JP2602029B2 - Method for producing abrasion resistant composite casting - Google Patents

Method for producing abrasion resistant composite casting

Info

Publication number
JP2602029B2
JP2602029B2 JP62215815A JP21581587A JP2602029B2 JP 2602029 B2 JP2602029 B2 JP 2602029B2 JP 62215815 A JP62215815 A JP 62215815A JP 21581587 A JP21581587 A JP 21581587A JP 2602029 B2 JP2602029 B2 JP 2602029B2
Authority
JP
Japan
Prior art keywords
cast iron
wear
abrasion
mold
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62215815A
Other languages
Japanese (ja)
Other versions
JPS6457963A (en
Inventor
義之 藤澤
Original Assignee
株式会社 栗本鐵工所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 栗本鐵工所 filed Critical 株式会社 栗本鐵工所
Priority to JP62215815A priority Critical patent/JP2602029B2/en
Priority to AU21045/88A priority patent/AU621550B2/en
Priority to CA000575723A priority patent/CA1339715C/en
Priority to KR1019880010860A priority patent/KR890003476A/en
Priority to EP89101505A priority patent/EP0380715A1/en
Publication of JPS6457963A publication Critical patent/JPS6457963A/en
Application granted granted Critical
Publication of JP2602029B2 publication Critical patent/JP2602029B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/04Casting in, on, or around objects which form part of the product for joining parts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0292Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with more than 5% preformed carbides, nitrides or borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本願発明は激しい摩耗条件、とくに摩耗粒子が表面に
衝突したり擦過流動するアブレージョン摩耗に強い耐性
を有する耐摩耗体に係る技術である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a technique relating to a wear-resistant body having strong resistance to abrasion wear in which severe wear conditions, particularly, wear particles collide with a surface or flow by abrasion.

[従来の技術] 従来、機械装置に取付けられ激しい摩耗条件に瀑され
る箇所には、それ自体が耐摩耗性の高い材料、たとえば
12%Mn鋼(ハッドフィールド鋼)や27%Cr鋳鉄などで部
材を製作して対応してきた。
[Prior art] Conventionally, in a place that is attached to a mechanical device and falls under severe wear conditions, a material having high wear resistance itself, for example,
We have responded by manufacturing components using 12% Mn steel (Hadfield steel) or 27% Cr cast iron.

しかし、使用者側は機械装置がより長時間連続して稼
動に耐えることを求め、より優れた耐摩耗部品の開発が
進められてきた。その有力な手段として複合体の発表を
幾つか見ることができるが、その典型例として「焼結炭
化物合金と鋳鉄からなる複合体」(特公昭60−11096号
公報)が挙げられる。
However, users have demanded that the mechanical device withstand continuous operation for a longer period of time, and development of better wear-resistant parts has been promoted. Some publications of composites can be seen as a promising means, and a typical example thereof is “composite composed of a sintered carbide alloy and cast iron” (Japanese Patent Publication No. 60-11096).

この技術は焼結炭化物合金と鋳鉄よりなる複合体より
なるが、その特徴とするところは鋳鉄それ自体は低い耐
摩耗性および硬度を有する黒鉛鋳鉄で炭素当量を2.5乃
至6.0に調整したことと、両者の間に中間合金相または
転移帯域が形成されており、かつ焼結炭化物合金の20〜
80%が転移帯域にあることである。この複合体の最適の
使用条件として数件の実施例を挙げているが、石炭微粉
砕機のライナ、3インチさく岩機用ビット体又はビット
の把持体、常温頭造ダイなどに実施して、従来の硬マル
テンサイト鋳鉄、マンガン鋼などの耐摩耗材や、高品質
耐疲れ性鋼製の把持体を有する従来品のビット又は鋼製
ビット自体、又はボールベアリング鋼よりなる従来品の
ダイに比べてそれぞれ顕著な優位性を示した。
This technology consists of a composite consisting of a sintered carbide alloy and cast iron, the feature of which is that the cast iron itself is a graphite cast iron having low wear resistance and hardness, and that the carbon equivalent has been adjusted to 2.5 to 6.0, An intermediate alloy phase or a transition zone is formed between the two, and 20 to
80% is in the transition zone. Several examples are given as the optimum use conditions of this composite, but it is applied to a liner of a coal pulverizer, a bit body for a rock drill, a bit gripper for a rock drill, a cold head die, and the like. , Compared with conventional hard martensitic cast iron, wear-resistant material such as manganese steel, conventional bit or steel bit itself with a high quality fatigue-resistant steel gripper, or conventional die made of ball bearing steel Each showed significant advantages.

この優れた結果の原因として、かかるはげしい衝撃を
伴なう役務に対しては、この先行技術は硬質の焼結炭化
物合金と軟質の黒鉛鋳鉄との間に介在する転移および連
続変化が有利に作用することを挙げている。たとえばさ
く岩機のビット体の把持体に用いると、黒鉛鋳鉄の低い
ヤングモジュラスと大きな減衰能のため能力学的歪みが
減小し分散されて集中する衝撃的負荷を躱すために良い
結果が残るものとしている。
As a cause of this excellent result, for such high impact services, this prior art favors the intervening transitions and continuous changes between hard sintered carbide and soft graphite cast iron. To do. For example, when used for the bit body of a rock drill, good results remain in order to avoid the impact load which is reduced due to the mechanical distortion due to the low Young's modulus and large damping capacity of graphite cast iron and is dispersed and concentrated It is assumed.

ここに挙げた従来技術は確かにはげしい衝撃を伴なう
さく岩機のビットや常温頭造のダイなどでは、従来品よ
りも優れた耐性を示すものと推測できる。第1図は出願
人が追試した前記従来技術の金属組織の顕微鏡写真であ
る。写真は50倍に拡大したもので3相よりなる左側から
球状黒鉛鋳鉄、中間層、焼結炭化物合金の順に層状に隣
接している。この中間層がはげしい衝撃を吸収して破壊
や剥離を防いでいるのは明らかである。
It can be guessed that the prior art cited here shows better durability than conventional products, for example, on rock bits and cold head dies with severe impact. FIG. 1 is a micrograph of the metal structure of the prior art which was additionally tested by the applicant. The photo is magnified 50 times, and it is adjacent to the spheroidal graphite cast iron, the intermediate layer, and the cemented carbide alloy in the order of layers from the left consisting of three phases. Obviously, this intermediate layer absorbs the violent impact and prevents breakage and delamination.

しかしながら超硬性である焼結炭化物合金が摩耗に瀑
される全表面を完全に被覆することは不可能であり、表
面に浸透した鋳鉄が黒鉛系であるときは、その低硬度、
低耐摩耗性のために使用条件によってはむしろ劣性化の
方向へ導く危険が懸念される。最も問題となるのは硬質
の粉粒体による表面の引掻き、衝突、擦過流動のために
侵されるいわゆるアブレージョン摩耗に直面するときで
ある。焼結炭化物合金界面に浸透し、はげしい衝撃に耐
えてこれを咬持している黒鉛鋳鉄も、アブレージョン摩
耗に対しては一堪りもなく損耗し、折角の焼結炭化物合
金の細片が本来の優れた耐摩耗性を発揮することなく逸
早く剥落して期待を大幅に裏切って了う。
However, it is impossible for the cemented carbide alloy, which is super-hard, to completely cover the entire surface that falls due to wear, and when the cast iron penetrating the surface is graphite-based, its low hardness,
There is a concern that the low abrasion resistance may lead to the inferior deterioration depending on the use conditions. The most problematic is when faced with so-called abrasion wear, which is attacked by hard particles, scratching, impacting and rubbing the surface. Graphite cast iron that penetrates the cemented carbide alloy interface and withstands severe impacts and bites it is also inexhaustibly worn away by abrasion wear. It peels off quickly without exhibiting excellent wear resistance, greatly disappointing.

一方、アブレージョン摩耗に対して「クローム鋳鉄と
超硬合金との接合方法」(特開昭59−199165号公報)が
提案されており、塊状または粒状の超硬合金の表面に予
めニッケル,リン合金またはニッケル,ボロン合金の皮
膜を形成させた後、クローム鋳鉄を鋳ぐるむことを要旨
とし、皮膜の合金を特定すると共に、クローム含量を種
々変えて試験した結果、5〜18%を最高の実施態様に示
している。
On the other hand, for abrasion wear, a "joining method of chrome cast iron and cemented carbide" (JP-A-59-199165) has been proposed. Or, after forming a nickel-boron alloy film, the main idea is to cast chromium cast iron, specify the alloy of the film, and conduct various tests with different chrome contents. This is shown in the embodiment.

このように皮膜形成成分や母相のクローム含有量を制
御することによって、従来の被膜,鋳ぐるみ方式におけ
るη相の生成を防ぎ、超硬合金とクローム鋳鉄間のすき
まやクラックを防止すと謳っている。
By controlling the chromium content of the film-forming component and the matrix phase in this way, the formation of the η phase in the conventional film and cast-in method is prevented, and the gap and crack between the cemented carbide and the chromium cast iron are prevented. ing.

また、特開昭60−206557号公報で提案された従来技術
では、WCなど超硬度の炭化物と、Cを3〜5重量%とCr
を5〜30重量%含む共晶組成に近い鋳鉄結合材とからな
るサーメットを、同結合材と同一成分である鋳鉄材料で
鋳ぐるみ接合することを特徴とする接合方法である。こ
のようにサーメットの結合材と性質が近似した鋳込み材
を用いるから、結合材との濡れ性がよく、サーメットと
鋳ぐるみ材との相互拡散が十分行なわれ完全に一体化す
ると謳っている。
Further, in the prior art proposed in Japanese Patent Application Laid-Open No. Sho 60-206557, a super-hard carbide such as WC, 3-5% by weight of C and Cr
Of a cast iron binder having a eutectic composition close to the eutectic composition containing 5 to 30% by weight of a cast iron material having the same component as the binder. It is stated that since a cast material having properties similar to those of the cermet binder is used, wettability with the binder is good, mutual diffusion between the cermet and the cast-in material is sufficiently performed, and the cermet is completely integrated.

[発明が解決しようとする問題点] 長寿命を得るために焼結炭化物合金の層を大きくする
ことは可能だが、コストの大幅な上昇と、粒子層全体に
鋳造層を浸透させる技術上の困難性が伴なって実際的で
はない。
[Problems to be Solved by the Invention] Although it is possible to enlarge the layer of the cemented carbide alloy to obtain a long service life, the cost is greatly increased, and there is a technical difficulty in penetrating the casting layer throughout the particle layer. Not practical with gender.

また前記のように最初の従来技術における多量の中間
層は黒鉛鋳鉄の低硬度を救済する反面、焼結炭化物合金
自体の高硬度を減殺し、優れた耐摩耗性を殺ぐ結果とな
る。また鋳鉄中の鉄と焼結炭化物中に多用されるコバル
トが置換して脆性層の形成される危惧もあり、アブレー
ジョン摩耗を主体とする部材としては課題が残る。
Also, as described above, the large amount of the intermediate layer in the first prior art relieves the low hardness of graphite cast iron, but reduces the high hardness of the sintered carbide alloy itself, resulting in a loss of excellent wear resistance. In addition, there is a concern that iron in cast iron and cobalt frequently used in sintered carbide may be substituted to form a brittle layer, and a problem remains as a member mainly composed of abrasion wear.

特開昭59−199165号公報の従来技術においては、鋳ぐ
るみ材との濡れ性を改良し、脆性相(η)の発生を防止
し、クラックや酸化を防いだ効果はあるが、その前処理
として了めニッケル、リン合金またはニッケル,ボロン
の皮膜を形成しなければならず、その工程を経過するた
めの設備,労務,時間,費用などは鋳造品の原価構成上
きわめて大きな負担となる。しかも粒子をニッケル,リ
ンなどの系列に属する合金で薄膜を被覆し高クローム系
の鋳鉄と高温で接するときは脆化相(η)発生の懸念が
高まり、そのため鋳ぐるむクローム鋳鉄のクローム量に
制約を加えるざるを得なくなる。したがって母金属自身
の耐摩耗性にも制約が生れ、クローム鋳鉄として最も望
ましい耐摩耗性に届かない恨みが残る。
The prior art disclosed in Japanese Patent Application Laid-Open No. 59-199165 has the effect of improving the wettability with a cast-in material, preventing the generation of a brittle phase (η), and preventing cracks and oxidation. As a result, it is necessary to form a nickel, phosphorus alloy, nickel or boron film, and the equipment, labor, time, cost, and the like required for passing through the process impose an extremely large burden on the cost structure of the cast product. Moreover, when the particles are coated with a thin film of an alloy belonging to the series of nickel, phosphorus, etc. and come into contact with high chromium cast iron at high temperatures, there is a high concern about the generation of embrittlement phase (η). You have to add restrictions. Therefore, the wear resistance of the base metal itself is also restricted, and a grudge that does not reach the most desirable wear resistance as chrome cast iron remains.

さらに特開昭60−206557号公報の従来技術は実施例に
よればその具体的な製造工程として、まずWCの粉末にCo
粉末を若干配合して金型内で加圧成形し、真空中で仮焼
結して気孔率40%のスケルトンを製作する。このスケル
トンをカーボンボード中に置いて、真空中で1300℃に維
持された溶融クローム鋳鉄中に浸漬して30分保持し、ク
ローム鋳鉄によって結合されたサーメットを得る。この
サーメットを鋳型内へ置いて1450℃のクローム鋳鉄を注
湯して鋳ぐるむとしているが、この構成では少なくとも
次に示す3点の課題が存在することを否定できない。
Further, according to the prior art disclosed in Japanese Patent Application Laid-Open No. 60-206557, as a specific manufacturing process,
A small amount of powder is blended, pressed in a mold, and pre-sintered in vacuum to produce a skeleton with a porosity of 40%. The skeleton is placed on a carbon board and immersed in molten chrome cast iron maintained at 1300 ° C. in vacuum and held for 30 minutes to obtain a cermet bonded by chrome cast iron. The cermet is placed in a mold, and chrome cast iron at 1450 ° C. is poured and poured. However, it cannot be denied that this configuration has at least the following three problems.

サーメットを製作するという工程が余りにも煩瑣で
あり、工程に必要な費用も余りに高価に失する。周知の
通り耐摩耗性材料は消耗部品であり、摩耗後の取替えと
使い捨てを前提とする本質があるだけに、耐用期間と価
格との兼合で採否が決定されるが、元々材料費(超硬合
金)が通常の金属材料よりも遥かに割高であるのに加
え、このような時間と労力を費やす方法はそれだけで既
に失格である。
The process of making the cermet is too cumbersome, and the cost of the process is lost too expensive. As is well known, a wear-resistant material is a consumable part, and since it has the essence of replacement after wear and disposable, the adoption or rejection is determined based on a combination of a service life and a price. In addition to the fact that hard alloys are much more expensive than ordinary metallic materials, such a time and labor intensive method is already disqualified by itself.

この従来技術もその製品を何に適用するかは特に限
定していないから、自らの記載通り、土木建設機械、化
学機械、製鉄機械などの汎用品を目指したものと判断さ
れるが、サーメット自体は粉末状態から加圧成形するか
ら金型の形状によって特定される。汎用性を求めるなら
ば千差万別の形状をした耐摩耗性部材のどれにも適用で
きなければ無意味であるが、現実には耐摩耗性部材の摩
耗に直面する部分は平面とは限らず、複雑な曲面である
ことがむしろ多いから、本発明を広く実施するには、こ
のサーメットから摩耗曲面の形状に合致する面を研削加
工して形成することが必須の条件となる。、本来が高度
の耐摩耗性を標榜して生まれた材料でありながら、研削
加工して所望の摩耗面に仕上げることが条件というので
は、非実用的と見られても仕方ないのではあるまい。
Since this conventional technology does not particularly limit what the product is applied to, it is judged that it aimed at general-purpose products such as civil engineering and construction machinery, chemical machinery, and iron making machinery as described by himself, but the cermet itself Is press-formed from a powder state, and thus is specified by the shape of the mold. If versatility is required, it is meaningless unless it can be applied to any of a variety of differently shaped wear-resistant members, but in reality the part of the wear-resistant member that faces wear is not limited to a flat surface. However, in many cases, the cermet is formed by grinding a surface that matches the shape of the worn curved surface from the cermet in order to widely implement the present invention. In spite of the fact that it is originally a material that was born with a high level of wear resistance, but it is necessary to grind it to achieve the desired wear surface, it can be considered impractical if it is considered impractical. .

実施例におけるフィールドテストの記載がなく、現
実に耐摩耗性部材として使用した場合の適正が疑問であ
る。サーメットおよびクローム鋳鉄の個々の硬度の記載
はあるが、実際に必要なのは両者一体となった複合体と
しての耐摩性であり耐用時間である。サーメットはその
製造の過程において中間製品のスケルトンの気孔率が40
%と報告しているが、このことは結合材であるクローム
鋳鉄が海綿状にポーラスなスケルトン内へ含浸し充填し
たことを意味するから、サーメットは超硬合金の耐摩耗
性から比べると結合材として置換したクローム鋳鉄の分
(容量約40%)だけ大幅に差し引いて評価しなければ正
鵠を欠く。したがって主題である肝心の耐摩耗性につい
ても、常識的には相当割引いた成績しか期待できない。
There is no description of the field test in the embodiment, and it is doubtful that the device is actually used as a wear-resistant member. Although there is a description of the individual hardness of cermet and chromium cast iron, what is actually required is the abrasion resistance and the service life of a composite of the two. Cermet has an intermediate product skeleton with a porosity of 40 during the manufacturing process.
%, Which means that the chromium cast iron as a binder was impregnated and filled into a spongy porous skeleton. If the chromium cast iron replaced (as much as about 40% capacity) is not significantly deducted and evaluated, then there is no point. Therefore, even with regard to the important abrasion resistance, which is the subject, it is generally possible to expect a considerably discounted result.

本願発明は以上に述べた問題点を解決するため特にア
ブレージョン摩耗に対して強力な耐摩耗性を有する複合
体の提供を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a composite having strong abrasion resistance particularly against abrasion wear in order to solve the problems described above.

[問題点を解決するための手段] 本願発明に係る耐アブレージョン複合鋳造体の製造方
法は、所望の形状を造型した鋳型内の所望の鋳型表面の
上へ焼結炭化物合金の破砕体,粒状体または圧縮成形体
の何れか又はその混合よりなる所望の厚さTcmなる相状
体を固定係止し、当該鋳型へ炭素含量が2.5%乃至3.5
%、クローム含量は23%乃至35%の範囲にあり、かつク
ローム/炭素(Cr/C%)が5乃至12の倍率の範囲にある
高クローム鋳鉄を、自己の融点より120×(0.75+T)
℃乃至180×(1.50+T)℃高い温度範囲内で注湯全量
と前記層厚Tcmとを参酌して選択した注湯温度によって
注湯することにより、前記層状体を貫通して鋳型面まで
完全に含浸して相互に咬持し合う摩耗面を緻密に形成す
ることによって前記の課題を解決した。
[Means for Solving the Problems] The method for producing an abrasion-resistant composite cast according to the present invention provides a crushed body and a granular body of a sintered carbide alloy on a desired mold surface in a mold having a desired shape. Alternatively, one of the compression molded bodies or a phase body having a desired thickness Tcm made of a mixture thereof is fixed and locked, and the carbon content of the mold is 2.5% to 3.5%.
% High chromium cast iron with a chromium content in the range of 23% to 35% and a chrome / carbon (Cr / C%) in the range of 5 to 12 magnifications, 120 × (0.75 + T) above its melting point
By pouring at a pouring temperature selected in consideration of the total pouring amount and the layer thickness Tcm within a high temperature range of ℃ to 180 × (1.50 + T) ° C., it completely penetrates the layered body to the mold surface. The above-mentioned problem was solved by densely forming the wear surfaces which are impregnated with each other and bite each other.

[作用] 白銑組織の鋳鉄は黒鉛鋳鉄に比べ、炭化鉄、マルテン
サイトよりなるきわめて高硬度の材料であるが、耐摩耗
性をさらに向上させるためには合金元素、最も普通には
Crを添加して溶解し凝固後の組織として鉄・クローム系
の複合炭化物をマトリックス(母相)上に析出させ、か
つマトリックス自体の硬度をも高めるのが周知である。
[Action] Cast iron with a white iron structure is an extremely hard material consisting of iron carbide and martensite, compared to graphite cast iron. However, in order to further improve wear resistance, alloy elements, most commonly,
It is well known that iron-chromium composite carbide is precipitated on a matrix (mother phase) as a structure after solidification by adding Cr and solidifying, and also increases the hardness of the matrix itself.

しかし本願としては鉄・クローム系合金の中でもアブ
レージョン摩耗に最も耐性の大きいことでは評価が一致
している高クローム鋳鉄、特に炭素含量を2.5%から3.5
%、クローム含量を23%から35%に絞った最高の耐摩耗
材に限定する。
However, according to the present application, high chromium cast iron, which is evaluated to be the most resistant to abrasion wear among iron-chrome alloys, has a carbon content of 2.5% to 3.5%.
%, Limited to the highest wear resistant materials with a chromium content of 23% to 35%.

この材料はおおむねアメリカ規格(ASTMA532)による
クラスIIIの25%Cr鋳鉄に相当し、我国においても、い
わゆる27%Cr鋳鉄として耐摩耗材料の代表の一つに数え
られているものである。しかしこのような鋳ぐるみ材を
採用するに際しては湯のなじみや酸化や割れの課題を克
服しなければならない。本願では焼結炭化物合金層を細
片の累積体で構成して高クローム鋳鉄が迅速かつ完全に
層内を貫通して鋳型表面に達するように図り、この迅速
含浸によって細片と細片の間の空隙を母材で完全に充填
し、凝固後に細片と母材と細片とが相互に咬持し合って
容易に剥落しないような強固な液体焼結作用を発現し
た。
This material is roughly equivalent to 25% Cr cast iron of Class III according to the American standard (ASTMA532), and is also one of the representative wear-resistant materials in Japan as a so-called 27% Cr cast iron. However, when using such a cast-in material, it is necessary to overcome the problems of familiarity, oxidation and cracking of hot water. In this application, the cemented carbide layer is composed of a stack of strips, so that the high chromium cast iron quickly and completely penetrates into the layer to reach the mold surface, and by this rapid impregnation, between the strips and the strips Was completely filled with the base material, and a solid liquid sintering action was developed such that the strips, the base material, and the strips bite each other after solidification and do not easily peel off.

このためにはクロームと炭素との比率を5乃至12の範
囲に留め炭素,クローム個々の全量の制限と相俟って鋳
型および合金層内における溶湯の流動性を最大の範囲内
に設定した。本来、鋳造時の鋳ぐるみ部分の酸化は鋳ぐ
るみの粒子層の間隙を伝播していく湯先の通過速度によ
って殆ど決定的に支配されるもので、粒子など層の構成
と溶湯の流動性を十分に研究すれば決して解けない課題
ではない。
To this end, the ratio of chromium to carbon was kept in the range of 5 to 12 and the fluidity of the molten metal in the mold and the alloy layer was set within the maximum range in combination with the limitation of the total amount of carbon and chromium. Originally, the oxidation of the as-cast portion during casting is almost crucially governed by the passing speed of the tip, which propagates through the gaps between the as-cast particle layers. It is not a problem that can never be solved with sufficient research.

したがって粒子の性状については粒径が小さ過ぎると
焼結炭化物合金間隔が小さくなりすぎ、鋳込温度を上げ
ても粒子間に白鋳鉄が充分に浸透しない。粒径が粗大に
すぎると焼結炭化物合金の体積率が低下するばかりでな
く、粒子間白鋳鉄母材のアブレージブ粒子により切削さ
れる平均自由工程が大きくなりい耐摩耗性は劣化する。
したがって2mm〜15mm粒子が全体の70%以上となる構成
が最適である。
Therefore, regarding the properties of the particles, if the particle size is too small, the interval between the sintered carbide alloys becomes too small, and even if the casting temperature is increased, the white cast iron does not sufficiently penetrate between the particles. If the particle size is too coarse, not only does the volume ratio of the sintered carbide decrease, but also the mean free path cut by the abrasive particles of the intergranular white cast iron base material increases, and the wear resistance deteriorates.
Therefore, a configuration in which 2 mm to 15 mm particles account for 70% or more of the whole is optimal.

流動性の向上を目指す別の手段は溶湯の鋳込温度にあ
る。古来、健全な鋳造品を得るために鋳込温度の選択は
きわめて重要な要件であるが、本願では既に述べた理由
によって通常の鋳造技術では律し切れない別の限定に伴
わなければ目的を果すことができない。
Another way to improve the flowability is at the casting temperature of the melt. In ancient times, the choice of casting temperature is a very important requirement in order to obtain a sound casting, but in this application it will serve its purpose without other limitations which cannot be controlled by ordinary casting techniques for the reasons already mentioned. Can not do.

鋳込温度は高いほど流動性が高まって前述の条件に合
致するが、余りに高すぎると焼結炭化物合金の粒子自体
を界面から溶融するので限度がある。かつ流動性を高め
る理由が合金層内への迅速な完全含浸と酸化の予防であ
る限り、注湯の全量と層厚との関係を参酌して設定する
のが理に叶っている。
The higher the casting temperature, the higher the fluidity and the above-mentioned conditions are met, but if it is too high, there is a limit because the particles of the sintered carbide alloy themselves are melted from the interface. In addition, as long as the reason for enhancing the fluidity is rapid complete impregnation into the alloy layer and prevention of oxidation, it is reasonable to consider the relationship between the total amount of pouring and the layer thickness.

本願発明は不良品の山を築く貴重な実物試験を通じて
合金層厚の一次関数で統一的に表示される鋳込温度の計
算式を完成した。
The present invention has completed a casting temperature calculation formula that is uniformly expressed as a linear function of the alloy layer thickness through a valuable physical test that builds a heap of defective products.

この計算式によれば、合金層の厚さを1cmとしたとき
の鋳込み温度は、高クローム鋳鉄(27%Cr)の溶融点が
1290℃であるから、最低で1500℃,最高で1740℃と算出
される。
According to this equation, the casting temperature when the thickness of the alloy layer is 1 cm is determined by the melting point of high chromium cast iron (27% Cr).
Since it is 1290 ° C, it is calculated as 1500 ° C at the minimum and 1740 ° C at the maximum.

この範囲内の何れを選ぶかについては、鋳造品の合金
層の厚さT以外の要素、すなわち全体の形状,肉厚など
と注湯の全量の関係等の通常の鋳造公理を準用して設定
すればよい。
The choice within this range is set mutatis mutandis using the usual casting axioms such as the relationship between the elements other than the thickness T of the alloy layer of the casting, that is, the relationship between the overall shape and thickness and the total amount of pouring. do it.

参考的に言及すれば、27%Cr鋳鉄の通常品の鋳込温度
は1450℃乃至1390℃程度が適当とされている。
For reference, it is considered appropriate that the casting temperature of a normal product of 27% Cr cast iron is about 1450 ° C. to 1390 ° C.

粒子の性状については粒径が小さすぎると焼結炭化物
合金間隔が小さくなりすぎ、鋳込温度を上げても粒子間
に白鋳鉄が充分に浸透しない。また温度を挙げすぎると
焼結炭化物合金の白鋳鉄中への溶融量が著しく増大す
る。粒径が粗大にすぎると焼結炭化物合金の体積率が低
下するばかりでなく、粒子間白鋳鉄母材のアブレーシブ
粒子により切削される平均自由工程が大きくなり耐摩耗
性は劣化する。したがって2mm〜15mm粒子が全体の70%
以上となる構成が最適である。
Regarding the properties of the particles, if the particle size is too small, the interval between the sintered carbide alloys becomes too small, and even if the casting temperature is increased, white cast iron does not sufficiently penetrate between the particles. On the other hand, if the temperature is too high, the amount of the sintered carbide alloy melted in the white cast iron increases significantly. If the particle size is too coarse, not only does the volume fraction of the sintered carbide decrease, but also the mean free path cut by the abrasive particles of the intergranular white cast iron base material increases, and the wear resistance deteriorates. Therefore 2mm ~ 15mm particles are 70% of the whole
The configuration described above is optimal.

[実施例] 1.製鉄所における焼結鉱運搬コンベヤラインのシュート
ライナーとして、2.6%C−26%Cr白鋳鉄、アルミナ焼
結板、10mmの厚さの焼結炭化物粒子層を有し球状黒鉛鋳
鉄を母材とした、複合体ライナーの比較3例、および6m
mの厚さの焼結炭化物層を有し、2.8%C−24%Cr−Ni−
Moを母材とした本発明品の実機使用をおこなった。各ラ
イナーの寿命を以下に示す。
[Examples] 1. Spheroidal graphite having a 2.6% C-26% Cr white cast iron, an alumina sintered plate, and a 10 mm thick sintered carbide particle layer as a shoot liner of a sinter ore conveyor line at an ironworks. Three comparison examples of composite liner using cast iron as base material, and 6m
2.8% C-24% Cr-Ni-
An actual product of the present invention using Mo as a base material was used. The life of each liner is shown below.

(1)2.6−26%Cr白鋳鉄ライナー 30日 (2)アルミナ焼結板ライナー 40日 (3)球状黒鉛母材焼結炭化物複合ライナー 150日 (4)本発明品 500日 以上のように高価な焼結炭化物量を従来技術(3)に
比べ半減させても炭化物粒子間母相の耐摩耗性の改善効
果が明瞭にあらわれている。
(1) 2.6-26% Cr white cast iron liner 30 days (2) Alumina sintered plate liner 40 days (3) Spheroidal graphite base material sintered carbide composite liner 150 days (4) Inventive product 500 days More expensive Even when the amount of the sintered carbide is reduced by half compared to the prior art (3), the effect of improving the wear resistance of the matrix between the carbide particles is clearly seen.

2.高炉のスキップカー用ライナーとして、5.5%C−22
%Cr−7%Mo−8%Ni−2%Wの組成を有する硬化肉盛
材、アルミナ焼結板2.6%C−27%Cr−Ni−Moを母材と
し8mmの厚さの焼結炭化物粒子層を有する本発明品を使
用した。各ライナーの寿命を以下に示す。
2. 5.5% C-22 as a liner for blast furnace skip cars
Hardening material having composition of 8% Cr-7% Mo-8% Ni-2% W, 8mm thick sintered carbide with alumina sintered plate 2.6% C-27% Cr-Ni-Mo as base material The product of the present invention having a particle layer was used. The life of each liner is shown below.

(1)硬化肉盛材 270日 (2)アルミナ焼結板 90日 (3)本発明品 720日以上 3.焼結鉱原料ドラムミキサー入口シュートライナーとし
て、3.0%C−26%Cr白鋳鉄と8mmの厚さの焼結炭化物粒
子層を有し2.7%C−25%Cr−Moを母材とした本発明品
を使用した。各ライナーの寿命を以下に示す。
(1) Hardened overlay material 270 days (2) Alumina sintered plate 90 days (3) Inventive product 720 days or more 3. As a chute liner at the inlet of the sintering raw material drum mixer, 3.0% C-26% Cr white cast iron The product of the present invention having a sintered carbide particle layer having a thickness of 8 mm and using 2.7% C-25% Cr-Mo as a base material was used. The life of each liner is shown below.

(1)3.0%C−26%Cr白鋳鉄 45日 (2)本発明品 650日以上 4.焼結鉱輸送ラインの側面ライナーとして、3.2%C−1
5%Cr−3%Mo白鋳鉄と8mmの厚さの焼結炭化物層を有し
2.8%C−25%Cr白鋳鉄を母材とした本発明品を使用し
た。各ライナーの寿命を以下に示す。
(1) 3.0% C-26% Cr white cast iron 45 days (2) The present invention product 650 days or more 4. 3.2% C-1 as a side liner for sinter transport line
5% Cr-3% Mo white cast iron and 8mm thick sintered carbide layer
The product of the present invention using 2.8% C-25% Cr white cast iron as a base material was used. The life of each liner is shown below.

(1)3.2%C−15%Cr−3%Mo白鋳鉄 90日 (2)本発明品 980日以上 [発明の効果] 本願発明の複合鋳造体は以上に述べたとおり、非衝撃
性又は低衝撃性の摩耗、特に硬質の粉粒体(鉱物、石
炭、コークス、砥粒、土砂など)によって表面への引掻
き、摺動、擦過を伴なうアブレージョン摩耗に対して抜
群の耐性を示現する。本来の超硬合金である焼結炭化物
合金の優れた耐摩耗性を保持しつつ、母材としては耐ア
ブレージョン摩耗材の代表である高クローム鋳鉄、特に
クローム含量を23%乃至35%のいわゆる27%Cr鋳鉄を選
んだから最高の耐性を長期に亘って保証する。しかもC
%,Cr%に加えてCr/Cの比率や、合金層の粒径,層厚で
支配される鋳込温度を総合的,機械的に限定したため、
鋳造品の鋳ぐるみ部は緻密一体化した焼結体として母体
に緊着し、容易に剥落することなく実施の四例で例示し
たとおり抜群の耐用年数を数えることができる。
(1) 3.2% C-15% Cr-3% Mo white cast iron 90 days (2) Inventive product 980 days or more [Effect of the Invention] As described above, the composite casting of the present invention is non-impact or low-impact. It exhibits excellent resistance to impact wear, especially abrasion wear accompanied by scratching, sliding and abrasion on the surface by hard particles (minerals, coal, coke, abrasive grains, earth and sand, etc.). While maintaining the excellent wear resistance of the cemented carbide alloy, which is the original cemented carbide, the base metal is a high chromium cast iron, which is a representative of abrasion-resistant wear materials, particularly, a so-called 27-35% chrome content of 23% to 35%. The choice of% Cr cast iron guarantees the highest durability over the long term. And C
% And Cr%, as well as the ratio of Cr / C and the casting temperature, which is governed by the grain size and thickness of the alloy layer, are comprehensively and mechanically limited.
The cast-in portion of the cast product adheres to the base as a densely integrated sintered body, and can have an outstanding service life as illustrated in the four examples without peeling off easily.

【図面の簡単な説明】[Brief description of the drawings]

第1図は従来技術の金属組織の顕微鏡写真。 FIG. 1 is a micrograph of a conventional metal structure.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】所望の形状を造型した鋳型内の所望の鋳型
表面の上へ焼結炭化物合金の破枠体,粒状体または圧縮
成形体の何れか又はその混合よりなる所望の厚さTcmな
る層状体を固定係止し、当該鋳型へ炭素含量が2.5%乃
至3.5%、クローム含量は23%乃至35%の範囲にあり、
かつクローム/炭素(Cr/C%)が5乃至12の倍率の範囲
にある高クローム鋳鉄を、自己の融点より120×(0.75
+T)℃乃至180×(1.50+T)℃高い温度範囲内で注
湯全量と前記層厚Tcmとを参酌して選択した注湯温度に
よって注湯することにより、前記層状体を貫通して鋳型
面まで完全に含浸して相互に咬持し合う摩耗面を緻密に
形成することを特徴とする耐アブレージョン複合鋳造体
の製造方法。
1. A desired thickness Tcm of any one of a broken body, a granular body, a compression molded body or a mixture thereof of a sintered carbide alloy on a desired mold surface in a mold having a desired shape. The layered body is fixedly locked, and the mold has a carbon content of 2.5% to 3.5%, a chromium content of 23% to 35%,
A high chromium cast iron having a chrome / carbon (Cr / C%) in a magnification range of 5 to 12 is heated to 120 × (0.75
+ T) ° C. to 180 × (1.50 + T) ° C. In a higher temperature range, pouring is performed at a pouring temperature selected in consideration of the total pouring amount and the layer thickness Tcm, so that the mold surface penetrates the layered body. A method for producing an abrasion-resistant composite casting, characterized in that the abrasion surfaces that are completely impregnated with each other and bite each other are densely formed.
JP62215815A 1987-08-28 1987-08-28 Method for producing abrasion resistant composite casting Expired - Lifetime JP2602029B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62215815A JP2602029B2 (en) 1987-08-28 1987-08-28 Method for producing abrasion resistant composite casting
AU21045/88A AU621550B2 (en) 1987-08-28 1988-08-17 Abrasion resistant composite casting and production method thereof
CA000575723A CA1339715C (en) 1987-08-28 1988-08-25 Abrasion resistant composite casting and production method thereof
KR1019880010860A KR890003476A (en) 1987-08-28 1988-08-26 Abrasion Resistant Composite Castings And Manufacturing Method Thereof
EP89101505A EP0380715A1 (en) 1987-08-28 1989-01-28 Abrasion resistant composite casting and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62215815A JP2602029B2 (en) 1987-08-28 1987-08-28 Method for producing abrasion resistant composite casting

Publications (2)

Publication Number Publication Date
JPS6457963A JPS6457963A (en) 1989-03-06
JP2602029B2 true JP2602029B2 (en) 1997-04-23

Family

ID=16678714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62215815A Expired - Lifetime JP2602029B2 (en) 1987-08-28 1987-08-28 Method for producing abrasion resistant composite casting

Country Status (5)

Country Link
EP (1) EP0380715A1 (en)
JP (1) JP2602029B2 (en)
KR (1) KR890003476A (en)
AU (1) AU621550B2 (en)
CA (1) CA1339715C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE522667C2 (en) * 2000-05-16 2004-02-24 Proengco Tooling Ab Process for the preparation of an iron-based chromium carbide containing dissolved tungsten and such an alloy
ES2212708B2 (en) * 2002-02-27 2005-04-01 Urbar Ingenieros, S.A. SUPPORT AND BEARING SYSTEM FOR FOUNDRY REMOVAL DRUM.

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB183063A (en) * 1900-01-01
US3941181A (en) * 1972-05-17 1976-03-02 Stoody Company Process for casting faced objects using centrifugal techniques
GB1582574A (en) * 1977-05-14 1981-01-14 Permanence Corp Method of forming a metal-metallic carbide composite
JPS59199165A (en) * 1983-04-27 1984-11-12 Koubukuro Kosakusho:Kk Joining method of chromium cast iron and sintered hard alloy
ZA844074B (en) * 1983-05-30 1986-04-30 Vickers Australia Ltd Abrasion resistant materials
US4635701A (en) * 1983-07-05 1987-01-13 Vida-Weld Pty. Limited Composite metal articles
AU562569B2 (en) * 1983-07-05 1987-06-11 Commonwealth Scientific And Industrial Research Organisation Composite metal articles
JPS60206557A (en) * 1984-03-30 1985-10-18 Koubukuro Kosakusho:Kk Joining method of cast iron and cermet
JPH0611096A (en) * 1992-06-19 1994-01-21 Nippon Steel Chem Co Ltd Heat insulating mold and manufacture thereof

Also Published As

Publication number Publication date
KR890003476A (en) 1989-04-15
CA1339715C (en) 1998-03-17
JPS6457963A (en) 1989-03-06
AU621550B2 (en) 1992-03-19
EP0380715A1 (en) 1990-08-08
AU2104588A (en) 1989-03-02

Similar Documents

Publication Publication Date Title
CN100519003C (en) Process for producing casting and seeping foreplate of rolling mill
US4101318A (en) Cemented carbide-steel composites for earthmoving and mining applications
EP0147422A1 (en) Tough, wear- and abrasion-resistant, high chromium hypereutectic white iron
JPS6011096B2 (en) Composite made of sintered charcoal alloy and cast iron
CN109454202B (en) Casting infiltration agent, wear-resistant steel casting and preparation method thereof
Xiao et al. HCWCI/carbon steel bimetal liner by liquid-liquid compound lost foam casting
CN106367661A (en) Preparation method for particle-reinforced iron-based surface composite material
JP5576287B2 (en) Cast cemented carbide components
CN101406950A (en) Method for preparing composite abrasion-proof lining board
CN112958774B (en) Surface composite ceramic iron-based material and preparation method thereof
Balogun et al. Effect of melting temperature on the wear characteristics of austenitic manganese steel
JP2602029B2 (en) Method for producing abrasion resistant composite casting
CN1327028C (en) Surface or local gradient reinforced wear resistant manganese steel composite material and preparing process
CN112404787B (en) High-boron surfacing flux-cored wire with double main wear-resistant phases and application method thereof
JP4491758B2 (en) Cylinder for molding machine
CN106591674A (en) Preparation method for high-strength high-toughness heat-resistant TiN steel-bonded hard alloy
CN100484754C (en) Double metal combined guiding and guarding board and its making process
US3450511A (en) Sintered carbide hard alloy
CN112962019B (en) High-wear-resistance steel-based composite material and preparation method thereof
JPH02250939A (en) Abrasion-resistant composite cast body and its manufacture
CN100487145C (en) Method for smelting metal-based nano composite material
KR20220122058A (en) Wear plate and wear ring for pumping car and making method thereof
CN112522621A (en) Composite wear-resistant metal block and preparation method thereof
JP2002275588A (en) Wear resistant and corrosion resistant alloy and cylinder for molding machine
CN115740361A (en) Preparation method of metal crusher guard plate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 11