JP2601676B2 - Method for producing thin-film oxide superconductor - Google Patents

Method for producing thin-film oxide superconductor

Info

Publication number
JP2601676B2
JP2601676B2 JP63026871A JP2687188A JP2601676B2 JP 2601676 B2 JP2601676 B2 JP 2601676B2 JP 63026871 A JP63026871 A JP 63026871A JP 2687188 A JP2687188 A JP 2687188A JP 2601676 B2 JP2601676 B2 JP 2601676B2
Authority
JP
Japan
Prior art keywords
oxide superconductor
weight
parts
sputtering
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63026871A
Other languages
Japanese (ja)
Other versions
JPH01203219A (en
Inventor
良三 秋濱
Original Assignee
秩父小野田株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 秩父小野田株式会社 filed Critical 秩父小野田株式会社
Priority to JP63026871A priority Critical patent/JP2601676B2/en
Publication of JPH01203219A publication Critical patent/JPH01203219A/en
Application granted granted Critical
Publication of JP2601676B2 publication Critical patent/JP2601676B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、基板上にスパッタリングして薄膜酸化物超
伝導体を形成する場合に採用される薄膜酸化物超伝導体
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a thin film oxide superconductor which is used when a thin film oxide superconductor is formed by sputtering on a substrate. It relates to a manufacturing method.

(従来の技術) ある種の金属又は合金が絶対温度零度近傍まで冷却さ
れると、その金属又は合金の電気抵抗が零になることは
古くから知られており、最近では、ペロブスカイト構造
の酸化物もこのような超伝導特性を示すことが報告され
ている。
2. Description of the Related Art It has long been known that when a certain metal or alloy is cooled to a temperature near zero in absolute temperature, the electric resistance of the metal or alloy becomes zero. Recently, an oxide having a perovskite structure has been known. Are also reported to exhibit such superconducting properties.

そこで、この種の酸化物を基板上にスパッタリングし
て超伝導体として利用するようにしている。
Therefore, this kind of oxide is sputtered on a substrate and used as a superconductor.

そして、従来はY−Ba−Cu−O系の酸化物超伝導体組
成材料を基板上にスパッタリングして薄膜酸化物超伝導
体を形成する場合、Cu組成の一部の蒸発分を考慮して、
通常、化学量論的組成よりもCu組成の多いスパッタリン
グターゲットを使用していた。
Conventionally, when a thin-film oxide superconductor is formed by sputtering a Y-Ba-Cu-O-based oxide superconductor composition material on a substrate, a part of the Cu composition is considered in consideration of evaporation. ,
Usually, a sputtering target having a higher Cu composition than the stoichiometric composition has been used.

(発明が解決しようとする課題) 上記した従来方法では、Cu組成の多いスパッタリング
ターゲットを使用する必要上から、このターゲットはCu
組成の多少により絶縁物ないし半導体となり、直流スパ
ッタリングには適さなかった。
(Problems to be Solved by the Invention) In the above-described conventional method, since a sputtering target having a large Cu composition needs to be used, this target is made of Cu.
Depending on the composition, it became an insulator or a semiconductor, and was not suitable for DC sputtering.

更にこの場合、Cu組成の一部が蒸発するため、酸化物
超伝導体としての特性を著しく阻害する欠点を有してい
た。
Further, in this case, since a part of the Cu composition evaporates, there is a disadvantage that the properties as an oxide superconductor are significantly impaired.

本発明は上記問題点を解決するためになされたもので
あり、直流スパッタリングの適用が支障なくでき、かつ
化学量論通りの酸化物超伝導体を得ることの可能な薄膜
酸化物超伝導体の製造方法を提供することを目的として
いる。
The present invention has been made in order to solve the above-mentioned problems, the application of DC sputtering can be performed without hindrance, and a thin film oxide superconductor capable of obtaining a stoichiometric oxide superconductor It is intended to provide a manufacturing method.

[発明の構成] (課題を解決するための手段) 第1の発明は、薄膜酸化物超伝導体の製造方法におい
て、Y−Ba−Cu−O系の酸化物超伝導体組成材料の100
重量部に対し、Cuの微粉末を5〜30重量部添加して細密
に混合することによってスパッタリングターゲットを構
成し、このスパッタリングゲートを用いて基板上のスパ
ッタリングによる薄膜超伝導体を形成するようにした。
[Constitution of the Invention] (Means for Solving the Problems) A first invention relates to a method for producing a thin film oxide superconductor, wherein a Y-Ba-Cu-O-based oxide superconductor composition material is used.
With respect to parts by weight, a fine powder of Cu is added in an amount of 5 to 30 parts by weight, and the mixture is finely mixed to form a sputtering target. did.

第2の発明は、Y−Ba−Cu−O系の酸化物超伝導体組
成材料の100重量部に対し、Cuの微粉末とAg、Auのうち
少なくとも1種以上の微粉末とを合量で5〜30重量部添
加して細密に混合することによってスパッタリングター
ゲットを構成し、このスパッタリングゲートを用いて基
板上にスパッタリングによる薄膜超伝導体を形成するよ
うにした。
In a second aspect, a fine powder of Cu and at least one of fine powders of Ag and Au are combined with respect to 100 parts by weight of the Y-Ba-Cu-O-based oxide superconductor composition material. 5 to 30 parts by weight were added and finely mixed to form a sputtering target, and the sputtering gate was used to form a thin film superconductor by sputtering on a substrate.

(作用) 第1の発明では、Y−Ba−Cu−O系の酸化物超伝導体
組成材料の100重量部に対し、5〜30重量部のCuの微粉
末を添加して、これを細密に混合した酸化物超伝導体ス
パッタリングターゲットを用い、基板上にスパッタリン
グするので、スパッタリングに際して特にCuが金属微粉
末として存在し、かつCuが化学量論組成よりも多く存在
しているために、交流スパッタリングのみならず、直流
スパッタリングによっても基板上に超伝導体が絶縁物な
いし半導体となることなく、酸化物超伝導体となって形
成される。
(Action) In the first invention, 5 to 30 parts by weight of a fine powder of Cu is added to 100 parts by weight of the Y-Ba-Cu-O-based oxide superconductor composition material, and this is finely divided. Since the sputtering is performed on the substrate using an oxide superconductor sputtering target mixed with, especially during the sputtering, Cu is present as a fine metal powder, and since Cu is present in a larger amount than the stoichiometric composition, the AC The superconductor is formed as an oxide superconductor on the substrate not only by sputtering but also by DC sputtering without becoming an insulator or a semiconductor.

又、Cuの金属微粉末の存在によりターゲットの熱電動
率が改良され、熱歪によるクラックの発生を抑止する。
In addition, the presence of the Cu fine metal powder improves the thermal power ratio of the target, and suppresses the occurrence of cracks due to thermal strain.

第2の発明では、Y−Ba−Cu−O系の酸化物超伝導体
組成材料の100重量部に対し、Cuの微粉末とAg、Auのう
ち少なくとも1種以上の微粉末とを合量で5〜30重量部
添加して、これを細密に混合した酸化物超伝導体スパッ
タリングターゲットを用い、基板上にスパッタリングす
るものであるから、スパッタリングに際して特にCuが金
属微粉末として存在し、かつCuが化学量論組成よりも多
く存在しているほか、Ag、Auのうち少なくとも1種以上
の微粉末も存在しているために、スパッタリングターゲ
ットの導電性が改善され、交流スパッタリングのみなら
ず、直流スパッタリングによっても基板上に超伝導体が
絶縁物ないし半導体となることなく、酸化物超伝導体と
なって形成される。
In the second invention, Cu fine powder and at least one of Ag and Au fine powders are mixed with 100 parts by weight of the Y-Ba-Cu-O-based oxide superconductor composition material. In addition, 5 to 30 parts by weight, using an oxide superconductor sputtering target that is finely mixed, it is to be sputtered on the substrate, especially during sputtering Cu is present as a fine metal powder, and Cu Is present in excess of the stoichiometric composition, and the presence of at least one or more fine powders of Ag and Au improves the conductivity of the sputtering target. The superconductor is formed as an oxide superconductor on the substrate by sputtering without becoming an insulator or a semiconductor.

(実施例) 以下、実施例を説明する。(Example) Hereinafter, an example is described.

先ず、Y−Ba−Cu−O系の酸化物超伝導体粉末100重
量部に対して、5重量未満(4重量部)のCuの微粉末を
添加し、これらを混合してスパッタリングターゲットを
構成した。
First, less than 5 parts by weight (4 parts by weight) of Cu fine powder is added to 100 parts by weight of Y-Ba-Cu-O-based oxide superconductor powder, and these are mixed to form a sputtering target. did.

この状態にて基板上にスパッタリングしたが、この場
合はCuの添加した効果が不確実になり、時には絶縁物な
いし半導体となることがあった。
In this state, sputtering was performed on the substrate. In this case, however, the effect of the addition of Cu became uncertain and sometimes resulted in an insulator or a semiconductor.

又、熱伝導度の改良も不十分でなく、時にはターゲッ
トにクラックが発生した。
Further, the improvement of the thermal conductivity was not sufficient, and sometimes cracks occurred in the target.

一方、Cuの微粉末の量を30重量部以上(55と65重量
部)として、前記同様の各処理を行なった。この場合は
Cuの微粉末金属の導体特性によって、前記とは逆に、い
ずれの場合も導体となることがあり、熱伝導度も改良さ
れ、クラックの発生は抑止されたが、超伝導特性の良い
薄膜は得られなかった。
On the other hand, the same treatment as described above was performed with the amount of the fine powder of Cu being 30 parts by weight or more (55 and 65 parts by weight). in this case
On the contrary, depending on the conductor characteristics of the fine metal powder of Cu, the conductor may be a conductor in any case, the thermal conductivity has been improved, and the occurrence of cracks has been suppressed. Could not be obtained.

以上の結果、Cu微粉末の添加量は、Y−Ba−Cu−O系
の酸化物超伝導体粉末100重量部に対して、5〜30重量
部が最適であることがわかった。
As a result, it was found that the optimal amount of the Cu fine powder was 5 to 30 parts by weight based on 100 parts by weight of the Y-Ba-Cu-O-based oxide superconductor powder.

次に、Y−Ba−Cu−O系の酸化物超伝導体粉末100重
量部に対して、Cuの微粉末とAgの微粉末との合量が5重
量部未満(Cu 3,Ag 1,合計4重量部)を添加し、これら
を混合してスパッタリングターゲットを構成した。
Next, based on 100 parts by weight of the Y-Ba-Cu-O-based oxide superconductor powder, the total amount of the fine powder of Cu and the fine powder of Ag is less than 5 parts by weight (Cu 3, Ag 1, (Total 4 parts by weight) were added and mixed to form a sputtering target.

この状態にて、基板上にスパッタリングしたが、この
場合はCuの微粉末とAgの微粉末とを添加した効果が不確
実になり、時には絶縁物となることがわかった。
In this state, sputtering was performed on the substrate. In this case, however, it was found that the effect of adding the fine powder of Cu and the fine powder of Ag became uncertain and sometimes became an insulator.

一方、Cuの微粉末とAgの微粉末との合量が30重量部以
上(55、65各重量部)として、前記同様の各処理を行な
った。
On the other hand, the same processing as described above was performed with the total amount of the Cu fine powder and the Ag fine powder being 30 parts by weight or more (55 and 65 parts by weight).

この場合は、Cu及びAgの微粉末の導体特性によって、
前記とは逆に、いずれの場合も導体となることがあっ
た。
In this case, depending on the conductor properties of the fine powder of Cu and Ag,
Contrary to the above, the conductor sometimes became a conductor in each case.

なお、Agに代えて、Auについても行なったがAgの場合
と同様な結果が得られた。
Note that Au was used instead of Ag, but the same results as in the case of Ag were obtained.

以上の結果、Cu微粉末とAg、Auのうちの少なくとも1
種の微粉末との合量の添加量は、Y−Ba−Cu−O系の酸
化物超伝導体粉末100重量部に対して、5〜30重量部が
最適であるることがわかった。
As a result, Cu fine powder and at least one of Ag and Au
It has been found that the optimal amount of addition to the seed fine powder is 5 to 30 parts by weight based on 100 parts by weight of the Y-Ba-Cu-O-based oxide superconductor powder.

[発明の効果] 以上説明したように、本発明によれば直流スパッタリ
ングによってもスパッタリングターゲットが絶縁物ない
し半導体となることはなく、化学量論通りの酸化物超伝
導体を得ることが可能となる。
[Effects of the Invention] As described above, according to the present invention, the sputtering target does not become an insulator or a semiconductor even by DC sputtering, and it becomes possible to obtain an oxide superconductor according to stoichiometry. .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/24 ZAA H01L 39/24 ZAAB ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location H01L 39/24 ZAA H01L 39/24 ZAAB

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Y−Ba−Cu−O系の酸化物超伝導体組成材
料の100重量部に対し、Cuの微粉末を5〜30重量部添加
して細密に混合することによってスパッタリングターゲ
ットを構成し、前記スパッタリングゲートを用いて基板
上にスパッタリングによる薄膜超伝導体を形成すること
を特徴とする薄膜酸化物超伝導体の製造方法。
1. A sputtering target is prepared by adding 5 to 30 parts by weight of a fine powder of Cu to 100 parts by weight of a Y-Ba-Cu-O-based oxide superconductor composition material and mixing them finely. A method of manufacturing a thin film oxide superconductor, comprising forming a thin film superconductor by sputtering on a substrate using the sputtering gate.
【請求項2】Y−Ba−Cu−O系の酸化物超伝導体組成材
料の100重量部に対し、Cuの微粉末とAg、Au、Ptのうち
の少なくとも1種以上の微粉末とを合量で5〜30重量部
添加して細密に混合することによってスパッタリングタ
ーゲットを構成し、前記スパッタリングターゲットを用
いて基板上にスパッタリングによる薄膜超伝導体を形成
することを特徴とする薄膜酸化物超伝導体の製造方法。
2. A fine powder of Cu and at least one of fine powders of Ag, Au and Pt are mixed with 100 parts by weight of a Y-Ba-Cu-O-based oxide superconductor composition material. A sputtering target is formed by adding 5 to 30 parts by weight of the total amount and mixing them finely, and a thin film superconductor is formed by sputtering on a substrate using the sputtering target. Conductor manufacturing method.
JP63026871A 1988-02-08 1988-02-08 Method for producing thin-film oxide superconductor Expired - Lifetime JP2601676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63026871A JP2601676B2 (en) 1988-02-08 1988-02-08 Method for producing thin-film oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63026871A JP2601676B2 (en) 1988-02-08 1988-02-08 Method for producing thin-film oxide superconductor

Publications (2)

Publication Number Publication Date
JPH01203219A JPH01203219A (en) 1989-08-16
JP2601676B2 true JP2601676B2 (en) 1997-04-16

Family

ID=12205356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63026871A Expired - Lifetime JP2601676B2 (en) 1988-02-08 1988-02-08 Method for producing thin-film oxide superconductor

Country Status (1)

Country Link
JP (1) JP2601676B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252573A (en) * 1987-12-09 1989-10-09 Mitsubishi Metal Corp Target material for forming superconducting film
EP0377073A3 (en) * 1988-12-07 1990-11-07 Mitsubishi Materials Corporation Sputtering target used for forming quinary superconductive oxide

Also Published As

Publication number Publication date
JPH01203219A (en) 1989-08-16

Similar Documents

Publication Publication Date Title
US5317007A (en) High-Tc oxide superconductor and method for producing the same
JPH0818836B2 (en) Oxide superconductor, its manufacturing method and applied products
JP2601676B2 (en) Method for producing thin-film oxide superconductor
JPS63232208A (en) Manufacture of conductive or superconductive thin film
JP2664070B2 (en) Preparation method of composite oxide superconducting thin film
JPS63303810A (en) Ceramic superconductor
JP2579311B2 (en) How to prevent deterioration of superconductors
JPH01252573A (en) Target material for forming superconducting film
JPH01125878A (en) Thin film multilayer superconductor
JPH04162206A (en) Thin-film magnetic head with improved coil conductor layer
JP3038485B2 (en) Bi-based oxide superconducting thin film
JPH038754A (en) Oxide superconductor composition and production thereof
JP2814404B2 (en) Heat treatment method for superconducting thin film
JPH0825744B2 (en) Manufacturing method of superconducting material
KR950007088B1 (en) Bi-sr-ca-cu-o section target for superconductive thin film
JPH01290530A (en) Multiple oxides superconducting material and production thereof
JPH02120226A (en) Superconducting material of oxide
JP2747438B2 (en) Oxide superconducting material
JPH038755A (en) Oxide superconductor composition and production thereof
JPS63313426A (en) Manufacture of ceramic superconductor
JPH02116623A (en) Oxide superconducting material
JPS63303849A (en) Ceramic superconductor
JPS6120158B2 (en)
JPH04137407A (en) Conductive oxide
JPH025581A (en) Manufacture of superconducting thin film