JP2601706B2 - 砂質地盤の液状化防止方法 - Google Patents

砂質地盤の液状化防止方法

Info

Publication number
JP2601706B2
JP2601706B2 JP27699988A JP27699988A JP2601706B2 JP 2601706 B2 JP2601706 B2 JP 2601706B2 JP 27699988 A JP27699988 A JP 27699988A JP 27699988 A JP27699988 A JP 27699988A JP 2601706 B2 JP2601706 B2 JP 2601706B2
Authority
JP
Japan
Prior art keywords
sandy ground
saturation
pipe
ground
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27699988A
Other languages
English (en)
Other versions
JPH02125013A (ja
Inventor
伸也 西尾
茂 後藤
幸吉 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP27699988A priority Critical patent/JP2601706B2/ja
Publication of JPH02125013A publication Critical patent/JPH02125013A/ja
Application granted granted Critical
Publication of JP2601706B2 publication Critical patent/JP2601706B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、完全飽和状態またはそれに近い状態の砂
質地盤の液状化防止方法に関するものである。
「従来技術およびその課題」 一般に、飽和した砂質地盤は地震時に液状化する恐れ
があるため、このような砂質地盤上に建築物を構築する
場合には、各種の地盤改良方法で地盤を改良する必要が
ある。ところが、このような地盤改良の行なうためには
極めて高いコストがかかるため、低コストで液状化を防
止する方法の開発が望まれている。また、既に建築物が
構築されている砂質地盤に対して上記のような地盤改良
を行なった場合には周囲の建築物に悪影響を与える恐れ
があるため、既に建築物が構築されている砂質地盤にお
いては、上記のような地盤改良工法で液状化を防止する
ことは不可能と考えられる。
最近の弾性波探査に関する研究により、地下水位以下
の地盤においても、その地盤の間隙水中に微小な気泡が
存在する場合には、地盤のP波速度が1500m/sec(水の
P波速度)以下に低下することが明らかにされた。
一方、完全飽和状態に近い砂質地盤において、飽和度
のわずかな低下が強度の増加をもたらすことは既に研究
されており、上述したようなP波速度の低下した不飽和
層を砂質地盤中に人工的に作成することができれば、新
たな液状化防止方法として有望と考えられる。
そこで、この発明では、上記のような完全飽和状態に
近い砂質地盤中に微小な気泡を注入することによって砂
質地盤中に不飽和層を形成し、それによって砂質地盤の
液状化を防止することを目的としている。
「課題を解決するための手段」 この発明の砂質地盤の液状化防止方法は、完全飽和状
態に近い砂質地盤中に多数の微小な透気孔を有するパイ
プを貫入すると共にこのパイプの上端に空気圧入装置を
連結し、この空気圧入装置により上記パイプ中に空気を
圧入することによって、上記透気孔から上記砂質地盤中
に微小な気泡を注入するものである。
「作用」 この発明の砂質地盤の液状化防止方法においては、完
全飽和状態に近い砂質地盤上に建築物を構築する際、あ
るいは既に建築物が構築されている砂質地盤が完全飽和
に近い場合に、その砂質地盤中に多数の微小な透気孔を
有するパイプを貫入すると共にこのパイプの上端に空気
圧入装置を連結する。そして、このようにした後、上記
空気圧入装置を作動させて上記パイプ中に空気を圧入す
ることによって、そのパイプ内の圧力を周囲の砂質地盤
の圧力よりも高めてそのパイプの透気孔から上記砂質地
盤中に微小な気泡を注入する。このようにすると、砂質
地盤の飽和度を低下させることができ、地震時における
間隙水圧の上昇が抑制されることとなる。
「実施例」 以下、この発明の一実施例を第1図を参照して説明す
る。
この実施例では、完全飽和に近い砂質地盤1におい
て、その砂質地盤1上に建築物2を構築する際に実施さ
れる液状化防止方法であって、上記砂質地盤1中に多数
の微小な透気孔を有するパイプ3を垂直に貫入すると共
にこのパイプ3の上端に空気圧入装置4を連結し、この
空気圧入装置4およびパイプ3を使用して上記砂質地盤
1の液状化を防止するようにしている。
上記パイプ3は、ステンレスまたは合成樹脂などから
なる管の先端を閉止板で閉塞し、かつその側壁および閉
止板に無数の微小な透気孔を形成したものであって、そ
の先端を下方に向けた状態で上記砂質地盤1中に貫入さ
れるものである。
上記空気圧入装置4は、上記パイプ3の上端に連結さ
れた状態で地上に設置されており、そのパイプ3内に空
気を圧入することができると共に、そのパイプ3内の圧
力を長期間に亙って周囲の砂質地盤1の圧力よりも高い
圧力に保つことができるようになっている。
このような液状化防止方法によって砂質地盤1の液状
化を防止する場合には、まず、建築物2を構築する予定
の砂質地盤1中の多数のパイプ3をそれぞれ所定位置に
垂直に貫入すると共にこのパイプ3の上端に空気圧入装
置4を連結しておく。このようにした後、上記空気圧入
装置4を作動させて、上記パイプ3中に空気を圧入する
ことによりこのパイプ3内の圧力を周囲の砂質地盤1の
圧力よりも高め、それによって上記パイプ3中の空気を
そのパイプ3の無数の透気孔から放出して上記砂質地盤
1中に微小な気泡を注入する。このようにして砂質地盤
1中に無数の微小な気泡を注入すると、その砂質地盤1
の飽和度が低下することとなるが、その場合、砂質地盤
1中にその砂質地盤1の飽和度を検出するセンサを設け
るか、または砂質地盤1上に適当な測定機器等を設ける
などして、その砂質地盤1の飽和度(液状化強度)およ
びその時間的変化を把握しておくようにする。そして、
このようにして上記砂質地盤1の改良範囲および改良効
果をモニタリングしながらその砂質地盤1の飽和度を低
下させることによって、その砂質地盤1の液状化強度を
所望の強度まで高める。このようにすると、上記砂質地
盤1中における地震時の間隙水圧の上昇が低減して適正
なレベルに抑えられることとなり、これによって、完全
飽和に近い状態の砂質地盤1においても地震時の液状化
が防止されることになる。
なお、この発明では、完全飽和状態に近い砂質地盤上
に建築物を構築する際に実施する液状化防止方法につい
て説明したが、この発明の液状化防止方法は、既に建築
物が構築されている砂質地盤に対しても適用することが
できる。その場合、第1図に示すように、砂質地盤1上
に各建築物2の周囲に上記パイプ3を打ち込み、そのパ
イプ3の上端に空気圧入装置4を連結することによっ
て、例えば各建築物2の四隅にそれぞれ空気圧入装置4
を設置するようにする。そして、このようにした場合に
は、液状化防止のための地盤改良がなされていない砂質
地盤1上に構築された既設の建築物2に対しても、各建
築物2周辺の砂質地盤1の飽和度を低下させることによ
って、地震時の液状化を有効に防止することができる。
「実施例」 この実施例は、微希望を飽和砂質地盤中に注入して地
盤の飽和度を下げ、地震時に発生する間隙水圧を低減さ
れる液状化対策について進められた研究の中で、特に、
飽和過程による供試体の弾性波速度の測定結果により、
飽和度、すなわちB値と弾性波速度との関係について考
察を加え、対策効果のモニタリングを目的とした、弾性
波速度による地盤飽和状態の推定法の可能性を検討した
ものである。
試料および試験方法 用いた試料は豊浦砂および砂礫の2種類である。試料
の物理的性質を表1に示す。
試験は大型三軸試験装置(供試体:直径300mm、高さ6
00mm)を用いて行ない、弾性波の測定は、有効拘束圧を
49kPaに保ち、供試体を飽和させる過程で実施した。飽
和度は、バックプレッシャー載荷に伴う間隙水の体積変
化を耐圧ビュレット(容量1000cm3)で測定し、ボイル
の法則から求めた。
飽和度、B値と弾性波速度について 多孔質弾性体理論を用い、さらに気泡を含んだ間隙水
の体積弾性定数を考慮すると、飽和度(Sr)とP波速度
(Vp)との関係は次式で与えられる。
ここに、 ρ:密度(湿潤密度) ρd:土骨格の密度(乾燥密度) Vpd:土骨格のP波速度 Kw:気泡を全く含まない水の体積弾性定数(2.2×10kP
a) Ka:空気の体積弾性定数(絶対圧で表した間隙水圧) n:間隙率 第2図は、式(1)を用いて推定した飽和度によるVp
の変化を示している。間隙水中に占める気泡の割合(1
−Sr)が、10-5〜10-3(飽和度にして、99.999〜99.9
%)に変化する領域のVpの変化は極めて大きい。
一方、土粒子の圧縮性を無視すれば、B値は次式で表
される。
第3図は、式(2)から求めた飽和度によるB値の変
化を示している。B値の場合も飽和度の影響を顕著に受
け、特に(1−Sr)が10-3〜10-1に変化する領域での変
化が大きいことがわかる。
測定結果と考察 第4図は、飽和過程で測定した弾性速度と飽和度との
関係を示している。Vpは飽和度の影響を顕著に受け、第
2図に示した推定値と良く対応した変化を示すのに対
し、せん断波速度(Vs)の変化は極めて小さい。計算に
よれば、飽和度増加に伴う密度の増加を考慮しても、せ
ん断弾性定数は飽和過程でほとんど一定値を示した。実
測したVpd(乾燥供試体で測定したVp)およびVpを用
い、式(1)から求めた(1−Sr)cal.と間隙水の体積
変化測定から求めた(1−Sr)meas.の比較結果の第5
図に示す。(1−Sr)の小さな領域において、測定精度
に起因すると思われるばらつきはあるが、全体的には良
い相関があると判断できる。
第6図は、各飽和段階において、弾性波速度から求め
た体積弾性定数(K)と実測したB値との関係を示し
た。第5図中の曲線は、次(2)に多孔質弾性体理論を
適用して得られる次式を表している。
B=1−Kd/K (3) 計算曲線は測定データを良く近似していることがわか
る。第7図は、乾燥供試体で測定した弾性波速度からKd
を求め、式(3)を用いて計算したB値(Bcal.)と実
測したB値(Bmeas.)の比較結果である。両者の間には
広い範囲にわたって良い相関関係が認められる。
結論 砂および砂礫供試体の飽和過程における弾性波速度の
変化を測定し、完全飽和の状態からわずかに飽和度が低
下するだけでP波速度は著しく低減することを示した。
また、これは、気泡を多く含んだ間隙水の体積弾性定数
を考慮すれば、多孔質弾性体が理論で説明することがで
き、弾性波速度から飽和度、すなわちB値を推定するこ
とができることを明らかにした。
以上の結果より、気泡注入による液状化対策におい
て、地盤の弾性波速度を測定し対策効果をモニタリング
する手法の有効性が示唆された。
「発明の効果」 この発明の砂質地盤の液状化防止方法によれば、完全
飽和状態に近い砂質地盤中に多数の微小な透気孔を有す
るパイプを貫入すると共にこのパイプの上端に空気圧入
装置を連結し、この空気圧入装置により上記パイプ中に
空気を圧入することによって、上記透気孔から上記砂質
地盤中に微小な気泡を注入し、それによって地震時にお
ける間隙水圧の上昇を抑制することがでる。このため、
完全飽和に近い状態ひ砂質地盤においても地震時の液状
化を防止することができる。
【図面の簡単な説明】
第1図は、この発明の一実施例を示す図であって、砂質
地盤の液状化防止方法を説明する説明図である。第2図
は飽和度とP波速度との関係を表すグラフ、第3図は飽
和度とB値との関係を表すグラフ、第4図は飽和度によ
る弾性波速度の変化を表すグラフ、第5図は飽和度の実
測値と推定値との関係を表すグラフ、第6図は体積弾性
定数とB値との関係を表すグラフ、第7図はB値の計算
値と実測値との関係を表すグラフである。 1……砂質地盤、 2……建築物、 3……パイプ、 4……空気圧入装置。

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】完全飽和状態に近い砂質地盤中に多数の微
    小な透気孔を有するパイプを貫入すると共にこのパイプ
    の上端に空気圧入装置を連結し、この空気圧入装置によ
    り上記パイプ中に空気を圧入することによって、上記透
    気孔から上記砂質地盤中に微小な気泡を注入することを
    特徴とする砂質地盤の液状化防止方法。
JP27699988A 1988-11-01 1988-11-01 砂質地盤の液状化防止方法 Expired - Fee Related JP2601706B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27699988A JP2601706B2 (ja) 1988-11-01 1988-11-01 砂質地盤の液状化防止方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27699988A JP2601706B2 (ja) 1988-11-01 1988-11-01 砂質地盤の液状化防止方法

Publications (2)

Publication Number Publication Date
JPH02125013A JPH02125013A (ja) 1990-05-14
JP2601706B2 true JP2601706B2 (ja) 1997-04-16

Family

ID=17577354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27699988A Expired - Fee Related JP2601706B2 (ja) 1988-11-01 1988-11-01 砂質地盤の液状化防止方法

Country Status (1)

Country Link
JP (1) JP2601706B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297839A (ja) * 2006-04-28 2007-11-15 Fudo Tetra Corp 不飽和化複合工法
JP5382561B1 (ja) * 2013-04-22 2014-01-08 強化土株式会社 地盤改良工法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297838A (ja) * 2006-04-28 2007-11-15 Fudo Tetra Corp 地震時液状化による変形防止方法
JP4368884B2 (ja) * 2006-11-07 2009-11-18 独立行政法人港湾空港技術研究所 地盤改良方法
JP4903650B2 (ja) * 2007-08-10 2012-03-28 オリエンタル白石株式会社 砂質地盤の液状化防止工法および砂質地盤への空気注入構造
JP5046292B2 (ja) * 2007-11-08 2012-10-10 オリエンタル白石株式会社 砂質地盤への空気注入装置および砂質地盤の液状化防止工法
JP5815246B2 (ja) * 2011-02-02 2015-11-17 東海旅客鉄道株式会社 土からなる斜面の構造及び水分飽和度判定方法
JP2013194362A (ja) * 2012-03-15 2013-09-30 Maeda Corp 液状化対策における地盤改良工法
JP5458332B1 (ja) * 2013-03-04 2014-04-02 強化土株式会社 地盤改良工法
JP6192446B2 (ja) * 2013-09-04 2017-09-06 大成建設株式会社 マイクロバブルの伝播システムと伝播方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297839A (ja) * 2006-04-28 2007-11-15 Fudo Tetra Corp 不飽和化複合工法
JP5382561B1 (ja) * 2013-04-22 2014-01-08 強化土株式会社 地盤改良工法

Also Published As

Publication number Publication date
JPH02125013A (ja) 1990-05-14

Similar Documents

Publication Publication Date Title
Borden et al. Dynamic properties of Piedmont residual soils
Figueroa et al. Evaluation of soil liquefaction by energy principles
Wu et al. Capillary effects on dynamic modulus of sands and silts
Unno et al. Liquefaction of unsaturated sand considering the pore air pressure and volume compressibility of the soil particle skeleton
JP2601706B2 (ja) 砂質地盤の液状化防止方法
Leong et al. Effects of confining pressure and degree of saturation on wave velocities of soils
Oka et al. Experimental study on the behavior of unsaturated compacted silt under triaxial compression
Watson et al. Soil water hysteresis in a field soil
Dikmen et al. Effective stress analysis of seismic response and liquefaction: theory
Whang et al. Effect of compaction conditions on the seismic compression of compacted fill soils
Nemat-Nasser et al. Liquefaction and fabric of sand
Muraleetharan et al. The use of miniature pore pressure transducers in measuring matric suction in unsaturated soils
Hwang et al. Parametric study of site response analysis
Shields et al. Radial drainage oedometer for laminated clays
Yang et al. Nonlinear site effects on strong ground motion at a reclaimed island
Giesel et al. Numerical treatment of the unsaturated water flow equation: Comparison of experimental and computed results
JP2733540B2 (ja) 地盤改良工法
Fredlund et al. Unsaturated soil consolidation theory and laboratory experimental data
Li et al. Effects of low-number previbration cycles on dynamic properties of dry sand
Okur et al. Energy approach to unsaturated cyclic strength of sand
Gibson et al. On Cryer's problem with large displacements
Milovic Stress deformation properties of macroporous loess soils
Stephens Hydraulic conductivity assessment of unsaturated soils
Walberg Freezing and cyclic triaxial behavior of sands
Stokoe et al. Shear moduli of soils, in-situ and from laboratory tests

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees