の位置関係が調整
可能に構成されることを特徴とする特許請求の範囲第1
項記載の磁気共鳴診断装置の受信コイル。
2. A coil according to claim 1, wherein said coils are arranged such that their mutual positional relationship is adjustable.
The receiving coil of the magnetic resonance diagnostic apparatus according to claim.
JP60292047A 1985-12-26 1985-12-26 Receiving coil for magnetic resonance diagnostic equipment Expired - Lifetime JP2603921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60292047A JP2603921B2 (en) 1985-12-26 1985-12-26 Receiving coil for magnetic resonance diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60292047A JP2603921B2 (en) 1985-12-26 1985-12-26 Receiving coil for magnetic resonance diagnostic equipment

Publications (2)

Publication Number Publication Date
JPS62152109A JPS62152109A (en) 1987-07-07
JP2603921B2 true JP2603921B2 (en) 1997-04-23

Family

ID=17776847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60292047A Expired - Lifetime JP2603921B2 (en) 1985-12-26 1985-12-26 Receiving coil for magnetic resonance diagnostic equipment

Country Status (1)

Country Link
JP (1) JP2603921B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8827271D0 (en) * 1988-11-22 1988-12-29 Oxford Magnet Tech Magnetic field generating assembly

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL70211A (en) * 1983-11-13 1989-03-31 Elscint Ltd Gradient field coils for nmr imaging
JPS60228944A (en) * 1984-04-26 1985-11-14 Yokogawa Hokushin Electric Corp Hollow-core type magnet for nuclear magnetic resonance image pick-up apparatus

Also Published As

Publication number Publication date
JPS62152109A (en) 1987-07-07

Similar Documents

Publication Publication Date Title
EP0274773B1 (en) Magnetic resonance imaging apparatus comprising a quadrature coil system
US4467282A (en) High-frequency magnet system for nuclear spin tomography
JP2928595B2 (en) Gradient magnetic field generator
US5583439A (en) Eddy current control in NMR imaging systems
JPH0531417B2 (en)
JPS63111846A (en) Nmr apparatus
Hyde et al. Quadrature detection surface coil
JPS5999239A (en) Nuclear magnetic resonance tomography device
US6441615B1 (en) Crossed-ladder RF coils for vertical field MRI systems
EP0152554A2 (en) Intentionally non-orthogonal correction coils for high-homogeneity magnets
JP2005503224A (en) Coil system for generating gradient magnetic fields
JPS60229311A (en) Magnetic field generating coil
WO1994011749A1 (en) Local transverse gradient coil
JP2603921B2 (en) Receiving coil for magnetic resonance diagnostic equipment
EP1338901A1 (en) Gradient coil structure for magnetic resonance imaging
JPH01299542A (en) Inspecting device using nuclear magnetic resonance
JPH0728857B2 (en) Inspection device using nuclear magnetic resonance
KR101856376B1 (en) Multi- channel Helmholtz coil for magnetic resonance imaging and magnetic resonance imaging system
US20050179434A1 (en) Coil arrangements
JPH07308304A (en) Rf coil for use
JPH0467845A (en) High frequency coil of magnetic resonance imaging device
JPS60171439A (en) Coil for nmr image diagnosing apparatus
JPS6031070A (en) Examination apparatus using nuclear magnetic resonance
JPH05308017A (en) Gradient magnetic field generating equipment
EP4253978A1 (en) Receiving coil and mri apparatus