JP2603427B2 - Foundation structure of reinforced concrete building - Google Patents

Foundation structure of reinforced concrete building

Info

Publication number
JP2603427B2
JP2603427B2 JP19356593A JP19356593A JP2603427B2 JP 2603427 B2 JP2603427 B2 JP 2603427B2 JP 19356593 A JP19356593 A JP 19356593A JP 19356593 A JP19356593 A JP 19356593A JP 2603427 B2 JP2603427 B2 JP 2603427B2
Authority
JP
Japan
Prior art keywords
pile
column
floor slab
reinforced concrete
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19356593A
Other languages
Japanese (ja)
Other versions
JPH0742167A (en
Inventor
孝育 ▲高▼松
Original Assignee
▲高▼松建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ▲高▼松建設株式会社 filed Critical ▲高▼松建設株式会社
Priority to JP19356593A priority Critical patent/JP2603427B2/en
Publication of JPH0742167A publication Critical patent/JPH0742167A/en
Application granted granted Critical
Publication of JP2603427B2 publication Critical patent/JP2603427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Foundations (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、鉄筋コンクリート造
の基礎構造の改良に係り、詳しくは、杭と柱と床スラブ
の三者を相互に一体剛接合し、地盤からの水平反力によ
り杭を弾性バネ的に支持するようにした、特に鉄筋コン
クリート建造物に好適な基礎構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of a reinforced concrete foundation structure, and more particularly, to a pile, a column and a floor slab, which are integrally rigidly connected to each other, and the pile is formed by a horizontal reaction force from the ground. The present invention relates to a foundation structure adapted to be supported by an elastic spring and particularly suitable for a reinforced concrete building.

【0002】[0002]

【従来の技術】従来、鉄筋または鉄骨鉄筋コンクリート
造の一般的な基礎構造としては、地盤中に形成された各
基礎杭上にフーチングが設けられ、各フーチング内に柱
が樹立形成されるとともに、各フーチング及び柱相互を
地中梁(基礎梁ともいう)にて連結した構造が多用され
ている。しかし、近年の建築物の高層化に伴い、フーチ
ング基礎部分の構造が複雑となり、無駄な配筋も多いこ
とから、これを解消すべく地中梁を残したままで杭主筋
の上端部と柱主筋の下端部とを直接結合することによっ
てフーチングを廃止したもの(特開平3-176508号公報参
照)や、また、フーチングと地中梁と床スラブとを同一
厚さに一体形成して基礎スラブとして構成したもの(特
開平2-96025 号公報参照) が提案されている。また、フ
ーチング部分の工事が複雑で手間がかかっているのに着
目し、この部分の工事を容易かつ迅速に施工しうるよう
な、また、構造的にも充分支持耐力を発揮するような柱
と杭との一体接合構造も幾つか提案されている( 特開昭
63-304832 号公報、特開昭62-284825 号公報参照) 。こ
れらは、いずれも基礎杭の中に柱脚部を嵌挿してコンク
リートで一体化する構造をとっている。
2. Description of the Related Art Conventionally, as a general foundation structure of reinforced concrete or steel-framed reinforced concrete, a footing is provided on each foundation pile formed in the ground, and a column is formed in each footing. A structure in which a footing and a column are connected to each other by an underground beam (also referred to as a foundation beam) is often used. However, due to the recent rise in height of buildings, the structure of the footing foundation has become complicated, and there are many wasteful reinforcements. To solve this problem, the upper ends of the pile reinforcements and the column reinforcements with the underground beams left unsolved. The footing is abolished by directly connecting to the lower end of the floor (see Japanese Patent Application Laid-Open No. 3-176508), or the footing, the underground beam and the floor slab are integrally formed to the same thickness as the base slab. A configuration (refer to Japanese Patent Application Laid-Open No. 2-96025) has been proposed. Also, paying attention to the complicated and time-consuming construction of the footing part, a pillar that can easily and quickly construct this part and has sufficient structural bearing capacity Several integral joint structures with piles have also been proposed.
See JP-A-63-304832 and JP-A-62-284825). Each of them has a structure in which a column base is inserted into a foundation pile and integrated with concrete.

【0003】一方、鉄骨建造物においては、その基礎工
事の簡略化等のために地中梁を廃止するための工夫が特
開平2-164930号公報において提案されている。図13
は、その鉄骨建築架構の基礎構造を示す断面図である。
図示するように、場所打ち杭51の頭部に捨て型枠とな
るケーシング53を設置し、ケーシング53内に複数本
のアンカーボルト54を設け、杭頭部ケーシング53内
と床スラブ55のコンクリートを打設して固定したアン
カーボルト54に鉄骨柱52の下端のベースプレート5
2aをナットなどで緊結してある。施工においては、ア
ンカーボルト54は固定用治具56により、ケーシング
53を利用して仮固定し、アンカーボルト54の柱脚固
定位置に相当する部分には、ポリスチレン発泡体などの
凹部形成用ブロックを設置し、その状態でケーシング5
3内および床スラブ55のコンクリートを同時に打設す
る。コンクリートの硬化後、ポリスチレン発泡体などの
ブロックを取り除くことにより形成された凹部におい
て、鉄骨柱52のベースプレート52aをアンカーボル
ト54に固定し、高強度無収縮モルタルなどのグラウト
材60を充填して周囲を固める。図中、57は場所打ち
杭の頭部より突出させた杭筋、58は床スラブ定着用鉄
筋であり、杭51とアンカーボルト54および1階の床
スラブ55が一体化されている。59はケーシング53
内に配した補強筋である。
On the other hand, in a steel structure, a device for eliminating the underground beam has been proposed in Japanese Patent Application Laid-Open No. 2-149930 to simplify the foundation work and the like. FIG.
FIG. 2 is a sectional view showing a basic structure of the steel frame.
As shown in the figure, a casing 53 serving as a disposal form is installed at the head of the cast-in-place pile 51, a plurality of anchor bolts 54 are provided in the casing 53, and concrete in the pile head casing 53 and the floor slab 55 is removed. The base plate 5 at the lower end of the steel column 52 is attached to the anchor bolt 54 which is cast and fixed.
2a is tied with a nut or the like. In the construction, the anchor bolt 54 is temporarily fixed using a casing 53 by a fixing jig 56, and a concave forming block such as a polystyrene foam is provided in a portion corresponding to the column base fixing position of the anchor bolt 54. Install the casing 5
3 and the concrete of the floor slab 55 are simultaneously poured. After the concrete is hardened, the base plate 52a of the steel column 52 is fixed to the anchor bolts 54 in the recess formed by removing the block of the polystyrene foam or the like, and the grout material 60 such as a high-strength non-shrink mortar is filled to surround the recess. Solidify. In the figure, reference numeral 57 denotes a pile bar protruding from the head of the cast-in-place pile, 58 denotes a reinforcing bar for fixing the floor slab, and the pile 51, the anchor bolt 54, and the floor slab 55 on the first floor are integrated. 59 is a casing 53
Reinforcing bars arranged inside.

【0004】[0004]

【発明が解決しようとする課題】 鉄筋コンクリート造の基礎構造においては、水平外
力が鉄骨造に比べ遙かに大きくなることが多く、この水
平外力により生ずる各柱脚部の変形を拘束するため、従
来から少なくとも地中梁(これに相当するもの) が必須
とされている(上述の特開平3-176508号公報や特開平2-
96025 号公報参照)。従って、鉄筋コンクリート造にお
いては、依然として地中梁を設置するために掘削、土留
などの工事が必要とされ工期の短縮化の要請等にそぐわ
ないことになっていた。また、従来の場合には杭は地盤
からの弾性支持を期待する(換言すれば、地盤を含めて
杭の剛性を考慮する)という技術思想はとっていないた
め、地中梁を単純に廃止した場合には杭自体を剛性のき
わめて大きなものに設定する必要があり、これも実用的
とはいえない。また、上述した特開昭63-304832 号公報
や特開昭62-284825 号公報記載のように基礎杭の中に柱
脚部を嵌挿してコンクリートで一体化する構造では、柱
から杭への力の伝達が直接的でないため、上記の技術思
想はとりにくい。
In a reinforced concrete foundation structure, a horizontal external force is often much larger than that of a steel frame structure. In order to restrain deformation of each column base caused by the horizontal external force, a conventional structure is used. Therefore, at least an underground beam (equivalent to this) is indispensable (see JP-A-3-176508 and JP-A-2-176508 described above).
96025). Therefore, in the case of reinforced concrete structures, construction work such as excavation and earth retaining is still required to install underground beams, and this has not met the demand for shortening the construction period. In addition, in the conventional case, the underground beam was simply abolished because the pile did not take the technical idea of expecting elastic support from the ground (in other words, considering the rigidity of the pile including the ground). In this case, it is necessary to set the pile itself to a very rigid one, which is not practical. In addition, as described in JP-A-63-304832 and JP-A-62-284825, in a structure in which a column pedestal is inserted into a foundation pile and integrated with concrete, the structure from the column to the pile is Since the transmission of force is not direct, the above technical idea is difficult to take.

【0005】なお、地中梁やフーチングを廃止した図1
3の基礎構造は、元来、アンカーボルトなどを介しての
鉄骨柱と杭との剛接合を主体とした鉄骨造独自の構成で
あり、当然ながら鉄筋コンクリート造には適用できな
い。
[0005] In addition, the underground beams and footing have been abolished.
Originally, the foundation structure of No. 3 is an original structure of a steel frame mainly composed of a rigid connection between a steel column and a pile via an anchor bolt or the like, and cannot be naturally applied to a reinforced concrete structure.

【0006】 もともと、図13のような鉄骨造用基
礎構造の場合、杭の曲げ剛性および曲げ耐力は鉄骨柱の
それに比べ遙かに大きいため、地震時などの水平外力が
建物に作用した際に、杭頭部の横変位は殆どないことを
前提にしている。つまり、杭は不動のものであって、こ
の杭頭部に柱脚部が固定されていることから、構造的に
は杭の剛性/柱の剛性(以下、「剛性比率」という)が
3以上と考えられる結果、地盤からの弾性支持を期待す
ることなく自立しているものである。
Originally, in the case of a steel frame foundation structure as shown in FIG. 13, since the bending rigidity and the bending strength of the pile are much larger than those of the steel column, when a horizontal external force acts on the building at the time of an earthquake or the like. It is assumed that there is almost no lateral displacement of the pile head. That is, since the pile is immovable and the column base is fixed to the pile head, structurally, the rigidity of the pile / the rigidity of the column (hereinafter referred to as “rigidity ratio”) is 3 or more. As a result, it is independent without expecting elastic support from the ground.

【0007】かかる鉄骨造用基礎構造は、階層数の少な
い低層の鉄骨造であるがゆえに可能な構成であり、本発
明が目的とする鉄筋コンクリート造には実用化できない
ものである。鉄筋コンクリート造においてかかる基礎構
造を実現しようとすれば巨大な杭が必要となり事実上不
可能である。
[0007] Such a steel structure foundation structure is a possible structure because it is a low-rise steel structure with a small number of layers, and cannot be put to practical use in the reinforced concrete structure aimed at by the present invention. In order to realize such a foundation structure in reinforced concrete, a huge pile is required, which is practically impossible.

【0008】なお、図13の基礎構造によれば、鉄骨柱
と杭とは一体剛接合され、床スラブは定着用鉄筋を介し
て杭に剛接合になっているが、床スラブは柱とは剛接合
されていない。これは、柱周りの凹部に高強度無収縮モ
ルタルなどのグラウト材を充填して周囲を固めているに
過ぎないからである。従って、柱脚に生ずる力は杭へ直
接伝達されるが、床スラブと柱とは一体剛接されていな
いため、床スラブは地中梁の役目を果たしえず、各柱脚
は相互にバラバラに挙動するおそれがある。
According to the basic structure shown in FIG. 13, the steel column and the pile are rigidly connected integrally, and the floor slab is rigidly connected to the pile via the anchoring rebar. Not rigidly connected. This is because the recess around the column is merely filled with a grout material such as high-strength non-shrink mortar to solidify the periphery. Therefore, the force generated at the column base is transmitted directly to the pile, but the floor slab and the column are not integrally rigidly connected, so the floor slab cannot serve as an underground beam, and the column pedestals are disjointed from each other. May behave.

【0009】本発明の目的は、鉄筋コンクリート造にお
いて、杭、柱および床スラブの三者を相互に一体剛接構
造にし、地盤を考慮した杭と、柱との剛性比率を一定範
囲に限定するとともに、地中梁やフーチングを廃止して
1階床を無梁版構造に形成した鉄筋コンクリート造の基
礎構造を提供することにあり、また、三者を剛接一体化
するための具体的な基礎構造を提供することにある。
An object of the present invention is to provide a reinforced concrete structure in which a pile, a column and a floor slab are integrally rigidly connected to each other to limit the rigidity ratio between the pile and the column in consideration of the ground to a certain range. Abolished underground beams and footings to provide a reinforced concrete foundation structure in which the first floor is formed as a beamless slab, and a concrete foundation structure for rigidly integrating the three members Is to provide.

【0010】[0010]

【課題を解決するための手段】上記目的達成のため、本
発明に係る鉄筋コンクリート建造物の基礎構造は、第一
の発明構成では、地盤中に建て込んだ杭と該杭上に立設
した柱と該柱間に敷設した床スラブとを有する鉄筋コン
クリート造において、前記柱と杭とを剛接合し、かつ、
これら杭および柱にそれぞれ1階床スラブを剛接合し
て、杭、柱および1階床スラブの三者を相互に一体剛接
構造となすとともに、該杭を地盤により弾性支持すべく
杭の柱に対する剛性比率K( =K1 / K2 ) を2.5 以下
に設定したことを特徴とする。但し、K1 は杭の剛性、
2 は柱の剛性である。
In order to achieve the above objects, the basic structure of a reinforced concrete building according to the present invention comprises, in the first invention configuration, a pile built in the ground and a pillar erected on the pile. And in a reinforced concrete structure having a floor slab laid between the columns, rigidly connecting the columns and the piles, and
The first floor slab is rigidly connected to each of the piles and columns, so that the pile, the columns and the first floor slab are integrally rigidly connected to each other, and the pile columns are elastically supported by the ground. The rigidity ratio K (= K 1 / K 2 ) is set to 2.5 or less. However, K 1 is the pile of rigidity,
K 2 is the stiffness of the pillar.

【0011】第二の発明構成では、上記の構成におい
て、柱主筋を杭頭部から外方に緩やかに屈曲させて該杭
下方の略円周状に配した該杭主筋位置まで延設し、この
延設した各柱主筋の下端部分を該杭主筋に接合したこと
を特徴とし、第三の発明構成では、上記いずれかの構成
において、略円周状に配した杭鉄筋の一部を杭頭部から
突出して立上がり部分を設ける一方、1階床スラブの上
端筋と下端筋との間にL型鉄筋を配筋し、各L型鉄筋を
前記杭鉄筋の立上げ部分に定着長さをもって接合したこ
とを特徴とし、第四の発明構成では、1階床スラブの上
端筋および下端筋を柱主筋で囲まれた空間内に定着長さ
を確保しうる位置まで延設したことを特徴とする。
According to a second aspect of the present invention, in the above configuration, the column main reinforcement is gently bent outward from the pile head and extended to the pile main reinforcement positioned substantially circumferentially below the pile. The lower end portion of each of the extended column main reinforcements is joined to the pile main reinforcement, and in the third invention configuration, in any of the above configurations, a part of the pile reinforcement arranged in a substantially circumferential shape is piled. While providing a rising portion protruding from the head, an L-shaped reinforcing bar is arranged between an upper end bar and a lower end bar of the first floor slab, and each L-shaped reinforcing bar is fixed to a rising portion of the pile reinforcing bar. According to a fourth aspect of the present invention, the upper and lower muscles of the first floor slab are extended to a position where the anchoring length can be secured in a space surrounded by the main pillars. I do.

【0012】[0012]

【作用】第一の発明構成では、柱は杭内に定着し、床ス
ラブは杭内および柱内に定着して、三者が相互に剛接一
体化される。従って、柱に作用する水平荷重や垂直荷重
等は直接的に杭に伝達されるようになり、杭に伝達され
た荷重は杭周辺の地盤の抵抗力によって徐々に低下(相
殺)する。すなわち、杭自体はあたかも地盤から弾性バ
ネ的に支持されたような形となる。硬質の地盤であれ
ば、地盤の弾性バネ定数は大きくなり(地盤からの抵抗
力は大きくなり)、軟弱な地盤であれば、地盤の弾性バ
ネ定数は小さくなる(地盤からの抵抗力は小さくな
る)。
In the first aspect of the present invention, the pillar is fixed in the pile, the floor slab is fixed in the pile and the pillar, and the three members are rigidly integrated with each other. Therefore, the horizontal load, the vertical load, and the like acting on the column are directly transmitted to the pile, and the load transmitted to the pile gradually decreases (cancels) due to the resistance of the ground around the pile. That is, the pile itself has a shape as if it was supported by the ground in an elastic spring manner. If the ground is hard, the elastic spring constant of the ground increases (the resistance from the ground increases). If the ground is soft, the elastic spring constant of the ground decreases (the resistance from the ground decreases) ).

【0013】第二の発明構成では、柱主筋が杭主筋に必
然的に定着長さをもって接合され、その後のコンクリー
ト打設によって両者の間に具体的な剛接一体化構造が実
現される。この場合、柱からの力は直接的に杭に伝達さ
れるため構造的に合理的な構成になる。
In the second invention, the column main reinforcement is inevitably joined to the pile main reinforcement with a fixed length, and a concrete rigid integrated structure between the two is realized by the subsequent concrete casting. In this case, since the force from the column is directly transmitted to the pile, a structurally rational configuration is obtained.

【0014】第三の発明構成では、1階床スラブと杭が
接合され、その後のコンクリート打設によって両者の間
に具体的な剛接一体化構造が実現される。1 階床スラブ
が杭に支えられることから、床スラブがあたかも従来の
地中梁と等価的な作用を果たす。
In the third aspect of the invention, the first floor slab and the pile are joined, and a concrete and rigid integrated structure between them is realized by concrete casting thereafter. Because the first floor slab is supported by piles, the floor slab acts as if it were a conventional underground beam.

【0015】第四の発明構成では、1階床スラブが柱と
接合され、その後のコンクリート打設によって両者の間
に具体的な剛接一体化構造が実現され、結局、柱、杭お
よび床スラブの三者が相互に剛接一体化されることにな
る。1 階床スラブは1枚の剛なスラブ(構造スラブ)と
して形成され、これが地中梁と同様な働きをすることか
ら各柱脚部の水平変位量が均一化される。
In the fourth invention, the first-floor floor slab is joined to the column, and a concrete concrete integrated structure between the two is realized by the subsequent casting of concrete. Are rigidly integrated with each other. The first-floor slab is formed as one rigid slab (structural slab), which works in the same way as an underground beam, so that the horizontal displacement of each column base is made uniform.

【0016】[0016]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。本発明の一つの特徴は、杭と柱と床スラブの三者
を相互に剛接一体化したところにあるが、まず、その三
者の剛接一体構造の具体例を基礎構造の完成状態を示す
図1の断面図と図2の各部詳細図により説明する。以下
の実施例は場所打ち杭の場合である。
Embodiments of the present invention will be described below with reference to the drawings. One feature of the present invention resides in that the three members of the pile, the column and the floor slab are rigidly integrated with each other. First, a concrete example of the rigidly integrated structure of the three members is used to describe the completed state of the basic structure. This will be described with reference to the cross-sectional view of FIG. The following embodiment is for a cast-in-place pile.

【0017】本発明の基礎構造は、地盤G中に構築した
杭Pと、この杭P上に一体剛接された柱Qと、この両者
にそれぞれ一体剛接された1階床スラブRとから構成さ
れている。杭Pの鉄筋は、円周状に配筋された縦方向に
延びる多数の杭主筋1( 図2(a) と、横方向に配筋され
た多数の帯筋2とからなり、1階床スラブR範囲内にあ
る杭主筋1は地盤表面G0 から突出して立上がり部分3
を形成している。一方、柱Qの鉄筋を構成している柱主
筋4は(図は矩形柱を例示)、平面視で矩形状に配置さ
れている。各柱主筋4は杭頭部5から外方へ緩やかに屈
曲され、杭Pの下方へ斜め漸進的に円周状に配された杭
主筋1の位置まで拡径したような形( 図2(b)) で延びて
いる。そして、その下端部で杭主筋1に沿うよう少し屈
曲され、杭主筋1に接合すべく重ね継手6を形成してい
る( 図2(c)) 。この下端部分で柱主筋4は杭主筋1に番
線などで結束して接合又は溶接接合される。
The foundation structure of the present invention comprises a pile P constructed in the ground G, a column Q rigidly connected to the pile P, and a first-floor slab R integrally rigidly connected to the both. It is configured. The reinforcing bar of the pile P is composed of a number of longitudinally extending pile reinforcing bars 1 (FIG. 2 (a)) and a number of lateral reinforcing bars 2 arranged on the first floor. The main pile 1 in the range of the slab R protrudes from the ground surface G 0 and rises 3
Is formed. On the other hand, the column main reinforcement 4 constituting the reinforcing bar of the column Q (the figure illustrates a rectangular column) is arranged in a rectangular shape in plan view. Each pillar main reinforcement 4 is gently bent outward from the pile head 5 and gradually expands diagonally downwardly below the pile P to the position of the circumferentially arranged pile reinforcement 1 (FIG. 2 ( b)) is extended. The lower end portion is slightly bent along the main pile bar 1 to form a lap joint 6 to be joined to the main pile bar 1 (FIG. 2 (c)). At this lower end, the column main reinforcement 4 is bound to the pile main reinforcement 1 by a wire or the like and joined or welded.

【0018】このように柱主筋を杭頭部から緩やかに屈
曲して斜めに下方まで延設するのは、この構成をとれば
必然的に柱主筋4に充分な定着長さを持たせることがで
きると同時に、円周状配置されている杭主筋1 との接合
が可能となるからであり、これにより予め柱筋が杭筋に
接合一体化された形で建て込むことができるからであ
る。かかる剛接構造では、柱に水平荷重や垂直荷重など
が作用すると、それは柱主筋から杭主筋へと(従来のよ
うにフーチングやコンクリート等を介さず)直接的に伝
達されるようになり、構造的な耐力が高められる。換言
すれば、柱主筋に生ずる応力が直接杭主筋にスムーズに
流れて伝達されていくことになる。なお、図1中、7は
柱の帯筋を示す。
The reason that the column main reinforcement is gently bent from the pile head and extends obliquely downward is that this configuration inevitably allows the column main reinforcement 4 to have a sufficient anchoring length. This is because, at the same time as possible, it is possible to join with the pile main reinforcement 1 that is arranged circumferentially, so that the column reinforcement can be preliminarily joined and integrated with the pile reinforcement. In such a rigid connection structure, when a horizontal load or a vertical load acts on a column, it is transmitted directly from the column main reinforcement to the pile main reinforcement (without the intervention of footing or concrete as in the past), Proof stress is increased. In other words, the stress generated in the column main bar smoothly flows and is directly transmitted to the pile main bar. In addition, in FIG. 1, 7 shows the stirrup of a pillar.

【0019】更に、上記の構成において、杭と柱の剛性
比率Kは、K=K1 / K2 ≦2.5 に設定されている。こ
こに、K1 は杭の剛性、K2 は柱の剛性である。ここに
いう剛性とは、水平力/水平変位で表される数値であ
り、単位当たりの変形を生じさせるための力で表現され
ている。K≦2.5 とした意味は次の通りである。すなわ
ち、このような杭では、柱脚および杭頭部が変位するこ
とが予定されており、地盤中にある杭は地盤からの水平
反力により弾性バネ的な支持を受けることを期待するこ
ととなる。逆に言えば、地盤の剛性(支持) を無視して
は杭自体の剛性のみでは成り立たないように構成してあ
り、杭の剛性K1 は地盤を含めたものに設定されてい
る。これによって杭自体の剛性は必要最小限で良いため
構造的なメリットは大きい(例えば杭径が小さくてよい
等)。杭が建て込まれる地盤が硬質であれば、剛性比率
Kは高まり、地盤が軟弱となれば剛性比率は低くなる。
例えば地震で地盤が液状化した場合にはK=0.1 にもな
ることが予想される。従って、Kの下限の変動範囲が広
いため下限については規定する意味がない。
Further, in the above structure, the rigidity ratio K between the pile and the column is set to K = K 1 / K 2 ≦ 2.5. Here, K 1 is the rigidity of the pile and K 2 is the rigidity of the column. The rigidity here is a numerical value expressed by horizontal force / horizontal displacement, and is expressed by a force for causing deformation per unit. The meaning of K ≦ 2.5 is as follows. In other words, in such a pile, the column base and the pile head are expected to be displaced, and it is expected that the pile in the ground will be elastically supported by the horizontal reaction force from the ground. Become. Conversely, ignores the soil rigidity (supporting) Yes configured not hold true only rigid pile itself, the stiffness K 1 of the pile is set to one, including ground. Accordingly, the rigidity of the pile itself can be minimized, so that the structural advantage is large (for example, the pile diameter can be small). If the ground on which the pile is built is hard, the rigidity ratio K increases, and if the ground becomes soft, the rigidity ratio decreases.
For example, if the ground liquefies due to an earthquake, it is expected that K = 0.1. Therefore, there is no point in defining the lower limit because the range of variation of the lower limit of K is wide.

【0020】1階の床スラブRの鉄筋のうち、下端筋9
は柱主筋4で囲んだ矩形空間内まで延設され、上端筋8
も同様この矩形空間内まで延設されているが、その先端
は一定の定着長さをとって下方に鉤状に屈曲している。
上端筋8と下端筋9との間にはL型鉄筋10が扇骨(放
射)状に配筋され( 図2(d)) 、上記杭鉄筋の立上がり部
分3と定着長さもって溶接による継手ないし重ね継手1
1を介して接合されている( 図2(e)) 。L型鉄筋10を
扇骨(放射)状に配することによって、床スラブRと杭
Pとの一体性が強化される。かくして、その後のコンク
リート打設によって床スラブRは、柱Qおよび杭Pにそ
れぞれ剛接一体化される。
Among the reinforcing bars of the floor slab R on the first floor, the lower reinforcing bars 9
Extends into the rectangular space surrounded by the column main reinforcement 4,
Is also extended to the inside of this rectangular space, but its tip has a fixed fixing length and is bent downward like a hook.
An L-shaped reinforcing bar 10 is arranged between the upper and lower bars 8 and 9 in a fan-shaped (radial) shape (FIG. 2 (d)). Lap joint 1
1 (FIG. 2 (e)). By arranging the L-shaped reinforcing bars 10 in a fan (radial) shape, the integrity of the floor slab R and the pile P is strengthened. Thus, the floor slab R is rigidly integrated with the column Q and the pile P by the subsequent concrete casting.

【0021】次に、上述した柱と杭と床スラブ三者一体
剛接構造を構築する過程を経時的に説明する。 図3(a): 所望の鉄筋コンクリート建造物を構築すべく敷
地の所定位置に杭孔を先行堀りし、この堀上端部にケー
シング12を建て込み、安定液を注入した後、所定の深
さの杭孔13を掘削する。この杭孔13に杭主筋と帯筋
とから杭鉄筋1A、この杭鉄筋1Aに上述した通り予め
一体接合された柱鉄筋4Aからなる鉄筋かご14をクレ
ーンによって建て込む。 図3(b): 次いで、トレミー管15を鉄筋かご14の中に
セットしてコンクリートを杭孔13の下から打設してい
く。
Next, a process of constructing the above-mentioned three-piece rigid connection structure of the column, the pile, and the floor slab will be described with time. Fig. 3 (a): A pile hole is preliminarily dug at a predetermined position of the site to construct a desired reinforced concrete building, a casing 12 is built at the upper end of the moat, and a predetermined liquid is injected at a predetermined depth. Is excavated. A pile reinforcing bar 1A is built into the pile hole 13 from the pile main bar and the band reinforcing bar, and a reinforcing bar cage 14 composed of the column reinforcing bar 4A integrally joined to the pile reinforcing bar 1A in advance as described above. FIG. 3 (b): Next, the tremy tube 15 is set in the reinforcing steel basket 14 and concrete is poured from below the pile hole 13.

【0022】図4(a): 順次トレミー管15を引き上げな
がら上方へとコンクリートCを打設充填していく。コン
クリートCを所定の高さまで打設してから、捨て型枠1
6を地盤表面G0 から一部突出させてケーシング12の
内周に取り付け、更にコンクリートCを打設していく。 図4(b): 地盤表面G0 よりやや下方の位置まで打設した
時に、バキュームホースHで杭上部の不良コンクリート
を吸い取るいわゆるスライム処理をする。その後ケーシ
ング12のみ引き抜きコンクリート打設を完了する。
FIG. 4 (a): Concrete C is poured and filled upward while sequentially pulling up the tremy tube 15. After concrete C is cast to a predetermined height,
6 was partly protruded from the ground surface G 0 attached to the inner periphery of the casing 12, it will further Da設concrete C. FIG 4 (b): when pouring slightly to a position below the ground surface G 0, to the so-called slime processing blotting defective concrete pile top with vacuum hose H. Thereafter, only the casing 12 is pulled out to complete the concrete placement.

【0023】図5(a): コンクリートの打設が完了した状
態の杭上部の断面図であり、コンクリート打設表面から
捨て型枠16と柱主筋4と杭主筋1の立上がり部分3が
突出している。 図5(b)〜(d):墨出しを行い、床スラブの敷設予定側にあ
る部分は残して一部捨て型枠16を切断除去して埋め戻
しの準備をする( 図(c))。そして、埋戻し土17が床ス
ラブ形成予定部位に一定の高さ敷設される( 図(d))。
FIG. 5 (a) is a cross-sectional view of the upper part of the pile in a state in which the concrete has been cast, in which the dumping formwork 16, the column main reinforcement 4, and the rising part 3 of the pile main reinforcement 1 project from the surface of the concrete. I have. 5 (b) to 5 (d): Ink marking is performed, and the part on the side where the floor slab is to be laid is left, and the partly discarded formwork 16 is cut and removed to prepare for backfilling (FIG. . Then, the backfill soil 17 is laid at a predetermined height at the site where the floor slab is to be formed (FIG. (D)).

【0024】図6(a)、(b): 図(b) の拡大図に示すよう
に埋戻し土17の上に砂利敷、捨てコンクリート18を
捨て型枠16の高さ位置まで打設する。捨て型枠16よ
りやや上方まで杭主筋1の立上げ部分3が突出してい
る。
6 (a) and 6 (b): As shown in the enlarged view of FIG. 6 (b), a gravel bed and concrete 18 are cast on the backfill soil 17 up to the level of the form 16 for disposal. . The rising portion 3 of the main pile 1 protrudes slightly above the disposal form 16.

【0025】図7(a)〜(c) : 柱と1 階床スラブの配筋を
行う。図8 〜図10はその詳細を示す斜視図と平面図であ
る。まず、図8(a)のように柱の配筋( 帯筋7を配する)
を行う。次に、図7(a)ないし図8(b)のように壁立ち上が
り配筋19並びに床スラブの下端筋9の配筋を行う。こ
の下端筋9は、図8(c)のように杭主筋の立上り部分3を
縫うように縦横に配し、柱主筋4により囲まれた矩形状
空間4A内まで充分な定着長さを確保して延設されてい
る。次いで、図7(b)および図9(a)(b) に示すように、L
型鉄筋10を、杭主筋の立上がり部分3に対となる数だ
け平面視で扇骨(放射)状に床スラブの下端筋9の上方
に位置せしめて配設する。つまり、前述した図2(e)のよ
うにL型鉄筋10の一辺が下方に向けて杭主筋の立上が
り部分3に沿って重ね合わされ、この両者の重ね合わせ
部分が溶接や番線等で接合される。この構成により、そ
の後のコンクリート打設によって床スラブ鉄筋と杭鉄筋
との剛接一体化が実現される。それから図7(c)と図10
(a)(b)に示すように、床スラブの上端筋8を、上述した
下端筋9と同様の要領で下端筋9の上方位置に配筋す
る。但し、下端筋9は真っ直ぐ柱主筋4まで延びている
が、上端筋8の先端は柱筋の空間4A内で下方に鉤状に
屈曲した部分8aを有する(図1ないし図7(c)) 。上端
筋8と下端筋9とが柱主筋4の空間4A内にまで配筋さ
れることでその後のコンクリート打設により柱と床スラ
ブとが剛接一体化されるようになる。以上の1階床スラ
ブの配筋が完了した後、図11(a) のように柱等の止め型
枠20を設置した後、図11(b) のように柱、床スラブコ
ンクリートを打設充填し、最終的に杭と柱と床スラブの
三者一体剛接合構造を形成する。
FIGS. 7 (a) to 7 (c): Reinforcing columns and first floor slabs. 8 to 10 are a perspective view and a plan view showing the details. First, as shown in Fig. 8 (a), the reinforcing bars of the columns (the bars 7 are arranged)
I do. Next, as shown in FIGS. 7 (a) and 8 (b), the reinforcement of the wall rising reinforcement 19 and the lower reinforcement 9 of the floor slab are performed. As shown in FIG. 8 (c), the lower end bars 9 are arranged vertically and horizontally so as to sew the rising portions 3 of the main bars of the pile, and secure a sufficient anchoring length to the inside of the rectangular space 4A surrounded by the main bars 4 of the pillars. Has been extended. Next, as shown in FIGS. 7 (b) and 9 (a) (b), L
The reinforcing bars 10 are arranged in a fan-shaped (radial) shape in plan view above the lower end bar 9 of the floor slab in a number corresponding to the rising portion 3 of the pile main reinforcing bar. That is, as shown in FIG. 2 (e), one side of the L-shaped reinforcing bar 10 is superimposed downward along the rising portion 3 of the pile main bar, and these superposed portions are joined by welding, a number line, or the like. . With this configuration, rigid integration of the floor slab reinforcement and the pile reinforcement is realized by the subsequent concrete casting. Then Figure 7 (c) and Figure 10
As shown in (a) and (b), the upper end muscle 8 of the floor slab is arranged above the lower end muscle 9 in the same manner as the above-described lower end muscle 9. However, the lower end muscle 9 extends straight up to the column main muscle 4, but the tip of the upper end muscle 8 has a portion 8a bent downward in a hook shape in the space 4A of the column muscle (FIGS. 1 to 7 (c)). . By arranging the upper end reinforcement 8 and the lower end reinforcement 9 in the space 4A of the column main reinforcement 4, the column and the floor slab are rigidly integrated by the subsequent concrete casting. After the reinforcement of the first-floor floor slab is completed, after installing the stop formwork 20 such as a pillar as shown in FIG. 11 (a), the pillar and floor slab concrete are poured as shown in FIG. 11 (b). Filling and finally forming a three-piece rigid joint structure of pile, column and floor slab.

【0026】ここで、図12に基づき上記構成の作用を説
明する。杭Pと柱Qと1 階床スラブRとを剛接一体化し
たことから、柱Qを介して伝達されてくる上方からの荷
重21が、中間の媒体を介さずに、直接に杭Pに伝達さ
れるようになる。一方、柱Qを介して伝わってくる水平
方向の荷重22も直接杭Pに伝わっていく。杭Pに伝え
られた水平荷重22は、杭周辺の地盤Gからの水平抵抗
力23a〜23c…によって、徐々に低下するようにな
る。杭本体と杭周辺地盤とを一体として水平方向の荷重
に抵抗する。つまり、杭Pは杭周辺の地盤Gよりあたか
も弾性ばね的に支持された形になる。すなわち、地盤G
の水平方向に抵抗する力が弾性バネ23A〜23C…で
置き換えて考えられ、水平方向の抵抗力23a〜23c
…で杭に生ずる水平荷重22a〜22c…は相殺され、
徐々に小さくなる。この点、従来が建物をフーチングま
での上部と、杭とに分離して考え、フーチングと杭との
接合をピン接合と剛接合の中間的なもの(半固定)とし
て考えていた構造思想とは全く異なる。つまり、従来の
鉄筋コンクリート造は、構造的には、柱上部から伝わっ
てくる荷重( 垂直および水平方向) をフーチング下で反
力として支え、その反力を逆に作用力として捉えて杭に
作用させる方法で考えており、また、杭頭部に生ずる曲
げモーメントを一部地中梁に負担させ、杭、地中梁、柱
という形で水平方向の荷重に対して抵抗していたのであ
り、本発明思想とは相違する。
Here, the operation of the above configuration will be described with reference to FIG. Since the pile P, the column Q and the first floor slab R are rigidly integrated, the load 21 transmitted from above transmitted through the column Q is directly applied to the pile P without passing through an intermediate medium. Be transmitted. On the other hand, the horizontal load 22 transmitted via the column Q is also transmitted directly to the pile P. The horizontal load 22 transmitted to the pile P gradually decreases due to horizontal resistances 23a to 23c from the ground G around the pile. The pile body and the ground around the pile are integrated to resist horizontal load. In other words, the pile P is supported as if it were an elastic spring from the ground G around the pile. That is, the ground G
Are replaced by the elastic springs 23A to 23C, and the horizontal resistances 23a to 23c are considered.
The horizontal loads 22a to 22c generated on the pile due to ... are offset,
It becomes smaller gradually. In this regard, what is the structural philosophy that previously considered the building to be separated into the upper part up to the footing and the pile, and considered the connection between the footing and the pile as an intermediate (semi-fixed) between pin connection and rigid connection Completely different. In other words, conventional reinforced concrete structures structurally support the load (vertical and horizontal directions) transmitted from the top of the column as a reaction force under footing, and capture the reaction force as an acting force to act on the pile. In this method, some bending moments generated at the pile head were borne by the underground beams, and the piles, underground beams, and columns resisted horizontal loads. This is different from the inventive idea.

【0027】[0027]

【発明の効果】本発明の構成では、杭、柱、1 階床スラ
ブを一体剛接合とし、地盤の抵抗力をも考慮した形で、
外力に抵抗するようになり、上部からの荷重についても
直接、杭に伝わるようになることから、基礎構造の耐力
が大きく発揮され、信頼性の高い基礎構造を得ることが
できる。また、地震時などの水平外力により、柱脚に生
ずる種々の力は、杭と床スラブへ直接伝達されることか
ら、杭および床スラブの曲げ剛性を有効に利用すること
ができる。杭および柱と一体的に設けられた床スラブに
より、各柱脚相互がバラバラに挙動することなく、ま
た、杭と柱と共に床スラブが抵抗することで、共に安定
した耐力を発揮することができる。上記により基礎梁、
フーチングが不要となり、基礎工事が簡素化され、工期
が短縮化され、コストダウンが図れる。更に、地中掘削
が軽減されることで、残土処分量を低減でき、環境対策
にも貢献しうる。
According to the structure of the present invention, the pile, the column, and the first floor slab are integrally rigidly connected, taking into account the resistance of the ground,
Since it comes to resist external force and the load from the upper part is directly transmitted to the pile, the strength of the foundation structure is exerted greatly, and a highly reliable foundation structure can be obtained. In addition, various forces generated on the column pedestal due to a horizontal external force during an earthquake or the like are directly transmitted to the pile and the floor slab, so that the bending rigidity of the pile and the floor slab can be effectively used. By the floor slab integrally provided with the pile and the column, each column-base does not behave in a disjointed manner, and the floor slab together with the pile and the column can exhibit a stable strength together. . From the above, foundation beams,
Footing is not required, foundation work is simplified, construction period is shortened, and costs can be reduced. Furthermore, by reducing underground excavation, the amount of residual soil disposal can be reduced, which can contribute to environmental measures.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る柱と杭と床スラブ三者
の一体剛接構造を示す断面図である。
FIG. 1 is a cross-sectional view showing an integral rigid contact structure of a pillar, a pile, and a floor slab according to one embodiment of the present invention.

【図2】(a)〜(e) はそれぞれ図1におけるA-A 線断面
図、B-B 線断面図、C 部分の拡大図、D-D 線断面図、杭
鉄筋の立上がり部分と床スラブのL型鉄筋との継手の詳
細図である。
2 (a) to 2 (e) are cross-sectional views taken along lines AA, BB, C, and DD in FIG. 1, respectively. FIG. 3 is a detailed view of the joint of FIG.

【図3】(a)(b)は杭と柱を一体化した鉄筋かごを杭孔に
建込む状態図とトレミー管を杭孔にセットした状態の断
面図である。
FIGS. 3 (a) and 3 (b) are a diagram showing a state in which a reinforced car in which a pile and a column are integrated is built in a pile hole, and a sectional view showing a state in which a tremy tube is set in the pile hole.

【図4】(a)(b) は杭孔に下方からコンクリートを打設
する様子を示す図と杭孔の上部をスライム処理している
状態の断面図である。
FIGS. 4 (a) and 4 (b) are a view showing a state in which concrete is poured into a pile hole from below, and a cross-sectional view in a state where slime treatment is performed on an upper portion of the pile hole.

【図5】(a)は杭孔にコンクリートを打設完了した状態
の断面図、(b) は墨出しを行う時の斜視図、(c) は埋め
戻し準備のため捨て型枠を一部削り取った時の斜視図、
(d) は埋戻し土を入れた時の断面図である。
Fig. 5 (a) is a cross-sectional view of a state in which concrete has been poured into a pile hole, (b) is a perspective view when inking is performed, and (c) is a part of a discarded formwork in preparation for backfilling. Perspective view when shaved off,
(d) is a cross-sectional view when backfill soil is inserted.

【図6】(a)は砂利敷、捨てコンクリート打設した状態
の断面図、(b) はその拡大図である。
FIG. 6 (a) is a cross-sectional view of a state in which a gravel pavement and abandoned concrete are cast, and FIG.

【図7】(a)は1 階床スラブの下端筋の配筋図、(b) は
L型鉄筋の配筋図、(c) は床スラブの上端筋の配筋図で
ある。
FIG. 7 (a) is a bar layout diagram of a lower end bar of the first floor slab, (b) is a bar layout diagram of an L-shaped reinforcing bar, and (c) is a bar layout diagram of an upper bar bar of the floor slab.

【図8】(a)は柱の帯筋の配筋の斜視図、(b) は壁の立
ち上がりと1階床スラブの下端筋の配筋を示す斜視図、
(c) はその平面図である。
FIG. 8 (a) is a perspective view of a reinforcing bar of a stirrup of a column, FIG. 8 (b) is a perspective view of a rising of a wall and a reinforcing bar of a lower end of a first floor slab,
(c) is a plan view thereof.

【図9】(a)はL型鉄筋の配筋した時の斜視図、(b) は
その平面図である。
9 (a) is a perspective view when an L-shaped reinforcing bar is arranged, and FIG. 9 (b) is a plan view thereof.

【図10】(a)は床スラブの上端筋を配筋した時の斜視
図、(b) はその平面図である。
FIG. 10 (a) is a perspective view of a floor slab when upper end bars are arranged, and FIG. 10 (b) is a plan view thereof.

【図11】(a)は柱等の止め型枠を設置した時の断面
図、(b) は柱と床スラブの部位にコンクリートを打設す
る状態の断面図である。
11 (a) is a cross-sectional view when a stop form such as a pillar is installed, and FIG. 11 (b) is a cross-sectional view in a state where concrete is poured into a column and a floor slab.

【図12】(a)(b) は本発明の作用説明図である。FIGS. 12 (a) and 12 (b) are diagrams for explaining the operation of the present invention.

【図13】従来の鉄骨造用の基礎構造図である。FIG. 13 is a diagram of a conventional basic structure for steel frame construction.

【符号の説明】[Explanation of symbols]

P…杭 Q…柱 R…(1階)床スラブ 1…杭主筋 3…立上がり部分 4…柱主筋 5…杭頭部 8…上端筋 9…下端筋 10…L型鉄筋 P… Pile Q… Column R… (1st floor) Floor slab 1… Pile main bar 3… Rising part 4… Column main bar 5… Pile head 8… Top bar 9… Bottom bar 10… L-shaped bar

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 地盤中に建て込んだ杭と該杭上に立設し
た柱と該柱間に敷設した床スラブとを有する鉄筋コンク
リート造において、前記柱と杭とを剛接合し、かつ、こ
れら杭および柱にそれぞれ1階床スラブを剛接合して、
杭、柱および1階床スラブの三者を相互に一体剛接構造
となすとともに、該杭を地盤により弾性支持すべく杭の
柱に対する剛性比率K( =K1 / K2 ) を2.5 以下に設
定したことを特徴とする鉄筋コンクリート建造物の基礎
構造。但し、K1 は杭の剛性、K2 は柱の剛性である。
1. A reinforced concrete structure having a pile built in the ground, a pillar erected on the pile, and a floor slab laid between the pillars, wherein the pillar and the pile are rigidly joined, and Rigidly connecting the first floor slabs to the piles and columns,
The three members of the pile, the column and the first floor slab are integrally rigidly connected to each other, and the rigidity ratio K (= K 1 / K 2 ) to the column of the pile is set to 2.5 or less so that the pile is elastically supported by the ground. The basic structure of a reinforced concrete building characterized by the setting. However, K 1 is the stiffness of the pile, K 2 is the stiffness of the pillar.
【請求項2】 柱主筋を杭頭部から外方に緩やかに屈曲
させて該杭下方の略円周状に配した該杭主筋位置まで延
設し、この延設した各柱主筋の下端部分を該杭主筋に接
合したことを特徴とする請求項1記載の鉄筋コンクリー
ト建造物の基礎構造。
2. The pillar main reinforcement is gently bent outward from the pile head and extended to the position of the pile main reinforcement arranged substantially circumferentially below the pile, and a lower end portion of each of the extended column main reinforcements. 2. The foundation structure of a reinforced concrete building according to claim 1, wherein the main structure is joined to the main bar of the pile.
【請求項3】 略円周状に配した杭鉄筋の一部を杭頭部
から突出して立上がり部分を設ける一方、1階床スラブ
の上端筋と下端筋との間にL型鉄筋を配筋し、各L型鉄
筋を前記杭鉄筋の立上げ部分に定着長さをもって接合し
たことを特徴とする請求項1又は2記載の鉄筋コンクリ
ート建造物の基礎構造。
3. A part of a substantially circumferentially arranged pile reinforcing bar protrudes from a pile head to provide a rising portion, while an L-shaped reinforcing bar is arranged between an upper end bar and a lower end bar of the first floor slab. The foundation structure of a reinforced concrete building according to claim 1 or 2, wherein each L-shaped reinforcing bar is joined to a rising portion of the pile reinforcing bar with a fixed length.
【請求項4】 1階床スラブの上端筋および下端筋を柱
主筋で囲まれた空間内に定着長さを確保しうる位置まで
延設したことを特徴とする請求項1〜3のいずれか1項
に記載の鉄筋コンクリート建造物の基礎構造。
4. The floor slab according to claim 1, wherein the upper and lower struts of the first floor slab are extended to a position where the anchoring length can be secured in a space surrounded by the main pillars. 2. The foundation structure of the reinforced concrete building according to item 1.
JP19356593A 1993-08-04 1993-08-04 Foundation structure of reinforced concrete building Expired - Fee Related JP2603427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19356593A JP2603427B2 (en) 1993-08-04 1993-08-04 Foundation structure of reinforced concrete building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19356593A JP2603427B2 (en) 1993-08-04 1993-08-04 Foundation structure of reinforced concrete building

Publications (2)

Publication Number Publication Date
JPH0742167A JPH0742167A (en) 1995-02-10
JP2603427B2 true JP2603427B2 (en) 1997-04-23

Family

ID=16310140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19356593A Expired - Fee Related JP2603427B2 (en) 1993-08-04 1993-08-04 Foundation structure of reinforced concrete building

Country Status (1)

Country Link
JP (1) JP2603427B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3263727B2 (en) * 1997-12-16 2002-03-11 株式会社さとうベネック Construction method of pillar components

Also Published As

Publication number Publication date
JPH0742167A (en) 1995-02-10

Similar Documents

Publication Publication Date Title
JP4691690B2 (en) Joint structure and joining method of pedestal
KR102286225B1 (en) Method for constructing underground structure busing PC integrating method without support
JP2000352296A (en) Method o constructing passage just under underground structure
JP2000064305A (en) Foundation structure of steel tower and construction thereof
JP3671344B2 (en) Joint structure between foundation pile and column base and its construction method
JP3760304B2 (en) Building foundation construction method
JP2603427B2 (en) Foundation structure of reinforced concrete building
JP4612422B2 (en) Construction method of structure and foundation structure used for it
JP2004027727A (en) Foundation pile and construction method for foundation pile
JPH0684690B2 (en) Building basement extension method
JP2002138574A (en) Building construction method and building
JPH02164934A (en) Foundation construction method
JPH02164930A (en) Foundation structure for building
JP2001271499A (en) Temporary bearing construction method for existing building by steel batter brace member
JPH1130053A (en) Construction method of base isolation building
JP2763488B2 (en) Prefabricated pillar and inverted ramen prefabricated construction method
JPH07138972A (en) Construction method for underground skeleton
JP7502208B2 (en) Building
JP7283659B2 (en) Mountain retaining structure
JP3319458B2 (en) Temporary receiving method of existing building by flat beam reinforcement
JP3161886B2 (en) Foundation for small buildings
JPH04368519A (en) Anchor retaining wall
JP3061934B2 (en) Retaining wall construction method
JPS6363690B2 (en)
KR20220165042A (en) Top-down construction method for uneven-slope site

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110129

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 14

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20130129

LAPS Cancellation because of no payment of annual fees