JPH05308017A - Gradient magnetic field generating equipment - Google Patents

Gradient magnetic field generating equipment

Info

Publication number
JPH05308017A
JPH05308017A JP4111533A JP11153392A JPH05308017A JP H05308017 A JPH05308017 A JP H05308017A JP 4111533 A JP4111533 A JP 4111533A JP 11153392 A JP11153392 A JP 11153392A JP H05308017 A JPH05308017 A JP H05308017A
Authority
JP
Japan
Prior art keywords
magnetic field
coil
normal
coils
conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4111533A
Other languages
Japanese (ja)
Other versions
JP2708661B2 (en
Inventor
Toshiki Idemaru
俊樹 出丸
Akihiro Harada
昭弘 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4111533A priority Critical patent/JP2708661B2/en
Publication of JPH05308017A publication Critical patent/JPH05308017A/en
Application granted granted Critical
Publication of JP2708661B2 publication Critical patent/JP2708661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a gradient magnetic field generating equipment which generates magnetic fields excellent in linearity and has miniaturization potential by overlapping a normal conduction coil in the odd number layers and that in the even number layers with the twisted parts between their turns crossed. CONSTITUTION:A cylindrical unit 10 consists of a distributed winding coil 12. The distributed winding coil 12 is so constituted that a normal conduction coil 121 is reversed and laid over another normal conduction coil 122. A plurality of twisted parts 121B and 122B between turns of the coils 121 and 122 are crossed each other. When power is applied to the normal conduction coil 121 of the distributed winding coil 12 through its lead connection 121A, the current flows to the lead connection 122A of the normal conduction coil 122 via the interlayer connection 121C of the coil 121 and that 122C of the coil 122. During the travel of the current an irregular magnetic field at the twisted part 121B between turns is compensated by that in the opposite direction at the twisted part 122B between turns. Thus the normal conduction coils 121 and 122 are connected to each other through the respective interlayer connections 121C and 122C, which enables the miniaturization of the equipment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、核磁気共鳴
(NMR)を用いた画像形成装置に用いられ、磁場強度
がある軸方向に沿って傾斜した勾配磁場を発生する勾配
磁場発生装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gradient magnetic field generator for use in, for example, an image forming apparatus using nuclear magnetic resonance (NMR) and for generating a gradient magnetic field inclined along a certain axial direction. It is a thing.

【0002】[0002]

【従来の技術】従来のこの種の勾配磁場発生装置を、特
開昭62−194842号公報に開示された図3〜図6
に基づいて説明する。
2. Description of the Related Art A conventional gradient magnetic field generator of this type is shown in FIGS. 3 to 6 disclosed in Japanese Patent Laid-Open No. 62-194842.
It will be explained based on.

【0003】図3は勾配磁場発生装置を用いた核磁気共
鳴イメージング装置の断面図で、同図において、40は
空間的に均一で時間的に安定した静磁場を発生する主磁
石、41はイメージング時のスライス面の決定及び核磁
気共鳴信号に位置情報を付与する従来の勾配磁場発生装
置、42は被検体43を核磁気共鳴させる高周波の電磁
波を送信するRFコイル、44は被検体43の核磁気共
鳴信号を受信するアンテナである。
FIG. 3 is a sectional view of a nuclear magnetic resonance imaging apparatus using a gradient magnetic field generator. In FIG. 3, 40 is a main magnet that generates a static magnetic field that is spatially uniform and temporally stable, and 41 is an imaging element. A conventional gradient magnetic field generator that determines the slice plane at the time and adds position information to the nuclear magnetic resonance signal, 42 is an RF coil that transmits a high-frequency electromagnetic wave that causes the magnetic resonance of the subject 43, and 44 is the nucleus of the subject 43 An antenna for receiving magnetic resonance signals.

【0004】また、上記勾配磁場発生装置41は内外の
2組のコイルグループ(図示せず)で構成され、これら
の内外の2組のコイルは、被検体43の領域に空間的に
勾配を有する磁場を発生し且つ勾配磁場発生装置41の
外部領域へ磁場が漏洩しないように互いの出力を出すよ
うに構成されている。
Further, the gradient magnetic field generator 41 is composed of two internal and external coil groups (not shown), and these two internal and external coil groups have a spatial gradient in the region of the subject 43. It is configured to generate a magnetic field and to output each other so that the magnetic field does not leak to the external region of the gradient magnetic field generation device 41.

【0005】また、図4及び図5は図3に示した勾配磁
場発生装置41に取り付けられた、径方向の勾配磁場を
発生する鞍型コイルのパターンを示したもので、図4は
内側コイルのパターンを示し、図5は外側コイルのパタ
ーンを示す例である。
4 and 5 show the pattern of a saddle type coil which is attached to the gradient magnetic field generator 41 shown in FIG. 3 and which generates a radial gradient magnetic field. FIG. 4 shows the inner coil. FIG. 5 shows an example of the outer coil pattern.

【0006】而して、上記核磁気共鳴イメージング装置
を用いた場合、以下の手順で被検体43の断層像を得る
ことができる。 被検体43を主磁石40で発生した静磁場内に置
く。 この被検体43に勾配磁場発生装置41で発生した
磁場を印加し、イメージング断面位置を決定する。 イメージング断面位置の磁場強度で核磁気共鳴する
周波数の電磁場を印加し、被検体43に核磁気共鳴を起
こさせる。 被検体43からの核磁気共鳴信号に対し、勾配磁場
発生装置41で発生した磁場を印加し、核磁気共鳴信号
に位置情報を与える。 核磁気共鳴信号をアンテナ44で受信し、この受信
信号に基づいてコンピュータで画像処理して被検体43
の断面像を得る。
When the nuclear magnetic resonance imaging apparatus is used, a tomographic image of the subject 43 can be obtained by the following procedure. The subject 43 is placed in the static magnetic field generated by the main magnet 40. The magnetic field generated by the gradient magnetic field generator 41 is applied to the subject 43 to determine the imaging cross-section position. An electromagnetic field having a frequency at which nuclear magnetic resonance occurs at the magnetic field strength at the imaging cross-section position is applied to cause nuclear magnetic resonance in the subject 43. The magnetic field generated by the gradient magnetic field generator 41 is applied to the nuclear magnetic resonance signal from the subject 43, and position information is given to the nuclear magnetic resonance signal. The nuclear magnetic resonance signal is received by the antenna 44, the computer 43 performs image processing on the basis of the received signal, and the subject 43
Obtain a cross-sectional image of.

【0007】上記、のステップでは勾配磁場発生装
置41の発生する磁場は高速(例えば、1ミリ秒程度)
でスイッチングされる。そしてこの時、被検体43の領
域に空間的に直線性の良い勾配磁場を発生させると共
に、勾配磁場発生装置41の外部領域を漏洩することの
ないようにして主磁石40などに誘導電流が流れること
を阻止し、誘導電流による磁場の乱れがないようにして
いる。
In the above steps, the magnetic field generated by the gradient magnetic field generator 41 is high speed (for example, about 1 millisecond).
Is switched on. At this time, an induced current flows through the main magnet 40 and the like so as to generate a gradient magnetic field having good spatial linearity in the region of the subject 43 and to prevent leakage to the outside region of the gradient magnetic field generation device 41. This prevents the magnetic field from being disturbed by the induced current.

【0008】従来の勾配磁場発生装置41は、上述のよ
うに被検体43に空間的に直線性の良い勾配磁場を発生
させると共に、その外部領域へ磁場を漏洩させることの
ないように所定の表面電流分布条件を満たすコイルパタ
ーンを決定するようにしている。
The conventional gradient magnetic field generator 41 generates a gradient magnetic field having a good spatial linearity in the subject 43 as described above, and also has a predetermined surface so as not to leak the magnetic field to the external region. The coil pattern that satisfies the current distribution condition is determined.

【0009】一方、上記表面電流分布条件によるコイル
パターンの決定では、各コイルが閉ループ電流パターン
として示されるので実際のコイルを形成するために、隣
接ターン間を直列に接続して電源で駆動するように入出
力端を設けている。そして、従来の勾配磁場発生装置4
1では、隣接コイル間を直列に接続する場合には、図
4、図5に示すように、コイルターン間にひねり部を設
けている。図6は図4、図5に示すコイルと同種のコイ
ルを示し、このコイル45は、入力端となるリード接続
部45A、ターン間ひねり部45B及び出力端となるリ
ード接続部45Cが形成されている。
On the other hand, in the determination of the coil pattern based on the above surface current distribution condition, each coil is shown as a closed loop current pattern. Therefore, in order to form an actual coil, adjacent turns are connected in series and driven by a power supply. Input and output terminals are provided. And the conventional gradient magnetic field generator 4
In No. 1, when connecting the adjacent coils in series, as shown in FIGS. 4 and 5, a twist portion is provided between the coil turns. FIG. 6 shows a coil of the same kind as the coil shown in FIGS. 4 and 5, and this coil 45 has a lead connecting portion 45A serving as an input end, an inter-turn twist portion 45B, and a lead connecting portion 45C serving as an output end. There is.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、従来の
勾配磁場発生装置41は上述のように構成されているた
め、各コイル45は電流がC方向へ流れそれぞれのター
ン間のひねり部45Bによって不正磁場が発生し、磁場
の直線性を悪化させるという課題があり、更に、各コイ
ル45の中心のリード接続部45Cから電流リードを取
り出すため、電流リードをそれぞれのコイル45の上ま
たは下に這わすことが必要で、更に、そのコイル45の
上または下に別のコイル45がある場合には上記円筒の
半径方向の高さを補正する絶縁物等が必要になるため、
上記円筒方向に大きなコイル45となり、そのコイル4
5を挿入するためにNMRを用いた画像形成装置の構造
が大きくなるという課題があった。
However, since the conventional gradient magnetic field generator 41 is constructed as described above, the current flows in each coil 45 in the direction C, and the twisted portion 45B between the turns causes an incorrect magnetic field. Is generated, and there is a problem that the linearity of the magnetic field is deteriorated. Furthermore, in order to take out the current lead from the lead connecting portion 45C at the center of each coil 45, it is necessary to crawl the current lead above or below each coil 45. Is required, and when another coil 45 is above or below the coil 45, an insulator or the like for correcting the radial height of the cylinder is required.
A large coil 45 is formed in the cylindrical direction, and the coil 4 is
However, there is a problem in that the structure of the image forming apparatus using NMR for inserting 5 becomes large.

【0011】本発明は、上記課題を解決するためになさ
れたもので、磁場の直線性に優れ、しかも小型化するこ
とができる勾配磁場発生装置を提供することを目的とし
ている。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a gradient magnetic field generating device which is excellent in linearity of a magnetic field and can be miniaturized.

【0012】[0012]

【課題を解決するための手段】本発明の請求項1に記載
の勾配磁場発生装置は、各コイルを互いに絶縁された偶
数層の常電導体コイルで構成し且つ各層の常電導コイル
間をそれぞれの中心端または外端で直列接続すると共
に、奇数層の常電導コイルと偶数層の常電導コイルそれ
ぞれの巻方向を逆して上記各層の常電導コイルのターン
間ひねり部を略同じ位置で交叉させて重ね合せて構成さ
れたものである。
In the gradient magnetic field generator according to claim 1 of the present invention, each coil is constituted by an even number of normal conductor coils which are insulated from each other, and between the normal conductive coils of each layer, respectively. Connected in series at the center end or the outer end, and the winding directions of the odd-numbered layer normal conductive coil and the even-numbered layer normal conductive coil are reversed, and the twisted portions between the turns of the normal conductive coil of each layer are crossed at approximately the same position. It is constructed by overlapping.

【0013】また、本発明の請求項2に記載の勾配磁場
発生装置は、円筒ユニットを同軸に配置された大径の円
筒ユニットと小径の円筒ユニットから構成し且つ大径の
円筒ユニットに小径の円筒ユニットとは逆の磁場出力を
発生させることにより外部への磁場をシールドすると共
に、上記各円筒ユニットのコイル互いに絶縁された偶数
層の常電導コイルで構成し且つ各層の常電導コイル間を
中心端または外端で直列接続すると共に、奇数層の常電
導コイルと偶数層の常電導コイルそれぞれの巻方向を逆
して上記各層の常電導コイルのターン間ひねり部を略同
じ位置で交叉させて重ね合せて構成されたものである。
Further, in the gradient magnetic field generating device according to the second aspect of the present invention, the cylindrical unit is composed of a large-diameter cylindrical unit and a small-diameter cylindrical unit arranged coaxially, and the large-diameter cylindrical unit has a small-diameter unit. The magnetic field to the outside is shielded by generating a magnetic field output opposite to that of the cylindrical unit, and the coils of the cylindrical units are composed of even-numbered layers of normal-conducting coils insulated from each other and centered between the normal-conducting coils of each layer. Connect in series at the end or outer end, reverse the winding directions of the odd-numbered layer normal conductive coil and the even-numbered layer normal conductive coil, and intersect the twisted portions between the turns of the normal conductive coils of the above layers at substantially the same positions. It is constructed by overlapping.

【0014】[0014]

【作用】請求項1に記載の本発明によれば、常電導コイ
ルのターン間のひねり部を層間で交叉させて重ね合わせ
て不正磁場の発生を相殺でき、また、常電導コイルの中
心端または外端で層間を渡るのでリードを常電導コイル
の端部から引き出すだけで各常電導コイルを接続するこ
とができる。
According to the first aspect of the present invention, the twisted portions between the turns of the normal conducting coil can be overlapped by overlapping the layers to cancel the generation of an incorrect magnetic field, and the center end of the normal conducting coil or Since the outer end crosses the layers, each normal conducting coil can be connected only by pulling out the lead from the end of the normal conducting coil.

【0015】また、請求項2に記載の本発明によれば、
大径の円筒ユニットに小径の円筒ユニットとは逆の磁場
出力を発生させることにより外部への磁場をシールドす
ると共に、常電導コイルのターン間のひねり部を層間で
交叉させて重ね合わせて不正磁場の発生を相殺でき、ま
た、常電導コイルの中心端また外端で層間を渡るのでリ
ードを常電導コイルの端部から引き出すだけで各常電導
コイルを接続することができる。
According to the present invention as defined in claim 2,
The magnetic field to the outside is shielded by generating a magnetic field output opposite to that of the small-diameter cylindrical unit to the large-diameter cylindrical unit, and the twisted part between the turns of the normal-conducting coil is crossed between the layers and overlapped to form an incorrect magnetic field. Can be canceled out, and since the interlayer is crossed at the center end or the outer end of the normal conducting coil, each normal conducting coil can be connected only by pulling out the lead from the end of the normal conducting coil.

【0016】[0016]

【実施例】以下、図1及び図2に示す実施例に基づいて
本発明を説明する。尚、図1は本発明の勾配磁場発生装
置の一実施例の要部を示す斜視図、図2は図1に示す勾
配磁場発生装置の分布巻のコイルを構成する常電導コイ
ルを正面図で、(a)はその一層目の常電導コイルを示
す図、(b)はその二層目の常電導コイルを示す図であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on the embodiments shown in FIGS. 1 is a perspective view showing an essential part of one embodiment of the gradient magnetic field generator of the present invention, and FIG. 2 is a front view of a normal conducting coil which constitutes a distributed winding coil of the gradient magnetic field generator shown in FIG. , (A) is a diagram showing the normal conducting coil of the first layer, and (b) is a diagram showing the normal conducting coil of the second layer.

【0017】本実施例の勾配磁場発生装置は、図1に示
すように、円筒11の表面に4つの分布巻のコイル1
2、13(他のコイルは紙面の反対側に位置するため省
略してある)を設けて円筒ユニット10を形成し、この
円筒ユニット10の各コイル12、13に電流を流すこ
とにより、上記円筒ユニット10の軸芯としてのZ軸に
直角な任意の軸、例えばX軸またはY軸に垂直に交わる
平面内部でZ軸方向の磁場成分が略一様な磁場を作り、
且つ上記平面内の磁場がこの平面と原点Oの距離に略比
例して磁場強度が変化して磁場の勾配を形成するように
構成されている。
As shown in FIG. 1, the gradient magnetic field generator according to the present embodiment has four distributed winding coils 1 on the surface of a cylinder 11.
2, 13 (other coils are omitted because they are located on the opposite side of the paper) to form the cylindrical unit 10, and current is passed through the coils 12, 13 of the cylindrical unit 10 to form the cylinder. A magnetic field having a substantially uniform magnetic field component in the Z-axis direction is formed within a plane perpendicular to an arbitrary axis perpendicular to the Z-axis as the axis of the unit 10, for example, the X-axis or the Y-axis,
In addition, the magnetic field in the plane is configured so that the magnetic field strength changes substantially in proportion to the distance between the plane and the origin O to form the gradient of the magnetic field.

【0018】而して、上記分布巻の各コイル12、13
は、楕円形あるいは略矩形状等の同一大きさに形成さ
れ、一方のコイル12は、図1に示すように、互いに絶
縁された2層の常電導コイル121、122によって構
成されている。そして、各層の常電導コイル121、1
22は、図2(a)、(b)に示すように、数値制御工
作機械によってそれぞれの巻方向が逆方向に形成されて
いる。また、各常電導コイル121、122は、外側の
端部にリード接続部121A、122Aが形成され、各
リード接続部121A、122Aから内側に巻き込まれ
て各ターン間にターン間ひねり部121B、122Bが
形成され、更に、内側の端部が各層を繋ぐ渡り部121
C、122Cとして形成されている。そして、常電導コ
イル121には、図2(a)、(b)に示すように、矢
示A方向へ電流を流し、常電導コイル122には矢示B
方向へ電流を流すようにしてある。勿論、分布巻のコイ
ル13も上記コイル12と同様に構成されている。
Thus, each coil 12, 13 of the distributed winding is
Are formed in the same size such as an elliptical shape or a substantially rectangular shape, and one coil 12 is composed of two layers of normal conducting coils 121 and 122 insulated from each other, as shown in FIG. Then, the normal conducting coils 121, 1 of each layer
As shown in FIGS. 2A and 2B, the winding No. 22 is formed by the numerically controlled machine tool so that the winding directions thereof are opposite to each other. Further, each normal conducting coil 121, 122 has lead connecting portions 121A, 122A formed at the outer ends thereof, and is wound inward from each of the lead connecting portions 121A, 122A and twisted between turns 121B, 122B between turns. Is formed, and the inner end portion connects the layers to each other to form the crossover portion 121.
It is formed as C and 122C. Then, as shown in FIGS. 2 (a) and 2 (b), a current is applied to the normal conducting coil 121 in the direction of arrow A, and the normal conducting coil 122 is indicated by arrow B.
The electric current is made to flow in the direction. Of course, the distributed winding coil 13 is also constructed in the same manner as the coil 12.

【0019】そして、上記分布巻のコイル12は、図1
に示すように、上記常電導コイル121を裏返して絶縁
材(図示せず)を介して上記常電導コイル122に重ね
合わせて構成され、各常電導コイル121、122の複
数のターン間ひねり部121B、122Bが図1に示す
ように互いに交叉している。また、各層の常電導コイル
121、122は、それぞれの中心の同位置にある層間
渡り部121C、122Cでロー付け等の手段によって
電気的に接続されている。
The distributed winding coil 12 shown in FIG.
As shown in FIG. 5, the normal conducting coil 121 is turned over and is superposed on the normal conducting coil 122 via an insulating material (not shown). , 122B intersect with each other as shown in FIG. Further, the normal conducting coils 121 and 122 of each layer are electrically connected by means of brazing or the like at the interlayer connecting portions 121C and 122C located at the same position at the centers thereof.

【0020】従って本実施例によれば、円筒ユニット1
0の分布巻のコイル12の常電導コイル121に対して
そのリード接続部121Aから矢示A方向の電流を流せ
ば、この電流はその層間渡り部121Cから常電導コイ
ル122の層間渡り部122Cを経由して矢示B方向へ
流れてそのリード接続部122Aへ流れ、この間にター
ン間ひねり部121Bでの不正磁場がターン間ひねり部
122Bの逆方向の不正磁場によって相殺される。ま
た、他の3組の分布巻のコイルに対して電流を流せば同
様に不正磁場が相殺されて磁場の直線性に優れた均一な
勾配磁場を得ることができ、延いては、核磁気共鳴を用
いた画像形成装置のNMR画像の精度を高めることがで
きる。また、本実施例によれば、常電導コイル121と
常電導コイル122とをそれぞれの層間渡り部121
C、122Cで接続してあるため、従来のようにコイル
中心部からリードを引き出す必要がなく、従来に比べて
コンパクトな構成で、装置を小型化することができる。
Therefore, according to this embodiment, the cylindrical unit 1
If a current in the direction of arrow A is applied from the lead connecting portion 121A to the normal conducting coil 121 of the distributed winding coil 0 of 0, this current flows from the interlayer connecting portion 121C to the interlayer connecting portion 122C of the normal conducting coil 122. It flows in the direction of the arrow B through the lead connecting portion 122A, and during this period, the incorrect magnetic field in the inter-turn twist portion 121B is canceled by the reverse magnetic field in the inter-turn twist portion 122B. In addition, if an electric current is applied to the coils of the other three sets of distributed windings, the irregular magnetic field is similarly canceled out, and a uniform gradient magnetic field excellent in linearity of the magnetic field can be obtained. The accuracy of the NMR image of the image forming apparatus using can be improved. Further, according to the present embodiment, the normal conducting coil 121 and the normal conducting coil 122 are respectively connected to the interlayer connecting portion 121.
Since the connection is made by C and 122C, it is not necessary to pull out the lead from the center of the coil as in the conventional case, and the device can be downsized with a more compact structure than in the conventional case.

【0021】また、上記実施例では、数値制御工作機械
を用いてコイルパターンを加工し、このコイルパターン
を円筒に取り付けたものについて説明したが、円筒ボビ
ンの表面にコイル形状の溝を刻設し、この溝にコイルを
埋設するようにしてもよい。
In the above embodiment, the coil pattern was machined using the numerically controlled machine tool, and the coil pattern was attached to the cylinder. However, a coil-shaped groove is formed on the surface of the cylindrical bobbin. The coil may be embedded in this groove.

【0022】また、上記実施例では、同一形状の常電導
コイルを裏返すことによって分布巻のコイルを構成した
が、ターンが上下層間で異なった形状でもターン間ひね
り部を重ね合わせて不正磁界の発生を相殺するようにし
てもよい。
In the above embodiment, the distributed winding coil is constructed by turning over the normal conducting coil of the same shape, but even if the turns are different between the upper and lower layers, the twisted portions between the turns are overlapped to generate an incorrect magnetic field. May be offset.

【0023】更にまた、上記実施例では、コイルのター
ン間ひねり部を磁場中心から離れた円筒端に設けたもの
について説明したが、磁場中心に近い円筒中心側にコイ
ルのターン間ひねり部を設けてもよい。
Furthermore, in the above-described embodiment, the coil turn-to-turn twist portion is provided at the cylinder end away from the magnetic field center, but the coil-to-turn twist portion is provided near the center of the magnetic field. May be.

【0024】尚、上記実施例では、分布巻のコイルが2
層のものについてのみ説明したが、4層以上の偶数層か
らなる分布巻のコイルについても本発明を適用できるこ
とはいうまでもない。
In the above embodiment, the number of distributed winding coils is two.
Although only the layers are described, it is needless to say that the present invention can be applied to a distributed winding coil composed of four or more even layers.

【0025】[0025]

【発明の効果】以上説明したように本発明の請求項1に
記載の発明によれば、円筒表面の各コイルを偶数層の常
電導コイルで構成し且つ各層の常電導コイル間をそれぞ
れの中心端また外端で直列接続すると共に、奇数層の常
電導コイルと偶数層の常電導コイルそれぞれの巻方向を
逆して各層の常電導コイルのターン間ひねり部を略同じ
位置で重ね合せてあるので、磁場の直線性に優れ、しか
も小型化することができる勾配磁場発生装置を提供する
ことができる。
As described above, according to the invention as set forth in claim 1 of the present invention, each coil on the cylindrical surface is constituted by the even-numbered layers of the normal-conducting coils, and the normal-conducting coils between the respective layers are centered. Connected in series at the end or outer end, the winding directions of the odd-numbered layer normal conductive coil and the even-numbered layer normal conductive coil are reversed, and the twisted portions between the turns of the normal conductive coil of each layer are overlapped at approximately the same position. Therefore, it is possible to provide a gradient magnetic field generation device which is excellent in linearity of a magnetic field and can be downsized.

【0026】また、本発明の請求項2に記載の発明によ
れば、円筒ユニットを同軸に配置された大径の円筒ユニ
ットと小径の円筒ユニットから構成し且つ大径の円筒ユ
ニットに小径の円筒ユニットとは逆の磁場出力を発生さ
せることにより外部への磁場をシールドすると共に、上
記コイルとして請求項1のコイルを用いているので、更
に磁場の直線性が向上する勾配磁場発生装置を提供する
ことができる。
According to the second aspect of the present invention, the cylindrical unit is composed of a large-diameter cylindrical unit and a small-diameter cylindrical unit coaxially arranged, and the large-diameter cylindrical unit has a small-diameter cylinder. The magnetic field to the outside is shielded by generating a magnetic field output opposite to that of the unit, and since the coil according to claim 1 is used as the coil, a gradient magnetic field generation device further improving the linearity of the magnetic field is provided. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の勾配磁場発生装置の一実施例の要部を
示す斜視図である。
FIG. 1 is a perspective view showing a main part of an embodiment of a gradient magnetic field generator of the present invention.

【図2】図1に示す勾配磁場発生装置の分布巻のコイル
を構成する常電導コイルを正面図で、(a)はその一層
目の常電導コイルを示す図、(b)はその二層目の常電
導コイルを示す図である。
2 is a front view of a normal conducting coil that constitutes a distributed winding coil of the gradient magnetic field generator shown in FIG. 1, (a) showing the first conducting coil, and (b) showing its two layers. It is a figure which shows the normal conducting coil of an eye.

【図3】従来の核磁気共鳴イメージング装置の要部を示
す断面図である。
FIG. 3 is a sectional view showing a main part of a conventional nuclear magnetic resonance imaging apparatus.

【図4】図4に示す核磁気共鳴イメージング装置に用い
られた勾配磁場発生装置の鞍型コイルの内側コイルを示
すパターン図である。
FIG. 4 is a pattern diagram showing an inner coil of a saddle type coil of the gradient magnetic field generator used in the nuclear magnetic resonance imaging apparatus shown in FIG.

【図5】図4に示す核磁気共鳴イメージング装置に用い
られた勾配磁場発生装置の鞍型コイルの外側コイルを示
すパターン図である。
5 is a pattern diagram showing an outer coil of a saddle coil of the gradient magnetic field generator used in the nuclear magnetic resonance imaging apparatus shown in FIG.

【図6】従来の勾配磁場発生装置の他のコイルを示す正
面図である。
FIG. 6 is a front view showing another coil of the conventional gradient magnetic field generator.

【符号の説明】[Explanation of symbols]

10 円筒ユニット 11 円筒 12 コイル 13 コイル 121 常電導コイル 122 常電導コイル 121B ターン間ひねり部 121C 層間渡り部 122B ターン間ひねり部 122C 層間渡り部 10 Cylinder Unit 11 Cylinder 12 Coil 13 Coil 121 Normal Conduction Coil 122 Normal Conduction Coil 121B Turn Twist Part 121C Interlayer Transfer Part 122B Interturn Twist Part 122C Interlayer Transfer Part

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年1月22日[Submission date] January 22, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 円筒表面に分布巻の複数のコイルを設け
て円筒ユニットを形成し、この円筒ユニットの各コイル
に電流を流すことにより、上記円筒ユニットの軸芯に直
角な任意の軸に垂直に交わる平面内部で上記軸芯方向の
磁場成分が略一様な磁場を作り、且つ上記平面内の磁場
がこの平面と原点の距離に略比例して磁場強度が変化し
て磁場の勾配を形成する勾配磁場発生装置において、上
記各コイルを互いに絶縁された偶数層の常電導体コイル
で構成し且つ各層の常電導コイル間をそれぞれの中心端
または外端で直列接続すると共に、奇数層の常電導コイ
ルと偶数層の常電導コイルそれぞれの巻方向を逆して上
記各層の常電導コイルのターン間ひねり部を略同じ位置
で交叉させて重ね合せたことを特徴とする勾配磁場発生
装置。
1. A cylindrical unit is formed by providing a plurality of distributed winding coils on a cylindrical surface, and an electric current is caused to flow through each coil of the cylindrical unit so that the coil is perpendicular to an arbitrary axis perpendicular to the axis of the cylindrical unit. The magnetic field component in the axial direction makes a substantially uniform magnetic field inside the plane that intersects with, and the magnetic field in the plane changes the magnetic field strength in proportion to the distance between the plane and the origin to form a magnetic field gradient. In the gradient magnetic field generator, the above-mentioned coils are composed of even-layer normal conductor coils insulated from each other, and the normal-conducting coils of each layer are connected in series at their respective central ends or outer ends, and the odd-numbered layers are normally connected. A gradient magnetic field generator characterized in that the winding directions of the normal conducting coil and the even-numbered normal conducting coil are reversed and the twisted portions between turns of the normal conducting coils of the respective layers are crossed and overlapped at substantially the same position.
【請求項2】 円筒表面に分布巻の複数のコイルを設け
て円筒ユニットを形成し、この円筒ユニットの各コイル
に電流を流すことにより、上記円筒ユニットの軸芯に直
角な任意の軸に垂直に交わる平面内部で上記軸芯方向の
磁場成分が略一様な磁場を作り、且つ上記平面内の磁場
がこの平面と原点の距離に略比例して磁場強度が変化し
て磁場の勾配を形成する勾配磁場発生装置において、上
記円筒ユニットを同軸に配置された大径の円筒ユニット
と小径の円筒ユニットから構成し且つ大径の円筒ユニッ
トに小径の円筒ユニットとは逆の磁場出力を発生させる
ことにより外部への磁場をシールドすると共に、上記各
円筒ユニットのコイル互いに絶縁された偶数層の常電導
体コイルで構成し且つ各層の常電導コイル間をそれぞれ
の中心端または外端で直列接続すると共に、奇数層の常
電導コイルと偶数層の常電導コイルそれぞれの巻方向を
逆して上記各層の常電導コイルのターン間ひねり部を略
同じ位置で交叉させて重ね合せたことを特徴とする勾配
磁場発生装置。
2. A plurality of coils of distributed winding are provided on a surface of a cylinder to form a cylinder unit, and an electric current is passed through each coil of the cylinder unit, whereby the cylinder unit is perpendicular to an arbitrary axis perpendicular to the axis of the cylinder unit. The magnetic field component in the axial direction makes a substantially uniform magnetic field inside the plane that intersects with, and the magnetic field in the plane changes the magnetic field strength in proportion to the distance between the plane and the origin to form a magnetic field gradient. In the gradient magnetic field generating device, the cylindrical unit is composed of a large-diameter cylindrical unit and a small-diameter cylindrical unit coaxially arranged, and the large-diameter cylindrical unit generates a magnetic field output opposite to that of the small-diameter cylindrical unit. The magnetic field to the outside is shielded by the coil, and the coils of each of the cylindrical units are composed of even-numbered layers of normal-conducting coils, and the normal-conducting coils of each layer are separated from each other by their central ends or outer ends. And the odd-numbered normal-conducting coils and the even-numbered normal-conducting coils were reversed in their winding directions, and the twisted portions between the turns of the normal-conducting coils of the above layers were crossed at approximately the same position and overlapped. A gradient magnetic field generator characterized by:
JP4111533A 1992-04-30 1992-04-30 Gradient magnetic field generator Expired - Fee Related JP2708661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4111533A JP2708661B2 (en) 1992-04-30 1992-04-30 Gradient magnetic field generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4111533A JP2708661B2 (en) 1992-04-30 1992-04-30 Gradient magnetic field generator

Publications (2)

Publication Number Publication Date
JPH05308017A true JPH05308017A (en) 1993-11-19
JP2708661B2 JP2708661B2 (en) 1998-02-04

Family

ID=14563763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4111533A Expired - Fee Related JP2708661B2 (en) 1992-04-30 1992-04-30 Gradient magnetic field generator

Country Status (1)

Country Link
JP (1) JP2708661B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011229996A (en) * 2011-08-25 2011-11-17 Hitachi Medical Corp Gradient magnetic field coil device, nuclear magnetic resonance imaging device, and coil pattern design method
JP2011240164A (en) * 2011-08-25 2011-12-01 Hitachi Medical Corp Gradient magnetic field coil device, nuclear magnetic resonance imaging device, and coil pattern design method
US8633698B2 (en) 2008-12-22 2014-01-21 Hitachi Medical Corporation Gradient coil device, magnetic resonance imaging device, and method of designing coil pattern
JP2014042685A (en) * 2012-08-28 2014-03-13 Ge Medical Systems Global Technology Co Llc Helical gradient coil for magnetic resonance imaging apparatus
WO2015190818A1 (en) * 2014-06-12 2015-12-17 삼성전자 주식회사 Rf surface coil unit and magnetic resonance imaging system comprising same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8633698B2 (en) 2008-12-22 2014-01-21 Hitachi Medical Corporation Gradient coil device, magnetic resonance imaging device, and method of designing coil pattern
JP2011229996A (en) * 2011-08-25 2011-11-17 Hitachi Medical Corp Gradient magnetic field coil device, nuclear magnetic resonance imaging device, and coil pattern design method
JP2011240164A (en) * 2011-08-25 2011-12-01 Hitachi Medical Corp Gradient magnetic field coil device, nuclear magnetic resonance imaging device, and coil pattern design method
JP2014042685A (en) * 2012-08-28 2014-03-13 Ge Medical Systems Global Technology Co Llc Helical gradient coil for magnetic resonance imaging apparatus
WO2015190818A1 (en) * 2014-06-12 2015-12-17 삼성전자 주식회사 Rf surface coil unit and magnetic resonance imaging system comprising same
US10481224B2 (en) 2014-06-12 2019-11-19 Samsung Electronics Co., Ltd. RF surface coil unit and magnetic resonance imaging system comprising same

Also Published As

Publication number Publication date
JP2708661B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
US7109712B2 (en) Method and apparatus for minimizing gradient coil and rf coil coupling
US7372275B2 (en) Gradient coil apparatus and method of assembly thereof
JPH069172B2 (en) Magnet device and method of using the same
US4506247A (en) Axisymmetric correction coil system for NMR magnets
US6646836B2 (en) Superconducting magnet apparatus in persistent mode
KR910001860B1 (en) Transverse gradient field coils for nuclear magnetic resonance imaging
US4728895A (en) System of coils for producing additional fields for obtaining polarization fields with constant gradients in a magnet having polarization pole pieces for image production by nuclear magnetic resonance
KR100341201B1 (en) Method of manufacturing gradient coil, gradient coil unit, gradient coil and mri apparatus
US4623864A (en) Magnetic field production coil for nuclear magnetic resonance imaging apparatus
EP0153531B1 (en) Coil arrangements
US5107216A (en) Nuclear magnetic resonance imaging apparatus
US5088185A (en) Method for manufacturing gradient coil system for a nuclear magnetic resonance tomography apparatus
JP2708661B2 (en) Gradient magnetic field generator
JP2001167927A (en) Magnetic-field gradient coil and its design method
US4799017A (en) Background field magnet for image generating devices using nuclear spin resonance
JPH05154127A (en) Magnetic resonance imaging device
EP1576382B1 (en) Self-shielded gradient coil arrangements with minimised risk of partial discharge
JP2000068118A (en) Persistent current superconducting magnet device
JPS60171439A (en) Coil for nmr image diagnosing apparatus
JP4129330B2 (en) Z-channel shielded coil assembly of active shielded gradient coil in magnetic resonance imaging apparatus
US20230375648A1 (en) Static field magnet and mri apparatus
US5208571A (en) Magnet winding with layer transition compensation
JPH11142495A (en) Mr device and coil system for overhauser imaging method
JP3993919B2 (en) Permanent current superconducting magnet system
JP7049123B2 (en) Magnetic resonance imaging device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees