JP2601890B2 - Hydraulic drive for civil and construction machinery - Google Patents

Hydraulic drive for civil and construction machinery

Info

Publication number
JP2601890B2
JP2601890B2 JP63276015A JP27601588A JP2601890B2 JP 2601890 B2 JP2601890 B2 JP 2601890B2 JP 63276015 A JP63276015 A JP 63276015A JP 27601588 A JP27601588 A JP 27601588A JP 2601890 B2 JP2601890 B2 JP 2601890B2
Authority
JP
Japan
Prior art keywords
pressure
valve
control
differential pressure
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63276015A
Other languages
Japanese (ja)
Other versions
JPH02125034A (en
Inventor
玄六 杉山
東一 平田
勇輔 梶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP63276015A priority Critical patent/JP2601890B2/en
Priority to EP89908279A priority patent/EP0379595B1/en
Priority to KR1019900700084A priority patent/KR940008638B1/en
Priority to DE89908279T priority patent/DE68909580T2/en
Priority to PCT/JP1989/000691 priority patent/WO1990000683A1/en
Priority to US07/449,845 priority patent/US5056312A/en
Publication of JPH02125034A publication Critical patent/JPH02125034A/en
Application granted granted Critical
Publication of JP2601890B2 publication Critical patent/JP2601890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/163Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for sharing the pump output equally amongst users or groups of users, e.g. using anti-saturation, pressure compensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/05Pressure after the pump outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2207/00External parameters
    • F04B2207/01Load in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • F15B2211/20553Type of pump variable capacity with pilot circuit, e.g. for controlling a swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • F15B2211/3053In combination with a pressure compensating valve
    • F15B2211/30535In combination with a pressure compensating valve the pressure compensating valve is arranged between pressure source and directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3111Neutral or centre positions the pump port being closed in the centre position, e.g. so-called closed centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50518Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves
    • F15B2211/50527Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves using cross-pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5153Pressure control characterised by the connections of the pressure control means in the circuit being connected to an output member and a directional control valve
    • F15B2211/5154Pressure control characterised by the connections of the pressure control means in the circuit being connected to an output member and a directional control valve being connected to multiple ports of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/55Pressure control for limiting a pressure up to a maximum pressure, e.g. by using a pressure relief valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/605Load sensing circuits
    • F15B2211/6051Load sensing circuits having valve means between output member and the load sensing circuit
    • F15B2211/6054Load sensing circuits having valve means between output member and the load sensing circuit using shuttle valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/65Methods of control of the load sensing pressure
    • F15B2211/651Methods of control of the load sensing pressure characterised by the way the load pressure is communicated to the load sensing circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6654Flow rate control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、主油圧ポンプの圧油を複数の分流補償弁を
介してこれらの分流補償弁に対応して設けられるアクチ
ユエータのそれぞれに分流して供給し、これらのアクチ
ユエータを複合駆動して所望の複合操作をおこなうこと
ができる土木・建設機械の油圧駆動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention divides pressure oil of a main hydraulic pump through a plurality of diverting compensation valves to respective actuators provided corresponding to these diverting valves. The present invention relates to a hydraulic drive device for a civil engineering / construction machine capable of performing a desired combined operation by combining and driving these actuators.

<従来の技術> 第10図は、この種の従来の土木・建設機械の油圧駆動
装置の一例として挙げた油圧シヨベルの油圧駆動装置を
示す回路図である。
<Prior Art> FIG. 10 is a circuit diagram showing a hydraulic shovel hydraulic drive device as an example of this type of conventional hydraulic drive device for civil engineering and construction machinery.

この第10図に示す油圧駆動装置は、原動機1と、この
原動機1によつて駆動する可変容量油圧ポンプすなわち
主油圧ポンプ2と、この主油圧ポンプ2から吐出される
圧油によつて駆動し、図示しない旋回体を旋回させる旋
回モータ3、及び図示しないブームを回動させるブーム
シリンダ4を含むアクチユエータとを備えている。
The hydraulic drive device shown in FIG. 10 is driven by a prime mover 1, a variable displacement hydraulic pump driven by the prime mover 1, that is, a main hydraulic pump 2, and a hydraulic oil discharged from the main hydraulic pump 2. A swing motor 3 for rotating a swing body (not shown), and an actuator including a boom cylinder 4 for rotating a boom (not shown).

また、主油圧ポンプ2から旋回モータ3に供給される
圧油の流れを制御する流量制御弁、すなわち旋回用方向
制御弁5と、この旋回用方向制御弁5の前後差圧を制御
する分流補償弁6と、主油圧ポンプ2からブームシリン
ダ4に供給される圧油の流れを制御する流量制御弁、す
なわちブーム用方向制御弁7と、このブーム用方向制御
弁7の前後差圧を制御する分流補償弁8とを備えてい
る。
Further, a flow control valve for controlling the flow of pressure oil supplied from the main hydraulic pump 2 to the swing motor 3, that is, a swing direction control valve 5, and a branch flow compensation for controlling a pressure difference between the front and rear of the swing direction control valve 5 A valve 6, a flow control valve for controlling the flow of the pressure oil supplied from the main hydraulic pump 2 to the boom cylinder 4, that is, a boom directional control valve 7, and a differential pressure between the front and rear of the boom directional control valve 7. And a shunt compensation valve 8.

分流補償弁6の一方の駆動部6aには、この分流補償弁
6の上流側の圧力と負荷圧とによる制御力Fa1が当該分
流補償弁6が開くように与えられ、他方の駆動部6bに
は、この分流補償弁6の下流側の圧力とシヤトル弁9、
10を介して導かれる回路の最大負荷圧とによる制御力Fa
2が、当該分流補償弁6が閉じるように与えられる。同
様に、分流補償弁8の一方の駆動部8aには、この分流補
償弁8の上流側の圧力と負荷圧とによる制御力Fb1が、
当該分流補償弁8が開くように与えられ、他方の駆動部
8bには、この分流補償弁8の下流側の圧力と回路の最大
負荷圧とによる制御力Fb2が当該分流補償弁8が閉じる
ように与えられる。
One of the driving portion 6a of the diverter compensation valve 6, control force Fa 1 by the pressure and the load pressure of the upstream side of the flow dividing compensation valve 6 is provided such that the shunt compensation valve 6 is opened, the other drive unit 6b , The pressure on the downstream side of the shunt compensation valve 6 and the shuttle valve 9,
The control force Fa due to the maximum load pressure of the circuit led through 10
2 is provided such that the shunt compensating valve 6 is closed. Similarly, a control force Fb 1 based on the pressure and the load pressure on the upstream side of the shunt compensation valve 8 is applied to one drive unit 8 a of the shunt compensation valve 8.
The shunt compensation valve 8 is provided so as to be opened, and the other drive unit is provided.
The 8b, the control force Fb 2 by the maximum load pressure of the pressure and the circuit downstream of the diverter compensating valve 8 is provided such that the shunt compensating valve 8 is closed.

なお、主油圧ポンプ2の押しのけ容積は、主油圧ポン
プ2の吐出圧と回路の最大負荷圧との差圧に応じて切換
えられる流量調整弁11によつて駆動する制御用アクチユ
エータ12によつて制御される。
The displacement of the main hydraulic pump 2 is controlled by a control actuator 12 driven by a flow regulating valve 11 which is switched according to the differential pressure between the discharge pressure of the main hydraulic pump 2 and the maximum load pressure of the circuit. Is done.

そして、アクチユエータの単独駆動時、例えば図示し
ない旋回体を作動させるため旋回モータ3を駆動しよう
として旋回用方向制御弁5を切換えた時には、主油圧ポ
ンプ2から吐出される圧油が分流補償弁6、旋回用方向
制御弁5を介して旋回モータ3に供給されるが、旋回モ
ータ3の負荷圧に変化を生じた場合にはその負荷圧が分
流補償弁6の一方の駆動部6aに導かれ、これによつて分
流補償弁6の絞り量が適宜調整され、したがつて旋回用
方向制御弁5の前後差圧が一定に保たれるように制御さ
れる。すなわち、分流補償弁6は圧力補償の機能を有し
ている。このことはブームシリンダ4に係る分流補償弁
8等においても同様である。
When the actuator is driven alone, for example, when the swing direction control valve 5 is switched to drive the swing motor 3 to operate a swing body (not shown), the pressure oil discharged from the main hydraulic pump 2 is supplied to the branching compensation valve 6. Is supplied to the turning motor 3 via the turning direction control valve 5. When a change occurs in the load pressure of the turning motor 3, the load pressure is guided to one drive unit 6 a of the shunt compensation valve 6. Thereby, the throttle amount of the branch flow compensating valve 6 is appropriately adjusted, and accordingly, the differential pressure across the turning direction control valve 5 is controlled to be kept constant. That is, the branch flow compensating valve 6 has a function of pressure compensation. This is the same in the diversion compensating valve 8 and the like related to the boom cylinder 4.

また、アクチユエータの複合駆動時、例えば駆動圧の
大きさの異なる旋回モータ3とブームシリンダ4の複合
駆動時において、旋回用方向制御弁5とブーム用方向制
御弁7との操作によつてこれらの旋回用方向制御弁5と
ブーム用方向制御弁7の要求流量、すなわち通過可能流
量の合計が主油圧ポンプ2の最大容積を越えようとする
とき、それぞれのアクチユエータの自己圧と回路の最大
負荷圧とによつて分流補償弁6、8の絞り量が調整さ
れ、旋回用方向制御弁5に導かれる流量とブーム用方向
制御弁7に導かれる流量とが一定の分流比に保たれ、し
かもこれらの流量の合計が主油圧ポンプ2の最大容量を
越えないように制御され、旋回用方向制御弁5とブーム
用方向制御弁7の前後差圧が同等に保たれ、主油圧ポン
プ2から吐出される圧油を分流して旋回モータ3及びブ
ームシリンダ4に供給でき、旋回とブーム上げ等の複合
操作を実現させることができる。
In addition, when the actuators are combinedly driven, for example, when the swing motor 3 and the boom cylinder 4 are combinedly driven with different driving pressures, these are operated by operating the swing direction control valve 5 and the boom direction control valve 7. When the required flow rates of the turning direction control valve 5 and the boom direction control valve 7, that is, the total flowable flow rate, exceed the maximum volume of the main hydraulic pump 2, the self-pressure of each actuator and the maximum load pressure of the circuit are set. As a result, the throttle amounts of the diversion compensating valves 6 and 8 are adjusted, and the flow rate guided to the turning direction control valve 5 and the flow rate guided to the boom direction control valve 7 are maintained at a constant flow ratio. Is controlled so as not to exceed the maximum capacity of the main hydraulic pump 2, the front-rear differential pressure between the turning directional control valve 5 and the boom directional control valve 7 is kept equal, and discharged from the main hydraulic pump 2. Pressure The shunt to be supplied to the swing motor 3 and the boom cylinder 4, it is possible to achieve combined operation such as turning the boom raising.

<発明が解決しようとする課題> この従来の土木・建設機械の油圧駆動装置において、
旋回モータ3とブームシリンダ4を駆動して、旋回とブ
ーム上げの複合操作をおこない、トラツク等に土砂を積
み込む作業をおこなうような場合、上述したように分流
補償弁6、8で圧力補償をおこなつているため、旋回モ
ータ3とブームシリンダ4には、旋回用方向制御弁5、
ブーム用方向制御弁7の開度比に従つて流量が分配され
る。すなわち、旋回用方向制御弁5、ブーム用方向制御
弁7のストロークを共に最大にした場合、そのときの最
大開度に応じた分配の割合が一義的に決められてしま
う。これにより、図示しない旋回体は分流して与えられ
る流量に応じて増速しようとするが、当該旋回体は慣性
が大きいので、旋回モータ3に供給される流量のほとん
どはリリーフ弁から逃げて有効エネルギとして活用され
ない。このとき主油圧ポンプ2から吐出される圧油の圧
力は、旋回体の加速圧力、及びリリーフ弁のセツテイン
グ圧力により決められる。このポンプ圧が仮に250Kg/cm
2になるとすると、ブーム上げに要する圧力はおよそ100
Kg/cm2程度であることから、差分の150Kg/cm2は分流補
償弁8で絞られ、熱に変えられてしまう。
<Problem to be Solved by the Invention> In this conventional hydraulic drive device for civil engineering and construction machinery,
When the swivel motor 3 and the boom cylinder 4 are driven to perform a combined operation of swiveling and boom raising, and work to load earth and sand on a truck or the like is performed, pressure compensation is performed by the diversion compensating valves 6 and 8 as described above. Because of this, the turning motor 3 and the boom cylinder 4 have a turning direction control valve 5,
The flow rate is distributed according to the opening ratio of the boom direction control valve 7. That is, when the strokes of the turning direction control valve 5 and the boom direction control valve 7 are both maximized, the distribution ratio according to the maximum opening at that time is uniquely determined. As a result, the revolving body (not shown) attempts to increase the speed according to the flow rate given by the divided flow. However, since the revolving body has a large inertia, most of the flow rate supplied to the revolving motor 3 escapes from the relief valve and is effective. Not used as energy. At this time, the pressure of the pressure oil discharged from the main hydraulic pump 2 is determined by the acceleration pressure of the swing body and the setting pressure of the relief valve. If this pump pressure is 250Kg / cm
Assuming it is 2 , the pressure required to raise the boom is about 100
Since it is about Kg / cm 2 , the difference of 150 Kg / cm 2 is throttled by the diversion compensation valve 8 and converted into heat.

したがつて、従来の油圧駆動装置にあつては、旋回と
ブーム上げの複合操作に際して、各アクチユエータに流
量が適切に分配されない状態を生じエネルギ損失が多大
となつて不経済である。また特に、ブームに供給される
流量も旋回に不必要に振り分けられることから、ブーム
の上昇量が規制され、すなわちブーム上げ動作に支障を
きたし、作業性が低下しやすい。
Therefore, in the case of the conventional hydraulic drive system, in the combined operation of turning and boom raising, the flow rate is not properly distributed to the actuators, resulting in large energy loss and uneconomical. In particular, since the flow rate supplied to the boom is also unnecessarily distributed to the turn, the amount of rise of the boom is restricted, that is, the boom raising operation is hindered, and the workability is likely to be reduced.

そして、上記したように各アクチユエータに分配され
る流量が作業内容に関係なく一義的に決められることに
よる不具合を生じる事態は、上述した旋回とブーム上げ
の複合操作に限らず、旋回しながら接地面に押圧力を与
えて掘削作業をおこなう旋回押付掘削作業、地面等を平
坦にならす整形作業等においても起こりうる。
As described above, the situation in which the flow rate distributed to each actuator is uniquely determined irrespective of the work content, causing a problem is not limited to the above-described combined operation of turning and boom raising. This can also occur in a swing pressing excavation operation in which a pressing force is applied to the excavator to perform an excavation operation, a shaping operation in which the ground or the like is flattened, and the like.

このようなことから、作業内容に応じた最適な分流比
に変更することが考えられるが、その場合従来にあつて
は、例えば上述の旋回とブーム上げの複合操作に際して
は、ブーム用方向制御弁7の最大開度を大きくするため
の加工と、旋回用方向制御弁5の最大開度を小さくする
ためのスプールストロークの制限をおこなわせる処理が
必要となる。
For this reason, it is conceivable to change to an optimum shunt ratio according to the work content. In this case, in the conventional case, for example, in the above-described combined operation of turning and boom raising, the boom directional control valve is used. Processing to increase the maximum opening of the spool 7 and processing to limit the spool stroke to reduce the maximum opening of the turning direction control valve 5 are required.

第11図、第12図は上述の旋回とブーム上げの複合操作
に際しての分流比に伴う特性を示す図である。このう
ち、第11図は縦軸にブーム用方向制御弁7の前後差圧P
1、すなわちポンプ圧とブームシリンダ4の負荷圧との
差圧をとつてあり、横軸にブーム用方向制御弁7を通過
可能な流量、すなわち供給流量Q1をとつてある。なお、
ΔPLSはポンプ圧と回路の最大負荷圧との差圧を示して
いる。特性線7Aは、ブーム用方向制御弁7の最大開度の
調整のおこなわれない通常時の特性を示すもので、比較
的小さい流量Q1Aをブーム用方向制御弁7に供給可能な
ことを示している。これに対して、ブーム用方向制御弁
7の最大開度が大きくなるように調整したものでは、特
性線7Bに示すように、流量Q1Aに比べて大きな流量Q1Bを
ブーム用方向制御弁7に供給可能となる。
FIG. 11 and FIG. 12 are diagrams showing characteristics associated with the flow division ratio in the above-described combined operation of turning and boom raising. 11, the vertical axis indicates the differential pressure P across the boom directional control valve 7.
1, that is, the differential pressure between the pump pressure and the load pressure of the boom cylinder 4, and the horizontal axis represents the flow rate that can pass through the boom directional control valve 7, that is, the supply flow rate Q1. In addition,
ΔP LS indicates the pressure difference between the pump pressure and the maximum load pressure of the circuit. A characteristic line 7A shows a characteristic in a normal state where the adjustment of the maximum opening of the boom directional control valve 7 is not performed, and indicates that a relatively small flow rate Q1A can be supplied to the boom directional control valve 7. I have. On the other hand, in the case where the maximum opening of the boom directional control valve 7 is adjusted to be large, the flow rate Q1B larger than the flow rate Q1A is supplied to the boom directional control valve 7 as shown by the characteristic line 7B. It becomes possible.

また、第12図は、縦軸に旋回用方向制御弁5の前後差
圧P2、すなわちポンプ圧と旋回モータ3の負荷圧との差
圧をとつてあり、横軸に旋回用方向制御弁5を通過可能
な流量、すなわち供給流量Q2をとつてある。特性線5A
は、旋回用方向制御弁2の最大開度の調整のおこなわれ
ない通常時の特性を示すもので、比較的大きい流量Q2A
を旋回用方向制御弁5に供給可能なことを示している。
これに対して、旋回用方向制御弁5のスプールストロー
ク等を制限する処理などにより最大開度が小さくなるよ
うに調整をおこなつたものでは、特性線5Bに示すよう
に、流量Q2Aに比べて小さな流量Q2Bを旋回用方向制御弁
5に供給可能である。
12, the vertical axis shows the differential pressure P2 before and after the turning direction control valve 5, that is, the differential pressure between the pump pressure and the load pressure of the turning motor 3, and the horizontal axis shows the turning direction control valve 5. , That is, the supply flow rate Q2. Characteristic line 5A
Indicates a normal characteristic in which the maximum opening of the turning direction control valve 2 is not adjusted, and the relatively large flow rate Q2A
Can be supplied to the turning direction control valve 5.
On the other hand, in the case where the maximum opening is adjusted to be small by a process such as limiting the spool stroke of the turning direction control valve 5 or the like, as shown by the characteristic line 5B, the flow rate is compared with the flow rate Q2A. A small flow rate Q2B can be supplied to the turning direction control valve 5.

上述のように、従来の油圧駆動装置にあつても、方向
制御弁5、7の最大開度の調整をおこなうことにより、
旋回とブーム上げの複合操作に際して、ブームシリンダ
4に供給される流量を比較的大きくし、旋回モータ3に
供給される流量を比較的小さくし、これによりエネルギ
損失の抑制、及び作業性の向上を一応実現させることが
できる。
As described above, even in the conventional hydraulic drive device, by adjusting the maximum opening of the direction control valves 5 and 7,
In the combined operation of turning and boom raising, the flow supplied to the boom cylinder 4 is made relatively large, and the flow supplied to the swing motor 3 is made relatively small, thereby suppressing energy loss and improving workability. It can be realized for the time being.

しかしながら、上述のようにして方向制御弁5、7等
の最大開度を調整することは、きわめて煩雑な作業であ
り、また、通常のブーム、アーム、バケツトの複合操作
による掘削作業と旋回、ブーム上げの複合操作による作
業等との間の作業変更に即時に対応できず、それ故、実
用上困難である。
However, adjusting the maximum opening of the directional control valves 5, 7 and the like as described above is an extremely complicated operation. In addition, the excavation operation, the turning operation, and the boom operation by the combined operation of the normal boom, arm, and bucket are performed. It is not possible to immediately cope with a work change between the work and the like by the combined operation of raising, and therefore it is practically difficult.

なお、例えば方向制御弁の最大開度を小さくするため
に、スプールストロークを制限する処理をおこなつた場
合には、第13図の特性図、すなわち方向制御弁の操作レ
バーストロークと、当該方向制御弁を通過可能な流量と
の関係を示す特性線5Cから明らかなように、スプールス
トロークを制限する処理をおこなわない通常時のメータ
リング域S1Cに比べて、スプールストロークを制限する
処理をおこなつた場合にはメータリング域S2Cが小さく
なり、それ故、アクチユエータの作動速度を変化させる
ことのできる操作レバーの操作領域が狭くなり、オペレ
ータにとつては操作がしずらくなる事態を招く。
In the case where a process for limiting the spool stroke is performed, for example, to reduce the maximum opening of the directional control valve, the characteristic diagram of FIG. 13, that is, the operation lever stroke of the directional control valve and the directional control valve As is clear from the characteristic line 5C showing the relationship with the flow rate that can pass through the valve, compared with the normal metering area S1C where the processing for limiting the spool stroke is not performed, the processing for limiting the spool stroke was performed. In this case, the metering area S2C becomes small, and therefore, the operation area of the operation lever in which the operation speed of the actuator can be changed becomes narrow, and it becomes difficult for the operator to perform the operation.

本発明は、上記した従来技術における実情に鑑みてな
されたもので、その目的は、複合操作に際し、各アクチ
ユエータに、作業内容に応じた最適な流量を容易に分配
することのできる土木・建設機械の油圧駆動装置を提供
することにある。
The present invention has been made in view of the above-described circumstances in the related art, and has an object to provide a civil engineering / construction machine capable of easily distributing an optimum flow rate to each actuator according to the work content in a combined operation. Another object of the present invention is to provide a hydraulic drive device.

<課題を解決するための手段> この目的を達成するために本発明は、主油圧ポンプ
と、この主油圧ポンプから供給される圧油によつて駆動
する複数のアクチユエータと、これらのアクチユエータ
に供給される圧油の流れを制御する流量制御弁と、これ
らの流量制御弁の前後差圧をそれぞれ制御する分流補償
弁とを備え、主油圧ポンプの圧油を分流補償弁、流量制
御弁のそれぞれを介してアクチユエータのそれぞれに供
給し、これらのアクチユエータの複合駆動が可能な土木
・建設機械の油圧駆動装置において、主油圧ポンプから
吐出される圧油の圧力と、アクチユエータの負荷圧のう
ちの最大負荷圧との差圧を、アクチユエータの作動を介
しておこなわれる作業の種類に応じて補正する差圧補正
手段と、この差圧補正手段で補正された差圧に応じた制
御力を分流補償弁の駆動部のそれぞれに与える制御力付
加手段とを備えた構成にしてある。
<Means for Solving the Problems> In order to achieve this object, the present invention provides a main hydraulic pump, a plurality of actuators driven by pressure oil supplied from the main hydraulic pump, and a supply to these actuators. A flow control valve for controlling the flow of the pressurized oil to be supplied, and a shunt compensation valve for controlling the differential pressure before and after the flow control valve, respectively. In the hydraulic drive system for civil engineering and construction machinery, which is capable of combined driving of these actuators, the pressure of the hydraulic oil discharged from the main hydraulic pump and the maximum of the load pressure of the actuator Differential pressure correction means for correcting the differential pressure from the load pressure according to the type of work performed through the operation of the actuator, and the differential pressure corrected by the differential pressure correction means. Control force applying means for applying a corresponding control force to each of the drive units of the branching compensation valve.

<作用> 本発明の土木・建設機械の油圧駆動装置は、以上のよ
うに差圧補正手段により得られた補正差圧に応じた制御
力が制御力付加手段によつて分流補償弁の駆動部に与え
られるので、主油圧ポンプから吐出される圧油の圧力
と、アクチユエータの負荷圧のうちの最大負荷圧との差
圧に応じた通常時の制御力に比べて、作業の種類に相応
する大きな制御力、あるいは小さな制御力を分流補償弁
のそれぞれの駆動部に強制的に与えられることができ、
これにより対応する流量制御弁のそれぞれに、通常時よ
り大きな流量あるいは小さな流量を供給でき、したがつ
て、複合操作に際して、各アクチユエータに作業内容に
応じた最適な流量を、流量制御弁の最大開度の調整を要
とすることなく容易に分配することができる。
<Operation> In the hydraulic drive device for civil engineering and construction machinery according to the present invention, the control force according to the corrected differential pressure obtained by the differential pressure correction means as described above is controlled by the control force adding means to drive the shunt compensation valve. The control pressure at the time of normal operation according to the differential pressure between the pressure of the hydraulic oil discharged from the main hydraulic pump and the maximum load pressure of the load pressure of the actuator. A large control force or a small control force can be forcibly applied to each drive unit of the shunt compensation valve,
As a result, a flow rate larger or smaller than usual can be supplied to each of the corresponding flow control valves, so that in a combined operation, each actuator is provided with an optimum flow rate according to the work content, and the maximum flow rate of the flow control valve is increased. It can be easily distributed without the need to adjust the degree.

<実施例> 以下、本発明の土木・建設機械の油圧駆動装置を図に
基づいて説明する。
<Example> Hereinafter, a hydraulic drive device of a civil engineering / construction machine according to the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の概略構成を示す回路図で
ある。
FIG. 1 is a circuit diagram showing a schematic configuration of one embodiment of the present invention.

この第1の実施例は、例えば油圧シヨベルに備えられ
るもので、可変容量油圧ポンプからなる主油圧ポンプ20
と、この主油圧ポンプ20から供給される圧油によつて駆
動し、図示しない旋回体を作動させる旋回モータ21、図
示しないブームを作動させるブームシリンダ22等の複数
のアクチユエータと、旋回モータ21に供給される圧油の
流れを制御する流量制御弁、すなわち旋回用方向制御弁
23と、ブームシリンダ22に供給される圧油の流れを制御
する流量制御弁、すなわちブーム用方向制御弁24と、旋
回用方向制御弁23の前後差圧を制御する分流補償弁25
と、ブーム用方向制御弁24の前後差圧を制御する分流補
償弁26と、アクチユエータの負荷圧のうちの最大負荷圧
を検出するシヤトル弁27とを備えており、これらのもの
は、例えば前述した第10図に示すものと同等の構成であ
る。
The first embodiment is provided, for example, in a hydraulic shovel, and includes a main hydraulic pump 20 composed of a variable displacement hydraulic pump.
And a plurality of actuators such as a swivel motor 21 driven by pressure oil supplied from the main hydraulic pump 20 to operate a swivel body (not shown), a boom cylinder 22 to operate a boom (not shown), and a swivel motor 21. A flow control valve for controlling the flow of the supplied pressure oil, that is, a directional control valve for turning.
23, a flow control valve for controlling the flow of pressurized oil supplied to the boom cylinder 22, i.e., a boom directional control valve 24, and a diverting compensation valve 25 for controlling a differential pressure across the turning directional control valve 23.
A diversion compensating valve 26 for controlling the differential pressure across the boom directional control valve 24, and a shuttle valve 27 for detecting the maximum load pressure among the load pressures of the actuators. The configuration is the same as that shown in FIG.

そして、この実施例は、旋回モータ21、ブームシリン
ダ22等のアクチユエータの作動を介しておこなわれる作
業の種類に応じて、主油圧ポンプ20から吐出される圧油
の圧力と、上述の最大負荷圧との差圧ΔPLSを補正する
差圧補正手段28を備えており、さらに、この差圧補正手
段28で補正された差圧に応じて制御力を分流補償弁25、
26の駆動部のそれぞれに与える制御力付加手段29とを備
えている。
In this embodiment, the pressure of the hydraulic oil discharged from the main hydraulic pump 20 and the above-described maximum load pressure vary depending on the type of work performed through the operation of the actuators such as the swing motor 21 and the boom cylinder 22. includes a differential pressure correction means 28 for correcting the differential pressure [Delta] P LS with further the pressure difference correction means 28 shunt compensating valve 25 a control force according to the corrected differential pressure,
Control force applying means 29 to be applied to each of the 26 drive units is provided.

上述した差圧補正手段28は、主油圧ポンプ20の吐出管
路30とシヤトル弁27に連絡される管路との双方に連絡さ
れ、ポンプ圧と最大負荷圧との差圧ΔPLSを検出し、信
号を出力する差圧検出装置31と、旋回モータ21及びブー
ムシリンダ22等のアクチユエータの作動を介しておこな
われる通常掘削作業、特別に作業能率を重視しておこな
われる特別掘削作業、旋回押付掘削作業、整形作業等の
作業の種類に対応する選択信号を出力する選択装置32
と、入力部33、出力部34、記憶部35、及び差圧検出装置
31から出力される信号と選択装置32から出力される選択
信号に基づいて補正差圧を求める演算をおこなう演算部
36を有するコントローラ37を含む構成にしてある。
The above-mentioned differential pressure correcting means 28 is connected to both the discharge line 30 of the main hydraulic pump 20 and the line connected to the shuttle valve 27, and detects the differential pressure ΔP LS between the pump pressure and the maximum load pressure. Digging work performed through the operation of actuators such as the differential pressure detecting device 31 that outputs a signal and the swing motor 21 and the boom cylinder 22; special digging work that is performed with special emphasis on work efficiency; Selection device 32 that outputs a selection signal corresponding to the type of work such as work, shaping work, etc.
And the input unit 33, the output unit 34, the storage unit 35, and the differential pressure detection device
A calculation unit for calculating a corrected differential pressure based on the signal output from the selection device 31 and the selection signal output from the selection device 32
It is configured to include a controller 37 having 36.

また、上述した制御力付加手段29は、上述したコント
ローラ37、すなわち、あらかじめ定められる補正差圧と
制御力との関数関係を記憶する記憶部35、及び補正差圧
に応じた制御力を求める演算をおこなう演算部36を含む
コントローラ37と、このコントローラ37の出力部34から
出力される制御力信号に応じて分流補償弁25、26の駆動
部に与えられる制御圧力を発生させる制御圧力発生手段
38とを含む構成にしてある。
In addition, the above-described control force adding means 29 includes the above-described controller 37, that is, a storage unit 35 for storing a functional relationship between a predetermined corrected differential pressure and a control force, and an operation for obtaining a control force according to the corrected differential pressure. And a control pressure generating means for generating a control pressure applied to the drive units of the shunt compensation valves 25 and 26 in accordance with a control force signal output from an output unit 34 of the controller 37.
38 is included.

上述した制御圧力発生手段38は、例えばパイロツトポ
ンプ39と、このパイロツトポンプ39と分流補償弁25、26
の駆動部との間に配置され、かつ、分流補償弁25、26の
それぞれに対応して設けられ、コントローラ37の出力部
34から出力される制御力信号に応じて作動する電磁弁4
1、42を含む構成にしてある。
The above-described control pressure generating means 38 includes, for example, a pilot pump 39, and the pilot pump 39 and the branch flow compensating valves 25 and 26.
The output unit of the controller 37 is provided between the
Solenoid valve 4 that operates according to the control force signal output from 34
It is configured to include 1, 42.

なお、分流補償弁25、26のそれぞれの一方の駆動部25
a、26aには、そぞれの負荷圧と制御圧力とによる制御力
が、これらの分流補償弁25、26を開くように与えられ、
また、それぞれの駆動部25b、26bには、これらの分流補
償弁25、26の下流圧による制御力が、当該分流補償弁2
5、26を閉じるように与えられる。また、主油圧ポンプ2
0の押しのけ容積は、ポンプ圧と最大負荷圧との差圧ΔP
LSに応動する流量制御手段43により制御されるようにし
てある。
Note that one drive unit 25 of each of the branch flow compensating valves 25 and 26 is provided.
a, 26a, the control force by the respective load pressure and control pressure is given to open these shunt compensation valves 25, 26,
In addition, a control force due to the downstream pressure of these shunt compensation valves 25 and 26 is applied to the respective drive units 25b and 26b.
Given to close 5, 26. Also, the main hydraulic pump 2
The displacement of 0 is the differential pressure ΔP between the pump pressure and the maximum load pressure.
The flow rate is controlled by flow rate control means 43 corresponding to LS .

また、上述した選択装置32から出力される選択信号の
値は、該当する作業を実行するに必要なアクチユエータ
に対応してあらかじめ決められるもので、例えば旋回と
ブーム上げの複合操作による土砂積込作業が選択される
場合には、ブーム側である分流補償弁26に係る補正差圧
を得るための補正係数α(>1)と旋回側である分流補
償弁25に係る補正差圧を得るための補正係数β(<1)
との組合せであり、これらの値α、βを有する選択信号
がコントローラ37の入力部33に出力される。
The value of the selection signal output from the above-described selection device 32 is predetermined in accordance with the actuator required to execute the corresponding operation, and is, for example, a sediment loading operation by a combined operation of turning and boom raising. Is selected, a correction coefficient α (> 1) for obtaining a corrected differential pressure related to the boom-side divided flow compensating valve 26 and a corrected coefficient α for obtaining the corrected differential pressure related to the swivel-side divided flow compensating valve 25 are obtained. Correction coefficient β (<1)
The selection signal having these values α and β is output to the input unit 33 of the controller 37.

また、コントローラ37の記憶部35には、上述のように
作業の種類に対応した補正差圧と制御力との関数関係が
あらかじめ記憶されるが、例えば上記した旋回とブーム
上げの複合操作による土砂積込作業に対しては、第3図
の分流補償弁26に係る特性線44と分流補償弁25に係る特
性線45との組合せが記憶される。なお、特性線46は、例
えば通常掘削作業に対応する特性線、すなわち、分流補
償弁25、26の強制的な駆動制御がおこなわれない通常時
における差圧ΔPLSと制御力Fとの関数関係を示すもの
である。また、特性線44は差圧ΔPLSよりも大きい補正
差圧α・ΔPLS(α>1)と制御力Fとの関係を示し、
特性線45は差圧ΔPLSよりも小さい補正差圧β・ΔP
LS(β<1)と制御力Fとの関係を示す。
Further, in the storage unit 35 of the controller 37, the functional relationship between the corrected differential pressure and the control force corresponding to the type of work is stored in advance as described above. For the loading operation, a combination of a characteristic line 44 related to the shunt compensation valve 26 and a characteristic line 45 related to the shunt compensation valve 25 in FIG. 3 is stored. The characteristic line 46 is, for example, a characteristic line corresponding to a normal excavation operation, that is, a functional relationship between the differential pressure ΔP LS and the control force F at the normal time when the forcible drive control of the branch flow compensating valves 25 and 26 is not performed. It shows. Further, a characteristic line 44 shows a relationship between the correction pressure difference α · ΔP LS (α> 1) larger than the pressure difference ΔP LS and the control force F,
The characteristic line 45 is a corrected differential pressure β · ΔP smaller than the differential pressure ΔP LS.
The relationship between LS (β <1) and the control force F is shown.

このように構成した第1の実施例にあつて、例えば旋
回とブーム上げの複合操作による土砂積込作業を意図し
て、オペレータが選択装置32によつて土砂積込作業を選
択したとすると、第2図の手順S1で示すように、値α
(>1)、β(<1)を有する選択信号32と、差圧検出
装置31で検出された値ΔPLSを有する信号とがコントロ
ーラ37の入力部33を介して演算部36に読み込まれる。次
いで手順S2に示すように、演算部36で補正差圧を求める
演算、すなわちα×ΔPLS、及びβ×ΔPLSがおこなわれ
る。次いで手順S3に移り、演算部36に記憶部35に記憶さ
れる土砂積込作業に係る第3図の関係が読込まれ、α・
ΔPLSに対応する制御力F1とβ・ΔPLSに対応する制御力
F2とが求められる。次いで手順S4に移り、上記した制御
力F1に相当する制御力信号が第1図に示す電磁弁42に出
力され、上記した制御力F2に相当する制御力信号が電磁
弁41に出力される。
In the first embodiment having such a configuration, for example, if the operator selects the sediment loading operation by the selecting device 32 with the intention of performing the sediment loading operation by a combined operation of turning and boom raising, As shown in step S1 of FIG.
(> 1), the selection signal 32 having a beta (<1), and a signal having the detected value [Delta] P LS in differential pressure detector 31 are read into the arithmetic unit 36 via the input unit 33 of the controller 37. Next, as shown in step S2, the calculation unit 36 calculates the corrected differential pressure, that is, α × ΔP LS and β × ΔP LS . Next, the procedure proceeds to step S3, where the relation of FIG. 3 relating to the earth and sand loading operation stored in the storage unit 35 is read into the arithmetic unit 36, and α ·
Control force F1 corresponding to ΔP LS and control force corresponding to β · ΔP LS
F2 is required. Next, the procedure proceeds to step S4, where a control force signal corresponding to the above-described control force F1 is output to the solenoid valve 42 shown in FIG. 1, and a control force signal corresponding to the above-described control force F2 is output to the solenoid valve 41.

これにより、電磁弁42は差圧ΔPLSに基づく制御力F0
(第3図に例示)に相当する制御力信号で制御される場
合に比べて、その開口量が大きくなるように制御され、
一方、電磁弁41はその開口量が小さくなるように制御さ
れる。そして、これらの電磁弁42、41の作動に伴つてパ
イロツトポンプ39から吐出されるパイロツト圧が、電磁
弁42を介して分流補償弁26の一方の駆動部26aに制御力F
1に相当する制御圧力として導かれ、また電磁弁41を介
して分流補償弁25の一方の駆動部25aに制御力F2に相当
する制御圧力として導かれ、これらの分流補償弁26、25
が駆動する。この場合、分流補償弁26の一方の駆動部26
aには通常時の制御力F0よりも大きい制御力F1が与えら
れことから、その絞り量が強制的に小さくなるように制
御され、したがつてブーム用方向制御弁24には通常時よ
りも大きな流量が供給され、また、分流補償弁25の一方
の駆動部25aには通常時の制御力F0よりも小さい制御力F
2が与えられることからその絞り量が強制的に大きくな
るように制御され、したがつて旋回用方向制御弁23には
通常時よりも小さな流量が供給される。第4図及び第5
図は、このときの特性を示すもので、第4図はブーム用
方向制御弁24の前後差圧P1と供給流量Q1の関係を示し、
第5図は旋回用方向制御弁23の前後差圧P2と供給流量Q2
の関係を示している。ブーム用方向制御弁24側では、通
常時すなわち差圧ΔPLSによる制御の場合には、第4図
の特性線47Aに示すように比較的小さい流量Q1Aであつた
ものを、この土砂積込作業に際しては、補正差圧α・Δ
PLSに応じて第4図の特性線47Bで示すように流量Q1Aよ
りも大きい流量Q1Bを供給でき、また、旋回用方向制御
弁23側では、通常時である差圧ΔPLSによる制御の場合
は第5図の特性線48Aに示すように比較的大きい流量Q2A
であつたものを、この土砂積込作業に際しては補正差圧
α・ΔPLSに応じて第5図の特性線48Bで示すように流量
Q2Aよりも小さい流量Q2Bを供給できる。
As a result, the solenoid valve 42 controls the control force F0 based on the differential pressure ΔP LS.
The opening amount is controlled to be larger than when controlled by a control force signal corresponding to (illustrated in FIG. 3),
On the other hand, the solenoid valve 41 is controlled so that the opening amount becomes small. The pilot pressure discharged from the pilot pump 39 in accordance with the operation of these solenoid valves 42 and 41 causes the control force F to be applied to one drive unit 26a of the shunt compensation valve 26 via the solenoid valve 42.
1, and is guided to one drive unit 25a of the shunt compensation valve 25 via the electromagnetic valve 41 as a control pressure corresponding to the control force F2.
Drives. In this case, one drive unit 26 of the shunt compensation valve 26
Since a control force F1 larger than the normal control force F0 is given to a, the throttle amount is controlled so as to be forcibly reduced, and accordingly, the boom directional control valve 24 has a lower than normal control force. A large flow rate is supplied, and a control force F smaller than the normal control force F0 is applied to one drive unit 25a of the branch flow compensation valve 25.
Since 2 is given, the throttle amount is controlled so as to be forcibly increased, so that a smaller flow rate than usual is supplied to the turning direction control valve 23. FIG. 4 and FIG.
FIG. 4 shows the characteristic at this time. FIG. 4 shows the relationship between the pressure difference P1 between the front and rear of the boom directional control valve 24 and the supply flow rate Q1,
FIG. 5 shows the differential pressure P2 across the turning direction control valve 23 and the supply flow rate Q2.
Shows the relationship. At the boom directional control valve 24 side, during normal operation, that is, in the case of control by the differential pressure ΔP LS , the relatively small flow rate Q1A as shown by the characteristic line 47A in FIG. At this time, the corrected differential pressure α
P can LS supplying large flow rate Q1B than the flow rate Q1A as shown in the fourth diagram of characteristic lines 47B in accordance with, and in the turning direction control valve 23 side, when the control of the differential pressure [Delta] P LS is normal Is a relatively large flow rate Q2A as shown by the characteristic line 48A in FIG.
In the sediment loading work, the flow rate was changed as shown by the characteristic line 48B in FIG. 5 according to the corrected differential pressure α · ΔP LS .
A flow rate Q2B smaller than Q2A can be supplied.

すなわち、土砂積込作業時は、通常の制御時に比べて
ブームシリンダ22に比較的大きな流量を供給でき、旋回
モータ21に比較的小さな流量を供給でき、つまり、ブー
ムシリンダ22、旋回モータ21にこの土砂積込作業に応じ
た最適な流量を分配でき、これによつて、旋回モータ21
側においてリリーフする流量を少なくし、またブーム側
の分流補償弁26の絞り量を小さくしてこの分流補償弁26
を通過する圧油のエネルギが熱にかえられることを抑制
でき、これらによりエネルギ損失を押さえることができ
る。また、ブーム側に比較的大きな流量を供給できるの
でブームの上昇量を十分に確保でき、優れた作業性を有
する。
That is, during the sediment loading operation, a relatively large flow rate can be supplied to the boom cylinder 22 and a relatively small flow rate can be supplied to the swing motor 21 as compared with the normal control, that is, the boom cylinder 22 and the swing motor 21 The optimum flow rate can be distributed according to the sediment loading operation.
The flow to be relieved on the boom side is reduced, and the throttle amount of the boom-side diversion compensating valve 26 is reduced so that the diversion compensating valve 26
Can be suppressed from being converted into heat by the energy of the pressure oil passing therethrough, whereby the energy loss can be suppressed. In addition, since a relatively large flow rate can be supplied to the boom side, the amount of rise of the boom can be sufficiently secured, and excellent workability is provided.

しかも、この第1の実施例にあつては、上述のような
エネルギ損失の抑制と作業性の向上を図りうる旋回とブ
ーム上げ操作、すなわち土砂積込作業等を、ブーム用方
向制御弁24、旋回用方向制御弁23のスプールストローク
の煩雑な調整作業を要さず、単に選択装置32の操作のみ
で実現でき、作業内容の変更に対して追従性に優れてい
る。
In addition, in the first embodiment, the turning and boom raising operation, that is, the sediment loading operation or the like, which can suppress the energy loss and improve the workability as described above, is performed by using the boom directional control valve 24, A complicated operation of adjusting the spool stroke of the turning direction control valve 23 is not required, and the operation can be realized only by operating the selection device 32, so that it is excellent in following up a change in the operation content.

第6図は本発明の第2の実施例の概略構成を示す回路
図である。この第2の実施例も油圧シヨベルに備えられ
るもので、アクチユエータとしてアームシリンダ49とバ
ケツトシリンダ50とを備えており、また、これらのアー
ムシリンダ49、バケツトシリンダ50に供給される圧油の
流れを制御する流量制御弁、すなわちアーム用方向制御
弁51、バケツト用方向制御弁52と、これらのアーム用方
向制御弁51、バケツト用方向制御弁52の前後差圧を制御
する分流補償弁53、54を備えている。その他の基本的な
構成は第1図に示す第1の実施例と例えば同等に設定し
てある。
FIG. 6 is a circuit diagram showing a schematic configuration of the second embodiment of the present invention. The second embodiment is also provided in a hydraulic shovel, and includes an arm cylinder 49 and a bucket cylinder 50 as actuators. The hydraulic cylinder supplied with pressure to the arm cylinder 49 and the bucket cylinder 50 is also provided. A flow control valve for controlling the flow, that is, a direction control valve 51 for the arm and a direction control valve 52 for the bucket, and a branch flow compensation valve 53 for controlling the pressure difference between the front and rear of the direction control valve 51 for the arm and the direction control valve 52 for the bucket. , 54. Other basic configurations are set, for example, to be equal to those of the first embodiment shown in FIG.

なお、選択装置32は、例えば通常の掘削作業に比べて
作業能率の向上を特別に意図した掘削作業、すなわち特
別掘削作業が選択される場合には、アーム側である分流
補償弁53に係る補正差圧を得るための補正係数α(<
1)と、バケツト側である分流補償弁54に係る補正差圧
を得るための補正係数β(>1)の組合せからなる選択
信号をコントローラ37の入力部33に出力し、また例え
ば、地面等を平坦にならす整形作業が選択される場合に
は、アーム側である分流補償弁53に係る補正差圧を得る
ための補正係数α(>1)と、バケツト側である分流補
償弁54に係る補正差圧を得るための補正係数β(<1)
の組合せからなる選択信号をコントローラ37の入力部33
に出力するようになつており、また、コントローラ37の
記憶部35には、これらの特別掘削作業、整形作業に対応
する前述した第3図に例示したような補正差圧と制御力
の関係と同様の関数関係があらかじめ記憶される。
Note that the selection device 32 is, for example, a digging operation specifically intended to improve work efficiency as compared with a normal digging operation, that is, when the special digging operation is selected, the correction related to the shunt compensation valve 53 on the arm side. The correction coefficient α (<
A selection signal composed of a combination of 1) and a correction coefficient β (> 1) for obtaining a corrected differential pressure related to the shunt compensating valve 54 on the bucket side is output to the input unit 33 of the controller 37. Is selected, a correction coefficient α (> 1) for obtaining a corrected differential pressure related to the shunt compensation valve 53 on the arm side and a shunt compensation valve 54 on the bucket side are selected. Correction coefficient β for obtaining the corrected differential pressure (<1)
Is input to the input unit 33 of the controller 37.
The storage unit 35 of the controller 37 stores the relationship between the corrected differential pressure and the control force as illustrated in FIG. 3 corresponding to these special excavation work and shaping work. Similar functional relationships are stored in advance.

このように構成した第2の実施例にあつては、選択装
置32で、特別掘削作業が選択された場合には、コントロ
ーラ37の演算部36で求められるアーム側の補正差圧α・
ΔPLS(α<1)は通常時の差圧ΔPLSよりも小さく、バ
ケツト側の補正差圧β・ΔPLS(β>1)は通常時の差
圧ΔPLSよりも大きいことから、アーム側の分流補償弁5
3の一方の駆動部53aに与えられる制御力は通常時の制御
力よりも小さくなり、したがつて、その絞り量が大きく
なつてアーム用方向制御弁51に供給される流量は比較的
小さくなり、また、バケツト側の分流補償弁54の一方の
駆動部54aに与えられる制御力は通常時の制御力よりも
大きくなり、したがつてその絞り量が小さくなつてバケ
ツト用方向制御弁52に供給される流量は比較的大きくな
り、アームとバケツトの複合操作に際して、アームシリ
ンダ49の作動速度を比較的遅くし、バケツトシリンダ50
の作動速度を比較的速くして通常の掘削よりも作業能率
の点では良いと考えられる特別掘削作業を実現できる。
In the second embodiment configured as described above, when the special excavation work is selected by the selection device 32, the arm-side corrected differential pressure α · calculated by the calculation unit 36 of the controller 37 is used.
Since ΔP LS (α <1) is smaller than the normal differential pressure ΔP LS and the bucket-side corrected differential pressure β · ΔP LS (β> 1) is larger than the normal differential pressure ΔP LS , the arm side Shunt compensation valve 5
The control force applied to one of the drive units 53a becomes smaller than the control force at the time of normal operation.Thus, as the throttle amount increases, the flow rate supplied to the arm direction control valve 51 becomes relatively small. Also, the control force applied to one driving portion 54a of the bucket-side branch flow compensating valve 54 is larger than the normal control force, so that the throttle amount is reduced and supplied to the bucket direction control valve 52. The operating flow of the arm cylinder 49 is relatively slowed down during the combined operation of the arm and the bucket,
By making the operating speed of the drilling relatively high, it is possible to realize a special drilling operation which is considered to be better in terms of work efficiency than ordinary drilling.

また、選択装置32で、整形作業が選択された場合に
は、コントローラ37の演算部36で求められるアーム側の
補正差圧α・ΔPLS(α>1)は通常時の差圧ΔPLSより
も大きく、バケツト側の補正差圧β・ΔPLS(β<1)
は通常時の差圧ΔPLSよりも小さいことから、上述した
特別掘削作業の場合と逆に、アーム側の分流補償弁53の
一方の駆動部53aに与えられる制御力は比較的大きく、
バケツト側の分流補償弁54の一方の駆動部54aに与えら
れる制御力は比較的小さく、したがつて、アーム用方向
制御弁51を介してアームシリンダ49に供給される流量が
比較的大きく、またバケツト用方向制御弁52を介してバ
ケツトシリンダ50に供給される流量が比較的小さく、こ
れによりアーム速度を速くする一方バケツト速度を遅く
して、作業能率の良い地ならし、すなわち整形作業を実
現できる。
Further, when the shaping operation is selected by the selecting device 32, the arm-side corrected differential pressure α · ΔP LS (α> 1) obtained by the arithmetic unit 36 of the controller 37 is larger than the normal differential pressure ΔP LS . Is large, and the bucket-side corrected differential pressure β · ΔP LS (β <1)
Is smaller than the normal differential pressure ΔP LS , the control force applied to one drive unit 53a of the arm-side shunt compensation valve 53 is relatively large, contrary to the case of the special excavation work described above.
The control force applied to one drive portion 54a of the bucket side diverting compensation valve 54 is relatively small, so that the flow rate supplied to the arm cylinder 49 via the arm direction control valve 51 is relatively large, and The flow rate supplied to the bucket cylinder 50 via the bucket directional control valve 52 is relatively small, so that the arm speed can be increased while the bucket speed is reduced, so that the work efficiency can be improved, that is, shaping work can be realized. .

この第2の実施例にあつても、作業の種類に応じた最
適な流量をブームシリンダ49とバケツトシリンダ50に供
給でき、また、これらの複合操作を選択装置32の操作の
みによつて容易におこなうことができ、作業内容の変更
に対する追従性に優れている。
Also in the second embodiment, an optimum flow rate according to the type of work can be supplied to the boom cylinder 49 and the bucket cylinder 50, and these combined operations can be easily performed only by operating the selection device 32. And has excellent follow-up performance to changes in work content.

第7図は本発明の第3の実施例の概略構成を示す回路
図である。この第3の実施例にあつては、差圧補正手段
28が、選択装置32と、この選択装置32から出力される信
号に応じて制御信号を出力するコントローラ37とを含
み、制御力付加手段29を構成する制御圧力発生手段38
が、ポンプ圧と最大負荷圧との差圧ΔPLSと、コントロ
ーラ37から出力される制御信号の双方に応動するように
構成してある。すなわち、制御圧力発生手段38を構成す
る電磁弁41は、差圧ΔPLSとコントローラ37からの制御
信号によつて作動するようになつており、前述した第1
図に示す第1の実施例におけるような差圧検出装置を除
いた構成にしてある。その他の構成は、例えば第1の実
施例と同等である。
FIG. 7 is a circuit diagram showing a schematic configuration of the third embodiment of the present invention. In the third embodiment, the differential pressure correcting means
28 includes a selection device 32 and a controller 37 that outputs a control signal in accordance with a signal output from the selection device 32, and a control pressure generation unit 38 that constitutes a control force application unit 29.
Is configured to respond to both the pressure difference ΔP LS between the pump pressure and the maximum load pressure and the control signal output from the controller 37. That is, the solenoid valve 41 constituting the control pressure generating means 38 operates according to the differential pressure ΔP LS and the control signal from the controller 37, and the first valve described above.
The configuration is such that the differential pressure detecting device as in the first embodiment shown in the figure is omitted. Other configurations are the same as those of the first embodiment, for example.

このように構成した第3の実施例にあつては、電磁弁
41、42自体が差圧ΔPLSを検出する機能を有するもので
あり、したがつて、例えば土砂積込作業の場合、コント
ローラ37の出力部34から電磁弁42の駆動部に前述した補
正係数α(>1)に相当する制御信号を出力し、電磁弁
41の駆動部に前述した補正係数β(<1)に相当する制
御信号を出力することにより電磁弁42、41のそれぞれを
経て、補正差圧α・ΔPLS(α>1)、β・ΔPLS(β<
1)に相当する制御力に応じた制御圧力が分流補償弁2
6、25のそれぞれに与えられ、第1の実施例と同様の動
作をおこなう。このように構成したものも第1の実施例
と同等の効果が得られる。
In the third embodiment configured as described above, the solenoid valve
41 and 42 themselves have a function of detecting the differential pressure ΔP LS , and therefore, for example, in the case of the earth and sand loading operation, the correction coefficient α described above is output from the output unit 34 of the controller 37 to the drive unit of the solenoid valve 42. A control signal corresponding to (> 1) is output and the solenoid valve
By outputting a control signal corresponding to the above-described correction coefficient β (<1) to the drive unit 41, the correction differential pressure α · ΔP LS (α> 1), β · ΔP is passed through each of the solenoid valves 42 and 41. LS (β <
The control pressure corresponding to the control force corresponding to 1) is a shunt compensation valve 2
6 and 25, and perform the same operation as in the first embodiment. With such a configuration, the same effect as that of the first embodiment can be obtained.

第8図は本発明の第4の実施例の概略構成を示す回路
図である。この第4の実施例にあつては、旋回用方向制
御弁23の前後差圧を制御する分流補償弁55、及びブーム
用方向制御弁24の前後差圧を制御する分流補償弁56は、
それぞれ一方の駆動部55a、56aに、これらの分流補償弁
55、56が開くように作動するように付勢するばね55c、5
6cを有するとともに、他方の駆動部55b、56bに制御力付
加手段29による制御力が与えられるようになつている。
また、差圧補正手段28が分流補償弁55の他方の駆動部55
bとタンクとを連通可能にする切換弁57と、分流補償弁5
6の他方の駆動部56bとタンクとを連通可能にする切換弁
58とを設けた構成にしてある。さらに、制御力付加手段
29を構成する制御力圧力発生手段38が、差圧ΔPLSに応
動する可変絞り部材59、60と、これらの可変絞り部材5
9、60と分流補償弁55、56の他方の駆動部55b、56bとの
間に配置した絞り弁61、62を例えば備えている。その他
の構成は第1図に示す第1の実施例と同等である。
FIG. 8 is a circuit diagram showing a schematic configuration of the fourth embodiment of the present invention. In the fourth embodiment, a shunt compensation valve 55 for controlling the pressure difference between the front and rear of the turning direction control valve 23 and a shunt compensation valve 56 for controlling the pressure difference between the front and rear of the boom direction control valve 24 include:
Each of the drive units 55a and 56a is provided with these shunt compensation valves.
Springs 55c, 5 biasing the opening of 55, 56 to open
6c, and the control force by the control force applying means 29 is applied to the other drive units 55b and 56b.
Further, the differential pressure correcting means 28 is connected to the other driving section 55 of the branch flow compensation valve 55.
a switching valve 57 for allowing communication between b and the tank, and a diverting compensation valve 5
Switching valve that allows communication between the other drive unit 56b of 6 and the tank
58. Furthermore, control force adding means
The control force pressure generating means 38 constituting 29 includes variable throttle members 59 and 60 responsive to the differential pressure ΔP LS , and these variable throttle members 5
For example, throttle valves 61 and 62 provided between the drive units 9 and 60 and the other drive units 55b and 56b of the branch flow compensation valves 55 and 56 are provided. Other configurations are the same as those of the first embodiment shown in FIG.

この第4の実施例では、土砂積込作業をおこなうため
の旋回とブーム上げの複合操作時には、切換弁57の操作
量を少なくし、切換弁58の操作量を大きくすれば良い。
これにより、分流補償弁56の他方の駆動部56b側からタ
ンクに逃げる流量が、分流補償弁55の他方の駆動部55b
側からタンクに逃げる流量に比べて大きくなり、これら
に伴つて可変絞り部材59、60で検出された差圧ΔPLS
補正され、これらの補正差圧に応じた制御力を与えうる
制御圧力が分流補償弁55、56の他方の駆動部55b、56bに
与えられる。この場合、第9図に示すように、切換弁5
7、58が同じ操作量だけ操作される通常時に係る特性線6
3に比べて、分流補償弁56に係る特性線64は傾きが急に
なり、比較的小さい制御力F1が当該分流補償弁56他方の
駆動部56bに与えられ、これにより分流補償弁56の絞り
量が小さくなり、ブーム用方向制御弁24に比較的大きな
流量が供給され、また、同第9図に示すように、分流補
償弁55に係る特性線65は特性線63に比べて傾きがゆるや
かになり、比較的大きい制御力F2が当該分流補償弁55の
他方の駆動部55bに与えられ、これにより分流補償弁55
の絞り量は大きくなり、旋回用方向制御弁23に比較的小
さな流量が供給され、これにより通常時に比べて大きい
流量が供給され、望ましい旋回とブーム上げの複合操作
を実現できる。
In the fourth embodiment, the operation amount of the switching valve 57 may be reduced and the operation amount of the switching valve 58 may be increased at the time of the combined operation of turning and boom raising for performing the earth and sand loading operation.
Thereby, the flow rate escaping from the other drive section 56b side of the branch flow compensation valve 56 to the tank is increased by the other drive section 55b of the branch flow compensation valve 55.
The differential pressure ΔP LS detected by the variable throttle members 59 and 60 is corrected accordingly, and the control pressure capable of providing a control force corresponding to these corrected differential pressures is increased. It is provided to the other drive units 55b, 56b of the shunt compensation valves 55, 56. In this case, as shown in FIG.
Characteristic line 6 for normal operation when 7, 58 are operated by the same operation amount
As compared with 3, the characteristic line 64 relating to the shunt compensation valve 56 has a steeper slope, and a relatively small control force F1 is applied to the other drive unit 56b of the shunt compensation valve 56, thereby reducing the throttle of the shunt compensation valve 56. The flow rate is reduced, and a relatively large flow rate is supplied to the boom directional control valve 24. As shown in FIG. 9, the characteristic line 65 relating to the shunt compensation valve 55 has a gentler slope than the characteristic line 63. And a relatively large control force F2 is applied to the other drive unit 55b of the shunt compensation valve 55, whereby the shunt compensation valve 55
The throttle amount is increased, and a relatively small flow rate is supplied to the turning direction control valve 23. As a result, a large flow rate is supplied compared to the normal state, and a desired combined operation of turning and boom raising can be realized.

この第4の実施例では、切換弁57、58を適宜操作する
だけで旋回モータ21、ブームシリンダ22に供給される流
量の割合を変えることができ、前述した第1の実施例と
同等の効果を奏する。なお、第9図において、fは第8
図に示す分流補償弁55、56のそれぞれを付勢するばね55
c、56cの力を示している。
In the fourth embodiment, the ratio of the flow rate supplied to the swing motor 21 and the boom cylinder 22 can be changed only by appropriately operating the switching valves 57 and 58, and the same effect as in the first embodiment described above is obtained. To play. Note that, in FIG.
A spring 55 for biasing each of the branching compensation valves 55 and 56 shown in the figure
c, shows 56c force.

そして、上記した第1〜第4の実施例のいずれにあつ
ても、各方向制御弁のスプールストロークの調整を要し
ないのでメータリング域を狭くすることがなく、したが
つて、オペレータによる方向制御弁の操作に何ら支障を
生じることがない。
In any of the above-described first to fourth embodiments, it is not necessary to adjust the spool stroke of each direction control valve, so that the metering area is not narrowed. There is no hindrance to the operation of the valve.

<発明の効果> 本発明の土木・建設機械の油圧駆動装置は、以上のよ
うに構成してあることから、複合操作に際し、各アクチ
ユエータに、作業内容に応じた最適な流量を容易に分配
することができ、それ故、エネルギ損失の抑制と作業性
の向上を確保できるとともに、作業内容の変更に対して
優れた追従性を有する効果がある。
<Effect of the Invention> Since the hydraulic drive device of the civil engineering / construction machine of the present invention is configured as described above, at the time of the combined operation, the optimum flow rate according to the work content is easily distributed to each actuator. Therefore, it is possible to ensure the suppression of energy loss and the improvement of workability, and to have an excellent followability to a change in work content.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の土木・建設機械の油圧駆動装置の第1
の実施例の概略構成を示す回路図、第2図は第1の実施
例に備えられるコントローラでおこなわれる処理手順を
示すフローチヤート、第3図は第1の実施例であらかじ
め設定される関数関係を示す図、第4図、第5図は第1
の実施例で得られる流量特性をそれぞれ示す図、第6図
は本発明の第2の実施例の概略構成を示す回路図、第7
図は本発明の第3の実施例の概略構成を示す回路図、第
8図は本発明の第4の実施例の概略構成を示す回路図、
第9図は第8図に示す第4の実施例で得られる特性を示
す図、第10図は従来の土木・建設機械の油圧駆動装置の
一例を示す回路図、第11図、第12図は、第10図に示す油
圧駆動装置において流量制御弁のスプールストロークを
調整したときに得られる流量特性をそれぞれ示す図、第
13図は第10図に示す油圧駆動装置において流量制御弁の
スプールストロークを調整したときに生じる不具合を説
明する図である。 20……主油圧ポンプ、21……旋回モータ、22……ブーム
シリンダ、23……旋回用方向制御弁、24……ブーム用方
向制御弁、25、26、53、54、55、56……分流補償弁、25
a、26a、55a、56a……一方の駆動部、25b、26b、55b、5
6b……他方の駆動部、27……シヤトル弁、28……差圧補
正手段、29……制御力付加手段、30……吐出管路、31…
…差圧検出装置、32……選択装置、33……入力部、34…
…出力部、35……記憶部、36……演算部、37……コント
ローラ、38……制御圧力発生手段、39……パイロツトポ
ンプ、41、42……電磁弁、43……流量制御手段、49……
アームシリンダ、50……バケツトシリンダ、51……アー
ム用方向制御弁、52……バケツト用方向制御弁、55c、5
6c……ばね、57、58……切換弁、59、60……可変絞り部
材、61、62……絞り弁。
FIG. 1 shows a first embodiment of a hydraulic drive system for a civil engineering and construction machine according to the present invention.
FIG. 2 is a circuit diagram showing a schematic configuration of the first embodiment, FIG. 2 is a flowchart showing a processing procedure performed by a controller provided in the first embodiment, and FIG. 3 is a function relation preset in the first embodiment. FIG. 4 and FIG.
FIG. 6 is a circuit diagram showing a schematic configuration of a second embodiment of the present invention, and FIG.
FIG. 8 is a circuit diagram showing a schematic configuration of a third embodiment of the present invention, FIG. 8 is a circuit diagram showing a schematic configuration of a fourth embodiment of the present invention,
FIG. 9 is a diagram showing characteristics obtained in the fourth embodiment shown in FIG. 8, and FIG. 10 is a circuit diagram showing an example of a conventional hydraulic drive device for civil engineering / construction machinery, FIG. 11, FIG. FIG. 10 is a diagram showing flow characteristics obtained when the spool stroke of the flow control valve is adjusted in the hydraulic drive device shown in FIG. 10, respectively.
FIG. 13 is a diagram for explaining a problem that occurs when the spool stroke of the flow control valve is adjusted in the hydraulic drive device shown in FIG. 20 ... Main hydraulic pump, 21 ... Swing motor, 22 ... Boom cylinder, 23 ... Swing directional control valve, 24 ... Boom directional control valve, 25,26,53,54,55,56 ... Shunt compensator, 25
a, 26a, 55a, 56a ... One drive unit, 25b, 26b, 55b, 5
6b: the other drive unit, 27: shuttle valve, 28: differential pressure correction means, 29: control force adding means, 30: discharge pipe line, 31 ...
... Differential pressure detection device, 32 ... Selection device, 33 ... Input unit, 34 ...
... Output unit, 35 ... Storage unit, 36 ... Calculation unit, 37 ... Controller, 38 ... Control pressure generating means, 39 ... Pilot pump, 41, 42 ... Solenoid valve, 43 ... Flow control means, 49 ……
Arm cylinder, 50 ... Bucket cylinder, 51 ... Arm directional control valve, 52 ... Bucket directional control valve, 55c, 5
6c ... spring, 57, 58 ... switching valve, 59, 60 ... variable throttle member, 61, 62 ... throttle valve.

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】主油圧ポンプと、この主油圧ポンプから供
給される圧油によつて駆動する複数のアクチユエータ
と、これらのアクチユエータに供給される圧油の流れを
制御する流量制御弁と、これらの流量制御弁の前後差圧
をそれぞれ制御する分流補償弁とを備え、主油圧ポンプ
の圧油を上記分流補償弁、流量制御弁のそれぞれを介し
て上記アクチユエータのそれぞれに供給し、これらのア
クチユエータの複合駆動が可能な土木・建設機械の油圧
駆動装置において、上記主油圧ポンプから吐出される圧
油の圧力と、上記アクチユエータの負荷圧のうちの最大
負荷圧との差圧を、上記アクチユエータの作動を介して
おこなわれる作業の種類に応じて補正する差圧補正手段
と、この差圧補正手段で補正された差圧に応じた制御力
を上記分流補償弁の駆動部のそれぞれに与える制御力付
加手段とを備えたことを特徴とする土木・建設機械の油
圧駆動装置。
1. A main hydraulic pump, a plurality of actuators driven by hydraulic oil supplied from the main hydraulic pump, a flow control valve for controlling a flow of hydraulic oil supplied to the actuators, A flow compensating valve for controlling the pressure difference between the front and rear of the flow control valve, and supplying the hydraulic oil of the main hydraulic pump to each of the actuators via the flow compensating valve and the flow control valve, respectively. In the hydraulic drive device for civil engineering and construction machinery capable of combined driving, the differential pressure between the pressure of the hydraulic oil discharged from the main hydraulic pump and the maximum load pressure among the load pressures of the actuators, Differential pressure correcting means for correcting according to the type of work performed through the operation, and a control force corresponding to the differential pressure corrected by the differential pressure correcting means for controlling the flow dividing compensation valve. Hydraulic drive system for civil engineering and construction machine, characterized in that a control force applying means for applying to each of the moving parts.
【請求項2】差圧補正手段が、主油圧ポンプから吐出さ
れる圧油の圧力と、アクチユエータの負荷圧のうちの最
大負荷圧との差圧を検出する差圧検出装置と、アクチユ
エータの作動を介しておこなわれる作業の種類に対応す
る選択信号を出力する選択装置と、これらの差圧検出装
置から出力される信号と選択装置から出力される選択信
号に基づいて補正差圧を求める演算をおこなう演算部を
有するコントローラとを含み、制御力付加手段が、あら
かじめ定められる補正差圧と制御力との関数関係を記憶
する記憶部、及び補正差圧に応じた制御力を求める演算
をおこなう演算部を有するコントローラと、このコント
ローラから出力される制御力信号に応じて分流補償弁の
駆動部に与えられる制御圧力を発生させる制御圧力発生
手段とを含むことを特徴とする請求項(1)記載の土木
・建設機械の油圧駆動装置。
2. A differential pressure detecting device for detecting a differential pressure between a pressure of hydraulic oil discharged from a main hydraulic pump and a maximum load pressure of a load pressure of an actuator, and an operation of the actuator. A selection device that outputs a selection signal corresponding to the type of work performed via the CPU, and an operation for obtaining a corrected differential pressure based on the signal output from the differential pressure detection device and the selection signal output from the selection device. A controller having a calculation unit for performing the control, the control force adding means stores a functional relationship between a predetermined corrected differential pressure and the control force, and a calculation for calculating the control force according to the corrected differential pressure And a control pressure generating means for generating a control pressure applied to a drive unit of the shunt compensation valve in accordance with a control force signal output from the controller. Claim (1) civil engineering and construction machine hydraulic drive apparatus wherein.
【請求項3】制御圧力発生手段が、パイロツトポンプ
と、このパイロツトポンプと分流補償弁の駆動部との間
に配置され、かつ分流補償弁のそれぞれに対応して設け
られ、コントロールから出力される制御力信号に応じて
作動する電磁弁とを含むことを特徴とする請求項(2)
記載の土木・建設機械の油圧駆動装置。
3. A control pressure generating means is provided between the pilot pump and the driving section of the pilot pump and the diversion compensating valve, and is provided corresponding to each of the diversion compensating valves, and is output from the control. And a solenoid valve that operates in response to the control force signal.
Hydraulic drive for civil engineering and construction machinery as described.
【請求項4】差圧補正手段が、アクチユエータの作動を
介しておこなわれる作業の種類に対応する選択信号を出
力する選択装置と、この選択装置から出力される信号に
基づいて制御信号を出力するコントローラとを含み、制
御力付加手段が、主油圧ポンプから吐出される圧油の圧
力と、アクチユエータの負荷圧のうちの最大負荷圧との
差圧、及び上記コントローラから出力される制御信号の
双方によつて応動し、分流補償弁の駆動部に与えられる
制御圧力を発生させる制御圧力発生手段とを含むことを
特徴とする請求項(1)記載の土木・建設機械の油圧駆
動装置。
4. A selecting device for outputting a selection signal corresponding to a type of operation performed through the operation of the actuator, and a control signal based on a signal output from the selecting device. And a control force adding means for controlling the pressure difference between the pressure of the hydraulic oil discharged from the main hydraulic pump and the maximum load pressure of the load pressure of the actuator, and a control signal output from the controller. And a control pressure generating means for generating a control pressure applied to a driving portion of the branch flow compensating valve.
【請求項5】制御圧力発生手段が、パイロツトポンプ
と、このパイロツトポンプと分流補償弁の駆動部との間
に配置され、かつ分流補償弁のそれぞれに対応して設け
られ、主油圧ポンプから吐出される圧油の圧力と、アク
チユエータの負荷圧のうちの最大負荷圧との差圧、及び
コントローラから出力される制御信号の双方によつて応
動する電磁弁とを含むことを特徴とする請求項(4)記
載の土木・建設機械の油圧駆動装置。
5. A control pressure generating means is disposed between the pilot pump and the driving portion of the pilot pump and the flow dividing compensating valve, and is provided corresponding to each of the flow dividing compensating valves. And a solenoid valve responsive to both a differential pressure between the pressure of the pressurized oil and a maximum load pressure among the load pressures of the actuator and a control signal output from the controller. (4) The hydraulic drive device for civil engineering and construction machinery according to (4).
【請求項6】差圧補正手段が、分流補償弁のそれぞれに
対応して設けられ、該分流補償弁の駆動部とタンクとを
連通可能にする切換弁を含むとともに、制御力付加手段
が、主油圧ポンプから吐出される圧油の圧力と、アクチ
ユエータの負荷圧のうちの最大負荷圧との差圧によつて
作動し、分流補償弁の駆動部に与えられる制御圧力を発
生させる制御圧力発生手段を含むことを特徴とする請求
項(1)記載の土木・建設機械の油圧駆動装置。
6. A differential pressure compensating means is provided corresponding to each of the flow dividing compensating valves, and includes a switching valve for enabling communication between a drive unit of the flow dividing compensating valve and the tank, and the control force adding means comprises: Control pressure generation that operates by the pressure difference between the pressure of the hydraulic oil discharged from the main hydraulic pump and the maximum load pressure of the load pressure of the actuator to generate the control pressure applied to the drive unit of the shunt compensation valve The hydraulic drive device for a civil engineering / construction machine according to claim 1, further comprising means.
【請求項7】制御圧力発生手段が、パイロツトポンプ
と、このパイロツトポンプと分流補償弁の駆動部との間
に配置され、かつ分流補償弁のそれぞれに対応して設け
られ、主油圧ポンプから吐出される圧油の圧力と、アク
チユエータの負荷圧のうちの最大負荷圧との差圧に応じ
て作動する可変絞り部材と、それぞれ対応する可変絞り
部材と分流補償弁との間に設けた絞り弁とを含むととも
に、これらの絞り弁の下流と、対応する切換弁のそれぞ
れとを連絡したことを特徴とする請求項(6)記載の土
木・建設機械の油圧駆動装置。
7. A control pressure generating means is disposed between the pilot pump and the driving portion of the pilot pump and the flow dividing compensating valve, and is provided corresponding to each of the flow dividing compensating valves. Throttle members that operate in accordance with the pressure difference between the pressure of the pressurized oil to be performed and the maximum load pressure of the load pressure of the actuator, and a throttle valve provided between the corresponding variable throttle member and the branching compensation valve, respectively. The hydraulic drive device for civil engineering and construction machinery according to claim 6, wherein a downstream of the throttle valve and each of the corresponding switching valves are connected.
【請求項8】分流補償弁は、その一方の起動部が、当該
分流補償弁を開く方向に力を与える制御力を受ける受部
を形成することを特徴とする請求項(1)記載の土木・
建設機械の油圧駆動装置。
8. The civil engineering works according to claim 1, wherein the shunt compensating valve has one of its starting portions forming a receiving portion for receiving a control force for applying a force in a direction to open the shunt compensating valve.・
Hydraulic drive for construction machinery.
【請求項9】分流補償弁は、その一方の駆動部に、当該
分流補償弁が開く方向に作動するように付勢するばねを
有するとともに、他方の駆動部に制御力が与えられるこ
とを特徴とする請求項(1)記載の土木・建設機械の油
圧駆動装置。
9. The shunt compensating valve is characterized in that one of the drive units has a spring for urging the shunt compensator to operate in the opening direction, and a control force is applied to the other drive unit. The hydraulic drive device for civil engineering and construction machinery according to claim 1.
JP63276015A 1988-07-08 1988-11-02 Hydraulic drive for civil and construction machinery Expired - Fee Related JP2601890B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63276015A JP2601890B2 (en) 1988-11-02 1988-11-02 Hydraulic drive for civil and construction machinery
EP89908279A EP0379595B1 (en) 1988-07-08 1989-07-07 Hydraulic driving apparatus
KR1019900700084A KR940008638B1 (en) 1988-07-08 1989-07-07 Hydraulic driving apparatus
DE89908279T DE68909580T2 (en) 1988-07-08 1989-07-07 HYDRODYNAMIC DRIVE DEVICE.
PCT/JP1989/000691 WO1990000683A1 (en) 1988-07-08 1989-07-07 Hydraulic driving apparatus
US07/449,845 US5056312A (en) 1988-07-08 1989-07-07 Hydraulic drive system for construction machines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63276015A JP2601890B2 (en) 1988-11-02 1988-11-02 Hydraulic drive for civil and construction machinery

Publications (2)

Publication Number Publication Date
JPH02125034A JPH02125034A (en) 1990-05-14
JP2601890B2 true JP2601890B2 (en) 1997-04-16

Family

ID=17563598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63276015A Expired - Fee Related JP2601890B2 (en) 1988-07-08 1988-11-02 Hydraulic drive for civil and construction machinery

Country Status (1)

Country Link
JP (1) JP2601890B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970000492B1 (en) * 1991-05-09 1997-01-13 오까다 하지메 Hydraulic driving system in construction machine
JP3762480B2 (en) * 1996-04-30 2006-04-05 株式会社不二越 Hydraulic drive
KR100627950B1 (en) * 2002-09-11 2006-09-22 현대중공업 주식회사 Hydraulic circuit for wheel type construction equipment
US20050081518A1 (en) * 2003-10-20 2005-04-21 Pengfei Ma Flow-control apparatus for controlling the swing speed of a boom assembly
JP2008224039A (en) * 2008-04-07 2008-09-25 Komatsu Ltd Control device of hydraulic drive machine

Also Published As

Publication number Publication date
JPH02125034A (en) 1990-05-14

Similar Documents

Publication Publication Date Title
KR970001723B1 (en) Hydraulic control system for construction machine
US6584770B2 (en) Hydraulic drive system
US10301793B2 (en) Hydraulic drive system for work machine
WO1997003292A1 (en) Hydraulic driving device
JP5918728B2 (en) Hydraulic control device for work machine
JP2001323902A (en) Hydraulic driven device
EP3581717B1 (en) Hydraulic drive device of construction machine
JP2601890B2 (en) Hydraulic drive for civil and construction machinery
JP2009167659A (en) Hydraulic control circuit of utility machine
JP3198163B2 (en) Hydraulic drive for construction machinery
JP3788686B2 (en) Hydraulic drive control device
JP6989548B2 (en) Construction machinery
JP2615207B2 (en) Hydraulic drive
JP2721384B2 (en) Hydraulic circuit of work machine
JP2740224B2 (en) Hydraulic drive for civil and construction machinery
WO2018180512A1 (en) Construction machinery
JP2005226678A (en) Hydraulic drive mechanism
JP3760055B2 (en) Hydraulic drive control device for construction machinery
JP2758335B2 (en) Hydraulic circuit structure of construction machinery
JPH02213524A (en) Oil hydraulic circuit of work equipment
JP2009167658A (en) Hydraulic control circuit of utility machine
JP2656154B2 (en) Hydraulic control device for construction machinery
JP4215409B2 (en) Hydraulic drive control device
JP3321551B2 (en) Construction machine hydraulic circuit
JP2749317B2 (en) Hydraulic drive

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees