JP2601123B2 - Optical element holder and optical magnetic field sensor - Google Patents

Optical element holder and optical magnetic field sensor

Info

Publication number
JP2601123B2
JP2601123B2 JP5032550A JP3255093A JP2601123B2 JP 2601123 B2 JP2601123 B2 JP 2601123B2 JP 5032550 A JP5032550 A JP 5032550A JP 3255093 A JP3255093 A JP 3255093A JP 2601123 B2 JP2601123 B2 JP 2601123B2
Authority
JP
Japan
Prior art keywords
optical element
groove
optical
magnetic field
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5032550A
Other languages
Japanese (ja)
Other versions
JPH06230258A (en
Inventor
宣夫 中村
裕夫 沼尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP5032550A priority Critical patent/JP2601123B2/en
Publication of JPH06230258A publication Critical patent/JPH06230258A/en
Application granted granted Critical
Publication of JP2601123B2 publication Critical patent/JP2601123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁気光学素子のファラ
デー効果を利用して磁界強度を測定する光磁界センサに
関し、特に磁気光学素子を固定するホルダに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical magnetic field sensor for measuring the intensity of a magnetic field by utilizing the Faraday effect of a magneto-optical element, and more particularly to a holder for fixing the magneto-optical element.

【0002】[0002]

【従来の技術】最近、磁気光学素子のファラデー効果、
すなわち直線(平面)偏光が磁場方向に物質中を通ると
きに偏光面が回転することを利用して磁界強度を測定す
る光磁界センサは、小型で絶縁性に優れまた電磁ノイズ
の影響を受けないなどの特長から、発電所から消費者ま
での電力輸送経路である変電所、送電線、配電線に流れ
る電流の大きさを測定し異常を発見する電流センサに用
いられようとしている。
2. Description of the Related Art Recently, the Faraday effect of a magneto-optical element,
That is, an optical magnetic field sensor that measures the magnetic field strength by using the rotation of the plane of polarization when linear (plane) polarized light passes through a substance in the direction of a magnetic field is small, has excellent insulation properties, and is not affected by electromagnetic noise. Due to such features, it is about to be used as a current sensor that measures the magnitude of current flowing in substations, transmission lines, and distribution lines, which are power transport routes from power plants to consumers, and detects abnormalities.

【0003】図6は、これまでに開発されてきた光磁界
センサの基本構成を示す。図において、レーザダイオー
ドまたは発光ダイオードなどの光源からの出射光は、光
ファイバ1内を伝搬してその出射端1aから出射した
後、レンズ2及び偏光子3を通過し直線偏光となり、磁
気光学素子4へ入射する。そして、この磁気光学素子4
を通過するときに被測定磁界(以下、単に磁界という)
の強さに応じて旋光作用を受け、偏光子5を通過して上
記磁界の強さに対応する強度となり、さらにレンズ6に
よって光ファイバ7の入射端7aに集光せしめられる。
光ファイバ7に入射した光はその後、該光ファイバ7を
介して光検出器まで導かれ光電変換される。
FIG. 6 shows a basic configuration of an optical magnetic field sensor that has been developed so far. In the drawing, light emitted from a light source such as a laser diode or a light emitting diode propagates through an optical fiber 1 and emerges from an exit end 1a thereof, passes through a lens 2 and a polarizer 3, and becomes linearly polarized light. 4 is incident. And this magneto-optical element 4
The magnetic field to be measured when passing through (hereinafter simply referred to as magnetic field)
In response to the optical rotation, the light passes through the polarizer 5 to have an intensity corresponding to the intensity of the magnetic field, and is further focused by the lens 6 on the incident end 7a of the optical fiber 7.
The light incident on the optical fiber 7 is thereafter guided to a photodetector via the optical fiber 7 and photoelectrically converted.

【0004】ここに、上記偏光子3と上記偏光子5には
通常偏光ビームスプリッタが用いられ、さらに、該2つ
の偏光子は45度の角度配置に設定される。また、矢印
Aで示すように測定磁界は、光の進路と平行である。
Here, a polarizing beam splitter is usually used for the polarizer 3 and the polarizer 5, and the two polarizers are set at an angle of 45 degrees. Further, as shown by the arrow A, the measurement magnetic field is parallel to the path of light.

【0005】[0005]

【発明が解決しようとする課題】光磁界センサの基本構
成は図6の通りであるが、実際にセンサを制作するとき
は図7のような構成が採用される。すなわち、光ファイ
バ1及び光ファイバ7、レンズ2及びレンズ6、偏光ビ
ームスプリッタからなる偏光子3及び偏光子5、磁気光
学素子4、光の進行方向を直角に曲げるための全反射プ
リズム8及び全反射プリズム9からなる。さらに、製造
を容易にするため上記2つの偏光ビームスプリッタの偏
光子3及び5を同一平面内に配置する必要があり、この
ため補助部品として半波長板10が必要である。ここ
で、全反射プリズム8及び9、偏光子3及び5、磁気光
学素子4及び半波長板10から構成される部分が光磁界
センサの磁界検出部を構成する。
The basic structure of the optical magnetic field sensor is as shown in FIG. 6, but when actually manufacturing the sensor, the structure as shown in FIG. 7 is employed. That is, the optical fiber 1 and the optical fiber 7, the lens 2 and the lens 6, the polarizer 3 and the polarizer 5, each including a polarizing beam splitter, the magneto-optical element 4, the total reflection prism 8 for bending the traveling direction of light to a right angle, and the total reflection prism 8. It comprises a reflecting prism 9. Further, the polarizers 3 and 5 of the two polarizing beam splitters need to be arranged on the same plane to facilitate manufacture, and therefore, a half-wave plate 10 is required as an auxiliary component. Here, a portion composed of the total reflection prisms 8 and 9, the polarizers 3 and 5, the magneto-optical element 4, and the half-wave plate 10 constitutes a magnetic field detection unit of the optical magnetic field sensor.

【0006】しかし、このような光磁界センサの磁界検
出部を組み立てる場合、光学素子の数が多いこと、さら
に、各光学素子は光軸を合わせながら固定する必要があ
り、各光学素子の固定精度が厳しいことなどから、未だ
量産性に優れたものは得られていない。
However, when assembling the magnetic field detecting section of such an optical magnetic field sensor, the number of optical elements is large, and it is necessary to fix each optical element while aligning the optical axes. However, there is still no mass-productivity that has been obtained.

【0007】本発明はかかる実情に鑑み、簡便に光学素
子を固定でき量産性の優れた光中央タップ(CT)を得
るための光学素子ホルダを提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide an optical element holder for easily fixing an optical element and obtaining an optical center tap (CT) excellent in mass productivity.

【0008】[0008]

【課題を解決するための手段】上記目的を解決するため
に、本発明に係る光学素子ホルダは、互いに平行な第1
及び第2の平面の各平面内にホルダ面を有し、前記平面
に垂直方向の貫通穴を有するホルダ本体からなり、前記
平面に平行な底面を有し且つ前記第1の平面内に開口を
有する第1の溝と、前記平面に平行な底面を有し且つ前
記第2の平面内に開口を有する第2の溝と、前記平面に
平行な底面を有し且つ前記第1の溝の底面が含まれる第
3の平面内に開口を有する第3の溝を有し、前記貫通穴
は前記第2及び第3の溝の底面に各々開口を有し、前記
第1の溝の伸びる方向と第2の溝の伸びる方向は45度
異なり、前記第1の溝の伸びる方向と第3の溝が伸びる
方向は90度異なり、前記第1及び第2の溝に偏光子
を、前記第3の溝に光学素子をはめたときに、第2の溝
内の偏光子、貫通穴、第3の溝内の光学素子、前記第1
の溝の底面に第3の溝が開口する部分、及び第1の溝内
の偏光子を光軸(光の進路)が通るようにする。
In order to solve the above-mentioned object, an optical element holder according to the present invention comprises first and second parallel optical element holders.
And a holder body having a holder surface in each plane of the second plane, having a through hole perpendicular to the plane, having a bottom surface parallel to the plane, and forming an opening in the first plane. A first groove having a bottom surface parallel to the plane and having an opening in the second plane; and a bottom surface having a bottom surface parallel to the plane and having a bottom surface parallel to the plane. And a third groove having an opening in a third plane, wherein the through-hole has an opening in a bottom surface of each of the second and third grooves, and a direction in which the first groove extends. The direction in which the second groove extends differs by 45 degrees, the direction in which the first groove extends and the direction in which the third groove extends differs by 90 degrees, and a polarizer is provided in the first and second grooves and the third groove is provided. When the optical element is fitted in the groove, the polarizer and the through hole in the second groove, the optical element in the third groove, the first
The optical axis (path of light) passes through the portion where the third groove opens on the bottom surface of the groove and the polarizer in the first groove.

【0009】さらに、本発明に係る光磁界センサは、前
記光学素子ホルダに、偏光子、光学素子を組み付けたも
のに全反射プリズムを併置し、これにレンズ、光ファイ
バを組み合わせたもの、あるいは、前記光学素子ホルダ
に、偏光子、光学素子を組み付けさらに全反射プリズム
を組み付け、これにレンズ、光ファイバを組み合わせた
ものである。
Further, in the optical magnetic field sensor according to the present invention, a total reflection prism is juxtaposed to the optical element holder in which a polarizer and an optical element are assembled, and a lens and an optical fiber are combined with this. A polarizer and an optical element are assembled to the optical element holder, a total reflection prism is assembled, and a lens and an optical fiber are combined.

【0010】[0010]

【作用】本発明のホルダを用いて光学素子ホルダ組立体
を形成する場合、磁気光学素子を第3の溝に貫通穴を塞
ぐように固定する。次に、偏光子を第2の溝に貫通穴を
塞ぐように固定する。次に、偏光子を第1の溝に貫通穴
を覆うように固定する。これによって、従来技術におい
て偏光子、磁気光学素子、半波長板が光軸が合った状態
で配置されたものと同等のものが半波長板を使用せず得
られたことになる。
When forming an optical element holder assembly using the holder of the present invention, the magneto-optical element is fixed to the third groove so as to close the through hole. Next, the polarizer is fixed to the second groove so as to close the through hole. Next, the polarizer is fixed to the first groove so as to cover the through hole. As a result, the same thing as the prior art in which the polarizer, the magneto-optical element, and the half-wave plate are arranged with the optical axis aligned can be obtained without using the half-wave plate.

【0011】さらに、ホルダの大きさ及び溝の深さを調
節することにより偏光子がホルダ面から下げることが可
能であるため、全反射プリズムをホルダ面に密着させて
配置できる。これによって、従来方式における全反射プ
リズム、偏光子、磁気光学素子、半波長板が光軸が合っ
た状態で配置されたものと同等のものが得られたことに
なり、全ての光学素子が煩雑な光学的位置調整を必要と
しないで光磁界センサの磁界検出部を製作することが可
能となる。
Further, since the polarizer can be lowered from the holder surface by adjusting the size of the holder and the depth of the groove, the total reflection prism can be arranged in close contact with the holder surface. As a result, the same total reflection prism, polarizer, magneto-optical element, and half-wave plate as those in the conventional method were obtained with the optical axis aligned, and all the optical elements were complicated. This makes it possible to manufacture the magnetic field detecting section of the optical magnetic field sensor without requiring a precise optical position adjustment.

【0012】なお、本発明による光学素子ホルダを用い
て光磁界センサの磁界検出部を製作する場合、光学的位
置調整を全てホルダの機械的加工精度へ頼っているが、
実際には、現状の機械加工の精度であっても、従来の光
磁界センサと同等の特性が得られる。
When manufacturing the magnetic field detecting portion of the optical magnetic field sensor using the optical element holder according to the present invention, all the optical position adjustments depend on the mechanical processing accuracy of the holder.
Actually, even with the current machining accuracy, characteristics equivalent to those of the conventional optical magnetic field sensor can be obtained.

【0013】図で説明すると、本発明に係る光学素子ホ
ルダを使用すると図7における偏光子3、光学素子4、
偏光子5が光学素子ホルダに取り付けられて一体の組立
体となる。この光学素子ホルダ組立体の平行な2面の一
方の面に全反射プリズム8を、他の面に全反射プリズム
9を密着させて配置させると、現状のホルダ機械加工精
度でも、全反射プリズム8及び9、偏光子3及び5、磁
気光学素子4を光軸が合った状態で配置できる。
Referring to the drawing, when the optical element holder according to the present invention is used, the polarizer 3, the optical element 4,
The polarizer 5 is attached to the optical element holder to form an integrated assembly. When the total reflection prism 8 is disposed on one of two parallel surfaces of the optical element holder assembly and the total reflection prism 9 is disposed in close contact with the other surface, the total reflection prism 8 can be obtained even with the current holder machining accuracy. And 9, the polarizers 3 and 5, and the magneto-optical element 4 can be arranged with their optical axes aligned.

【0014】磁界強度を測定するためには、レーザダイ
オードまたは発光ダイオードなどの光源からの出射光
が、光ファイバ内を伝搬してその出射端から出射した
後、レンズを経て本発明の光学素子ホルダ組立体に入
り、全反射プリズム及び偏光子を通過し、直線偏光とな
り磁気光学素子へ入射する。そして、この磁気光学素子
を通過するときに磁界の強さに応じて旋光作用を受け、
偏光子を通過して上記磁界の強さに対応する強度とな
り、さらに全反射プリズムを出た後、レンズによって光
ファイバの入射端に集光せしめられる。光ファイバに入
射した光はその後、該光ファイバを介して光検出器まで
導かれ光電変換され、測定値が得られる。
In order to measure the magnetic field strength, the light emitted from a light source such as a laser diode or a light emitting diode propagates through an optical fiber, exits from the exit end, and then passes through a lens to hold the optical element holder of the present invention. The light enters the assembly, passes through the total reflection prism and the polarizer, becomes linearly polarized light, and enters the magneto-optical element. Then, when passing through this magneto-optical element, it receives an optical rotation action according to the strength of the magnetic field,
After passing through the polarizer, the intensity becomes the intensity corresponding to the intensity of the magnetic field. After exiting the total reflection prism, the light is condensed by the lens at the incident end of the optical fiber. The light incident on the optical fiber is thereafter guided to the photodetector via the optical fiber and photoelectrically converted to obtain a measured value.

【0015】[0015]

【実施例】本発明の実施例に係る光学素子ホルダ本体1
6(以下、ホルダと称する)の概略を図1、図2、図
3、図4を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An optical element holder body 1 according to an embodiment of the present invention.
6 (hereinafter, referred to as a holder) will be schematically described with reference to FIGS. 1, 2, 3, and 4. FIG.

【0016】図1は本発明の実施例に係る光学素子ホル
ダ組立体の斜視図であり、図2は平面図、図3は側面
図、図4は底面図である。
FIG. 1 is a perspective view of an optical element holder assembly according to an embodiment of the present invention, FIG. 2 is a plan view, FIG. 3 is a side view, and FIG. 4 is a bottom view.

【0017】ホルダ16は、各々ホルダ面18、19を
含む平行な面(第3図に仮想線で示す)を基準にして、
典型的には合成樹脂、SUSなどの材料により形成され
る。
The holder 16 is positioned with respect to a parallel surface (shown by phantom lines in FIG. 3) including the holder surfaces 18 and 19, respectively.
Typically, it is formed of a material such as a synthetic resin or SUS.

【0018】ホルダ16には、ホルダ面18、19に対
し垂直で、ホルダ16の中心を通る線を中心軸とする貫
通穴11と、ホルダ面18の側にホルダ面と平行な底面
を有する浅い溝(第1の溝)12、深い溝(第3の溝)
13を設ける。浅い溝12と深い溝13は互いに直行す
る溝で、その長手方向中心線が貫通穴11の中心線を通
る。
The holder 16 has a through hole 11 which is perpendicular to the holder surfaces 18 and 19 and whose center axis is a line passing through the center of the holder 16, and a shallow surface having a bottom surface parallel to the holder surface on the side of the holder surface 18. Groove (first groove) 12, deep groove (third groove)
13 are provided. The shallow groove 12 and the deep groove 13 are grooves orthogonal to each other, and their longitudinal center lines pass through the center lines of the through holes 11.

【0019】また、ホルダ面19の側にホルダ面と平行
な底面を有する溝(第2の溝)14を設ける。溝14
は、前記直行する溝12、13に対して45度の方向に
伸び、溝の長手方向中央線が貫通穴11の中心線を通
る。
A groove (second groove) 14 having a bottom surface parallel to the holder surface is provided on the holder surface 19 side. Groove 14
Extends in a direction of 45 degrees with respect to the grooves 12 and 13 that are perpendicular to each other, and the longitudinal center line of the groove passes through the center line of the through hole 11.

【0020】上記で構成される本発明の実施例に係るホ
ルダ16を用いて光磁界センサの組立を行った。
An optical magnetic field sensor was assembled using the holder 16 according to the embodiment of the present invention configured as described above.

【0021】まず、図1及び図2に示される溝13に合
う側面を有し少なくとも貫通穴11を塞ぐ大きさの磁気
光学素子を該溝13に固定した。ここで、磁気光学素子
には(YbTbBi)3 Fe5 12を用いた。次に、溝
12に合う側面を有し少なくとも貫通穴11を塞ぐ大き
さの偏光子を該溝12に固定し、さらに、溝14に合う
側面を有し少なくとも穴11を塞ぐ大きさの偏光子を該
溝14に固定した。ここで、偏光子にはコーニング社製
ポーラコアを用いた。なお、各光学素子のホルダへの固
定は熱硬化型接着剤を用いた。こうして、偏光子、貫通
穴、磁気光学素子、偏光子を光が貫通できる光学素子ホ
ルダ組立体15が形成された。
First, a magneto-optical element having a side surface corresponding to the groove 13 shown in FIGS. 1 and 2 and having a size to close at least the through hole 11 was fixed to the groove 13. Here, (YbTbBi) 3 Fe 5 O 12 was used for the magneto-optical element. Next, a polarizer having a side surface that matches the groove 12 and having a size to close at least the through hole 11 is fixed to the groove 12, and a polarizer having a side surface that fits the groove 14 and having a size that closes at least the hole 11. Was fixed in the groove 14. Here, a polar core manufactured by Corning Incorporated was used as the polarizer. Note that a thermosetting adhesive was used to fix each optical element to the holder. In this manner, the polarizer, the through-hole, the magneto-optical element, and the optical element holder assembly 15 through which light can pass through the polarizer were formed.

【0022】次に、この光学素子が固定された光学素子
ホルダ組立体15を用いて光磁界センサを組み立てた。
その具体的な構成を図5に示す。すなわち、光ファイバ
1及び光ファイバ7にマルチモードファイバを使用し、
レンズ2及びレンズ6にレンズを使用し、光の進行方向
を直角に曲げるための全反射プリズム8及び全反射プリ
ズム9を配置した。さらに、上記の光学素子を固定した
本発明の実施例に係る光学素子ホルダ組立体15を全反
射プリズム8、9の間に配置してある。なお、全反射プ
リズム8及び9は実際には図2におけるホルダ面18及
び図3におけるホルダ面19に密着固定されている。
Next, an optical magnetic field sensor was assembled using the optical element holder assembly 15 to which the optical element was fixed.
The specific configuration is shown in FIG. That is, using a multimode fiber for the optical fiber 1 and the optical fiber 7,
A lens was used for the lens 2 and the lens 6, and a total reflection prism 8 and a total reflection prism 9 for bending the traveling direction of light at a right angle were arranged. Further, the optical element holder assembly 15 according to the embodiment of the present invention, to which the above-described optical element is fixed, is disposed between the total reflection prisms 8 and 9. The total reflection prisms 8 and 9 are actually fixed to the holder surface 18 in FIG. 2 and the holder surface 19 in FIG.

【0023】ただし、ここで本発明による光学素子ホル
ダを用いて光磁界センサの磁界検出部を製作する場合、
光学的位置調整を全てホルダの機械的加工精度へ頼って
いるため、実際に従来の光磁界センサと同等の特性が得
られるか否かが問題となる。従って、以下に示す実施例
で本発明による光学素子ホルダを用いて製作した光磁界
センサと従来の方法により製作した光磁界センサを比較
する。
However, when manufacturing the magnetic field detecting section of the optical magnetic field sensor using the optical element holder according to the present invention,
Since all the optical position adjustments rely on the mechanical processing accuracy of the holder, it is a problem whether or not characteristics equivalent to those of the conventional optical magnetic field sensor can be actually obtained. Therefore, in the following examples, a magneto-optical sensor manufactured using the optical element holder according to the present invention and a magneto-optical sensor manufactured by a conventional method will be compared.

【0024】前述のような構成の光磁界センサを20台
製作し、その中から無差別に5台を選び特性を測定し
た。測定した特性は、光学素子の位置調整のずれが顕著
に現れる感度及び感度の温度特性(−20℃〜+80℃
における感度の変動)とした。光源に波長0.85μm
の光を発生する発光ダイオードを用い、光検出器にSi
フォトダイオードを用いた。印加磁界は60Hzで40
0eの交流磁界とした。
Twenty optical magnetic field sensors having the above-described configuration were manufactured, and five of them were selected indiscriminately and their characteristics were measured. The measured characteristics are the sensitivity and the temperature characteristic of the sensitivity (−20 ° C. to + 80 ° C.) in which the deviation of the position adjustment of the optical element appears remarkably.
In the sensitivity). 0.85μm wavelength for light source
Using a light-emitting diode that generates
A photodiode was used. The applied magnetic field is 40 at 60 Hz.
The AC magnetic field was 0e.

【0025】比較例のために図7に示す従来の光磁界セ
ンサも20台製作し、その中から無差別に5台を選び、
感度及び感度の温度特性を測定した。光源、光検出器及
び印加磁界は本発明の実施例と同一とした。
For comparison, twenty conventional optical magnetic field sensors shown in FIG. 7 were also manufactured, and five of them were selected indiscriminately.
The sensitivity and the temperature characteristics of the sensitivity were measured. The light source, the photodetector and the applied magnetic field were the same as in the embodiment of the present invention.

【0026】上記2種類の光磁界センサの感度及び感度
の温度特性を測定した結果をそれぞれ表1及び表2に示
す。本発明による光学素子ホルダ組立体を用いて製作し
た光磁界センサの測定結果を表中A欄に、及び比較例の
ために製作した従来の光磁界センサの測定結果を表中B
欄に示してある。
Tables 1 and 2 show the results of measuring the sensitivity and the temperature characteristics of the sensitivity of the two types of optical magnetic field sensors, respectively. The column A shows the measurement results of the optical magnetic field sensor manufactured using the optical element holder assembly according to the present invention, and the column B shows the measurement results of the conventional optical magnetic field sensor manufactured for the comparative example.
Column.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】表1及び表2の結果から、本発明の実施例
に係る光学素子ホルダ組立体を用いて製作した光磁界セ
ンサも従来の光磁界センサも特性のばらつきはほとんど
変わらないことがわかる。すなわち、本発明による光学
素子ホルダ本体に光学素子を固定するだけで光学的な位
置調整がなされることが確認された。したがって、ホル
ダ本体の機械的加工精度も問題のないことが確認され
た。
From the results of Tables 1 and 2, it can be seen that the characteristics of the optical magnetic field sensor manufactured using the optical element holder assembly according to the embodiment of the present invention and the conventional optical magnetic field sensor hardly vary. That is, it was confirmed that optical position adjustment was performed only by fixing the optical element to the optical element holder body according to the present invention. Therefore, it was confirmed that there was no problem in the mechanical processing accuracy of the holder main body.

【0030】[0030]

【発明の効果】以上に説明した本発明による光学素子ホ
ルダ組立体を用いれば、次のような効果が得られる。 (1)光学素子の煩雑な光学的位置調整が要らず、光磁
界センサの製作が可能となり、光磁界センサの量産性の
向上に好適である。 (2)補助部品として従来必要であった半波長板を使用
しないですむ。 (3)本発明による光学素子ホルダは、従来の機械的加
工で得られる精度によっても従来の光磁界センサと同等
の特性が得られる。
The following effects can be obtained by using the above-described optical element holder assembly according to the present invention. (1) The optical element sensor can be manufactured without complicated optical position adjustment of the optical element, which is suitable for improving the mass productivity of the optical magnetic field sensor. (2) It is not necessary to use a half-wave plate conventionally required as an auxiliary component. (3) The optical element holder according to the present invention can obtain the same characteristics as the conventional optical magnetic field sensor even with the accuracy obtained by the conventional mechanical processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る光学素子ホルダ本体の外
観斜視図である。
FIG. 1 is an external perspective view of an optical element holder main body according to an embodiment of the present invention.

【図2】本発明の実施例に係る光学素子ホルダ本体の平
面図である。
FIG. 2 is a plan view of an optical element holder main body according to the embodiment of the present invention.

【図3】本発明の実施例に係る光学素子ホルダ本体の側
面図である。
FIG. 3 is a side view of the optical element holder main body according to the embodiment of the present invention.

【図4】本発明の実施例に係る光学素子ホルダ本体の底
面図である。
FIG. 4 is a bottom view of the optical element holder main body according to the embodiment of the present invention.

【図5】本発明の実施例に係る光学素子ホルダ組立体を
用いて光磁界センサを組み立てた構成図である。
FIG. 5 is a configuration diagram of an optical magnetic field sensor assembled using the optical element holder assembly according to the embodiment of the present invention.

【図6】従来の光磁界センサの基本構成図である。FIG. 6 is a basic configuration diagram of a conventional optical magnetic field sensor.

【図7】従来の光磁界センサの具体的な構成図である。FIG. 7 is a specific configuration diagram of a conventional optical magnetic field sensor.

【符号の説明】[Explanation of symbols]

1 光ファイバ 1a 光ファイバの光出射端 2 レンズ 3 偏光子 4 磁気光学素子 5 偏光子 6 レンズ 7 光ファイバ 7a 光ファイバの光入射端 8 全反射プリズム 9 全反射プリズム 10 半波長板 11 貫通穴 12 第1の溝 13 第3の溝 14 第2の溝 15 2枚の偏光子及び磁気光学素子が固定された光学
素子ホルダ組立体 16 光学素子ホルダ本体 18 ホルダ面 19 ホルダ面
REFERENCE SIGNS LIST 1 optical fiber 1a light emitting end of optical fiber 2 lens 3 polarizer 4 magneto-optical element 5 polarizer 6 lens 7 optical fiber 7a light incident end of optical fiber 8 total reflection prism 9 total reflection prism 10 half-wave plate 11 through hole 12 First groove 13 Third groove 14 Second groove 15 Optical element holder assembly to which two polarizers and a magneto-optical element are fixed 16 Optical element holder main body 18 Holder surface 19 Holder surface

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 互いに平行な第1及び第2の平面の各平
面内にホルダ面を有し、前記平面に垂直方向の貫通穴を
有するホルダ本体からなり、前記平面に平行な底面を有
し且つ前記第1の平面内に開口を有する第1の溝と、前
記平面に平行な底面を有し且つ前記第2の平面内に開口
を有する第2の溝と、前記平面に平行な底面を有し且つ
前記第1の溝の底面が含まれる第3の平面内に開口を有
する第3の溝を有し、前記貫通穴は前記第2及び第3の
溝の底面に各々開口を有し、前記第1の溝の伸びる方向
と第2の溝の伸びる方向は45度異なり、前記第1の溝
の伸びる方向と第3の溝が伸びる方向は90度異なり、
前記第1及び第2の溝に偏光子を、前記第3の溝に光学
素子をはめたときに、第2の溝内の偏光子、貫通穴、第
3の溝内の光学素子、前記第1の溝の底面に第3の溝が
開口する部分、及び第1の溝内の偏光子を光軸(光の進
路)が通るようにしたことを特徴とする光学素子ホル
ダ。
1. A holder body having a holder surface in each of a first and a second plane parallel to each other, a holder body having a through hole perpendicular to the plane, and having a bottom surface parallel to the plane. And a first groove having an opening in the first plane, a second groove having a bottom parallel to the plane and having an opening in the second plane, and a bottom parallel to the plane. A third groove having an opening in a third plane including a bottom surface of the first groove, wherein the through hole has an opening in a bottom surface of the second and third grooves, respectively. The direction in which the first groove extends and the direction in which the second groove extends differ by 45 degrees, the direction in which the first groove extends and the direction in which the third groove extends differs by 90 degrees,
When the polarizer is fitted in the first and second grooves and the optical element is fitted in the third groove, the polarizer in the second groove, the through hole, the optical element in the third groove, An optical element holder, characterized in that an optical axis (path of light) passes through a portion where a third groove opens on the bottom surface of the first groove and a polarizer in the first groove.
【請求項2】 前記ホルダ面に全反射プリズムを取り付
けるようにした請求項1に記載の光学素子ホルダ。
2. The optical element holder according to claim 1, wherein a total reflection prism is mounted on the holder surface.
【請求項3】 請求項1に記載の光学素子ホルダを用い
た光磁界センサ。
3. An optical magnetic field sensor using the optical element holder according to claim 1.
JP5032550A 1993-01-29 1993-01-29 Optical element holder and optical magnetic field sensor Expired - Fee Related JP2601123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5032550A JP2601123B2 (en) 1993-01-29 1993-01-29 Optical element holder and optical magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5032550A JP2601123B2 (en) 1993-01-29 1993-01-29 Optical element holder and optical magnetic field sensor

Publications (2)

Publication Number Publication Date
JPH06230258A JPH06230258A (en) 1994-08-19
JP2601123B2 true JP2601123B2 (en) 1997-04-16

Family

ID=12362046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5032550A Expired - Fee Related JP2601123B2 (en) 1993-01-29 1993-01-29 Optical element holder and optical magnetic field sensor

Country Status (1)

Country Link
JP (1) JP2601123B2 (en)

Also Published As

Publication number Publication date
JPH06230258A (en) 1994-08-19

Similar Documents

Publication Publication Date Title
US7746476B2 (en) Fiber optic gyroscope
JP4108040B2 (en) Current measuring device
US4564754A (en) Method and apparatus for optically measuring a current
JP3898760B2 (en) Verde constant temperature compensation current sensor
JP2006275654A (en) Displacement detector, displacement measuring apparatus, and fixed-point detector
JP2007057324A (en) Fiber optic measuring system
US4998063A (en) Fiber optic coupled magneto-optic sensor having a concave reflective focusing surface
US11435415B2 (en) Magnetic sensor element and magnetic sensor device
KR101704731B1 (en) Optical current sensors with photonic crystal fibers and a method of its prodution
EP0774669B1 (en) Optical fiber magnetic-field sensor
JP2601123B2 (en) Optical element holder and optical magnetic field sensor
US6297625B1 (en) Method and device for measuring a magnetic field
EP0823638B1 (en) Optical current measurement
US5256872A (en) Device for measuring current by optic fiber and dual polarization analysis
US20230288641A1 (en) Optical waveguide for a magneto-optical current sensor
JPH0252827B2 (en)
SU1404956A1 (en) Device for measuring instensity of variable electric fields
JPH0695049A (en) Magneto-optical field sensor
JPH04190164A (en) Photocurrent sensor
JPH0894494A (en) Apparatus for measuring wavelength dependency of optical isolator
JPH09257892A (en) Optical magnetic field sensor
FR2615625A1 (en) SENSOR FOR MEASURING ACCELERATION OF MISSILES
JPH04291212A (en) Production of constant polarization laser diode module
JPH05322936A (en) Photocurrent sensor
JPH0269688A (en) Magnetic field sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees