JP2598616B2 - Fine aggregate obtained by crushing rhyolitic welded tuff and its production method - Google Patents

Fine aggregate obtained by crushing rhyolitic welded tuff and its production method

Info

Publication number
JP2598616B2
JP2598616B2 JP6210819A JP21081994A JP2598616B2 JP 2598616 B2 JP2598616 B2 JP 2598616B2 JP 6210819 A JP6210819 A JP 6210819A JP 21081994 A JP21081994 A JP 21081994A JP 2598616 B2 JP2598616 B2 JP 2598616B2
Authority
JP
Japan
Prior art keywords
crushed
crushing
murou
fine aggregate
sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6210819A
Other languages
Japanese (ja)
Other versions
JPH0873246A (en
Inventor
貞治 山崎
明 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KORITSU INDUSTRIES CO., LTD.
Original Assignee
KORITSU INDUSTRIES CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KORITSU INDUSTRIES CO., LTD. filed Critical KORITSU INDUSTRIES CO., LTD.
Priority to JP6210819A priority Critical patent/JP2598616B2/en
Publication of JPH0873246A publication Critical patent/JPH0873246A/en
Application granted granted Critical
Publication of JP2598616B2 publication Critical patent/JP2598616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/14Minerals of vulcanic origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Disintegrating Or Milling (AREA)
  • Crushing And Grinding (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、コンクリート用砕石砂
としての用途を備えた、流紋岩質(弱)溶結凝灰岩を破
砕してなる細骨材及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine aggregate obtained by crushing rhyolitic (weak) welded tuff, which is used as crushed stone for concrete, and a method for producing the same.

【0002】[0002]

【従来の技術】細骨材としては川砂が最も好ましいとさ
れているが、川砂資源の涸渇にともない、最近では川砂
の他に山砂、海砂、陸砂、砕石砂等も細骨材として利用
されるようになってきた。
2. Description of the Related Art River sand is considered to be most preferable as fine aggregate. However, along with the depletion of river sand resources, recently, in addition to river sand, mountain sand, sea sand, land sand, crushed stone and the like are also used as fine aggregate. It is being used.

【0003】砕石砂の原料となる岩石(以下原石とい
う)は、玄武岩、安山岩、硬質砂岩、硬質石灰岩等であ
る。軟質砂岩、軟質凝灰岩、風化岩等は、強度が不足す
るために砕石砂の原石として不適当である。この砕石砂
は、コスト的な理由から粗骨材用の砕石の製造中に一定
割合で副産物として発生したものや、砕石ダストの洗浄
水の中に沈殿したものを消極的に利用しているにすぎな
い。
[0003] Rocks used as raw materials of crushed sand (hereinafter referred to as rough stones) are basalt, andesite, hard sandstone, hard limestone and the like. Soft sandstone, soft tuff, weathered rock and the like are unsuitable as crushed sand rough stones due to insufficient strength. Due to cost reasons, this crushed sand is passively used as a by-product generated at a certain rate during the production of crushed stones for coarse aggregates, and what has settled in the washing water of crushed dust. Only.

【0004】ところで、奈良県から三重県にかけて、溶
結凝灰岩のひとつである室生火山岩が分布している。こ
の溶結凝灰岩は、中新世の火山活動による火砕流堆積物
であって、火砕流の熱と堆積物の重みで全体がちょうど
菓子の粟おこしのように溶結しているものである。
By the way, from Nara Prefecture to Mie Prefecture, Murou volcanic rock which is one of the fused tuffs is distributed. This welded tuff is a pyroclastic flow deposit due to Miocene volcanic activity, and the entirety is welded just like confectionery millet by the heat of the pyroclastic flow and the weight of the deposit.

【0005】この室生火山岩は、土木用栗石あるいは路
盤材用砕石として僅かに使用されているが、図4に示す
ように、粒径5mm〜25mmのコンクリート用の砕石
とした場合、日本工業規格(JIS A 5005)では安
定性試験の数値が12%以下であるべきところ、室生火
山岩により製造した砕石は安定性試験の数値が20%以
上と不良のため、通常の粗骨材としては使用できなかっ
た。
[0005] This Murou volcanic rock is slightly used as rubble stone for civil engineering or crushed stone for roadbed material. However, as shown in FIG. According to JIS A 5005), the value of the stability test should be 12% or less, but crushed stone produced from Murou volcanic rock cannot be used as ordinary coarse aggregate because the value of the stability test is 20% or more and is poor. Was.

【0006】また、同じ流紋岩質溶結凝灰岩として知ら
れる兵庫県有馬地方を中心とする有馬層群は、堆積岩を
形成する続成作用により強く固結しているため、粗骨材
に加工して利用することは可能であり、実際に採掘操業
がなされているが、細骨材に加工するには破砕コストが
過大になるため、商業採掘は行なわれていない。
The Arima Group, mainly in the Arima district of Hyogo Prefecture, also known as rhyolitic welded tuff, is strongly consolidated by diagenesis forming sedimentary rocks, and is therefore processed into coarse aggregate. Although it is possible to use it and it is actually mining operation, commercial mining is not performed because the crushing cost is too large to process into fine aggregate.

【0007】[0007]

【発明が解決しようとする課題】細骨材の供給源が、山
砂、陸砂及び砕石砂に多様化する中、各砂の産地の宅地
化が進み、環境保全の規制も除々に強化されつつあり、
このような環境のもと、年間5億トンの国内需要を今後
も国内砂だけで十分に満足させ得るかどうか問題になっ
ている。
As the sources of fine aggregates are diversified into mountain sand, land sand and crushed stone sand, the production areas of each sand are becoming more residential and the regulations for environmental conservation are gradually being strengthened. It is
Under such an environment, there is a question whether domestic sand alone can sufficiently satisfy 500 million tons of domestic demand per year in the future.

【0008】特に中国、四国、九州地方では、砂利のほ
とんどを海砂に依存しているが、海砂の採取可能地域が
年々少なくなり、また、山砂や陸砂は、有機不純物、泥
土、粘土塊除去のため、十分な水洗浄が必要とされコス
ト高となっている。また、通常の砕石を砕石砂まで破砕
するには大きな動力を要するため、製造コストが高くな
る。
In the Chugoku, Shikoku, and Kyushu regions in particular, most of the gravel depends on sea sand. However, the area where sea sand can be collected is decreasing year by year, and mountain sand and land sand contain organic impurities, mud, Sufficient water washing is required to remove the clay lumps, which increases costs. In addition, a large power is required to crush ordinary crushed stone to crushed sand, which increases the production cost.

【0009】砕石砂は、前述の如く破砕コストの関係で
積極的に生産されてはいないが、破砕コストが少なけれ
ば、山砂や海砂などとともに主要な供給源となり得るも
のである。
As described above, crushed sand is not actively produced due to the crushing cost, but if the crushing cost is low, it can be a major supply source together with mountain sand and sea sand.

【0010】本発明者らは、前述した室生火山岩が、砕
石としては壊れやすいため、不適であるという欠点に着
目し、これを破砕エネルギ低減という長所として逆に利
用することで、砕石砂の原石として利用できるのではな
いかという仮説を立て、この仮説の正当性を確認すべく
種々の実験を行い、室生火山岩をはじめとする流紋岩質
溶結凝灰岩が砕石砂の原石として立派に役立つことを発
見した。特に室生火山岩は、近畿地方中央部に分布し、
層厚は400m以上、総量50km3 以上に達すると
概算され、これを細骨材として使用できれば今後、砕石
砂を輸入することなく長期にわたり砕石砂を安定供給す
ることができる。
The present inventors have paid attention to the drawback that the aforementioned Murou volcanic rocks are unsuitable because they are easily broken as crushed stones. The hypothesis that this hypothesis could be used was made, and various experiments were conducted to confirm the validity of this hypothesis, and it was shown that rhyolite welded tuff, including Murou volcanic rock, would be useful as a raw stone for crushed sand. discovered. In particular, Murou volcanic rocks are distributed in the central Kinki region,
It is estimated that the layer thickness will reach 400 m or more and the total amount will reach 50 km 3 or more. If this can be used as fine aggregate, crushed sand can be supplied stably for a long time without importing crushed sand.

【0011】本発明は、室生火山岩が砕石砂の原石とし
て利用可能であるという新たな発見に基づき提案された
もので、細骨材を将来にわたり安価に安定供給できるよ
うにすることを目的としている。
The present invention has been proposed based on a new finding that Murou volcanic rock can be used as a raw stone of crushed sand, and an object of the present invention is to enable a stable supply of fine aggregate at a low cost in the future. .

【0012】[0012]

【課題を解決するための手段】前述した課題を解決する
ため、本発明は、流紋岩質溶結凝灰岩を粒径5mm以下
に破砕してなることを特徴としている。
In order to solve the above-mentioned problems, the present invention is characterized in that rhyolitic welded tuff is crushed to a particle size of 5 mm or less.

【0013】また、本発明は、流紋岩質溶結凝灰岩の砕
石をハンマクラッシャにより溶結部分で分離して粒径5
mm以下の結晶体群にすることを特徴としている。
Further, according to the present invention, a crushed stone of rhyolitic welded tuff is separated at a welded portion by a hammer crusher to have a particle size of 5 mm.
It is characterized in that it is a crystal group of not more than mm.

【0014】さらに具体的には、上述した流紋岩質溶結
凝灰岩が、室生火山岩であることを特徴としている。
[0014] More specifically, the rhyolitic welded tuff described above is characterized by being Murou volcanic rock.

【0015】[0015]

【作用】流紋岩質溶結凝灰岩は、ガラス質火山灰や軽石
片に富む火山噴出物が高温を保ったままで堆積し、上か
らの堆積荷重で圧縮され溶結し固結している。
[Function] Rhyolite-welded tuff is composed of volcanic ash and pumice fragments-rich volcanic eruptions deposited at high temperatures, compressed and welded by the deposition load from above to solidify.

【0016】ハンマクラッシャを使用することにより、
室生火山岩のうち弱溶結部分であるガラス質だけが破砕
される。そのため、比較的弱い力で室生火山岩を構成し
ている各結晶体の界面を境としてにばらばらに分離させ
ることができ、各結晶体は、もとの形状を維持し、粒形
判定実績率もよい。また、粒径が5mm以下にならなか
ったものは、再びハンマクラッシャに投入することによ
り、ほぼ全て砕石砂に破砕される。
By using a hammer crusher,
Only the weakly viscous glassy part of the Murou volcanic rock is crushed. Therefore, it is possible to separate the crystals with relatively weak force at the interface between the crystals constituting the Murou volcanic rock. Good. In addition, when the particle diameter does not become 5 mm or less, almost all of it is crushed into crushed sand by being charged into the hammer crusher again.

【0017】こうして溶結凝灰岩から製造された砕石砂
は、比重が2.52、吸水率が2.55%、安定性6.
3%、洗い試験で失われる量が全体の5.8%で日本工
業規格(JIS A 5004)のコンクリート用砕石砂と
しての条件を満たしている。
The crushed stone thus produced from the fused tuff has a specific gravity of 2.52, a water absorption of 2.55% and a stability of 6.
3% and 5.8% of the total amount lost in the washing test satisfies the requirements for crushed stone for concrete of Japanese Industrial Standards (JIS A 5004).

【0018】なお、粗骨材として使用する砕石あるいは
細骨材として使用する砕石砂の条件は、図4に示すよう
に、日本工業規格(JIS A 5004及びA 5005)で
定められ、絶乾比重2.5以上、吸水率3%以下とされ
ている。さらに、砕石については安定性12%以下、洗
い試験で失われる量が全体の1%以下、砕石砂について
は安定性10%以下、洗い試験で失われる量が全体の7
%以下とされている。この砕石あるいは砕石砂は、必要
強度を確保する見地から、いずれも石英、長石等が多く
含まれている方が好ましく、破砕して粒径0.074m
m以下の微粉(過粉砕物)が発生しやすい雲母や粘土鉱
物は少ない方がよい。
The conditions of crushed stone used as coarse aggregate or crushed sand used as fine aggregate are determined by Japanese Industrial Standards (JIS A 5004 and A 5005) as shown in FIG. It is 2.5 or more and the water absorption is 3% or less. Furthermore, the stability of crushed stone is 12% or less, the amount lost in the washing test is 1% or less of the whole, and the crushed sand is 10% or less in stability and the amount lost in the washing test is 7% of the whole.
% Or less. This crushed stone or crushed stone sand preferably contains a large amount of quartz, feldspar and the like from the viewpoint of securing the required strength, and is crushed to a particle size of 0.074 m
It is better that mica and clay minerals, which are liable to generate fine powder (overcrushed material) of m or less, are small.

【0019】[0019]

【実施例】次に、図1を参照しながら、本発明の一実施
例を説明する。この細骨材1は、原石として室生火山岩
2を使用する。
Next, an embodiment of the present invention will be described with reference to FIG. This fine aggregate 1 uses Murou volcanic rock 2 as a raw stone.

【0020】室生火山岩2は、その大部分が柱状節理を
なす弱溶結層で、本来は、その上下に薄い非溶結層が位
置していたが、地殻変動により弱溶結層が地表に露出し
たものである。この室生火山岩を構成している砂粒径は
5mm以下で大半が1〜2mm程度である。図2は、室
生火山岩2の分析値とノルムを示す図である。図2によ
れば、室生火山岩2には二酸化珪素が最も多く含まれて
おり、その主要結晶体は高温型石英、カリ長石及び斜長
石である。
The Muro volcanic rock 2 is a weakly welded layer mainly composed of columnar joints. Originally, a thin non-welded layer was located above and below it, but the weakly welded layer was exposed on the surface due to crustal deformation. It is. The sand particle size of the Murou volcanic rock is 5 mm or less, and is mostly about 1 to 2 mm. FIG. 2 is a diagram showing analysis values and norms of the Murou volcanic rock 2. According to FIG. 2, Murou volcanic rock 2 contains the largest amount of silicon dioxide, and its main crystals are high-temperature quartz, potassium feldspar and plagioclase.

【0021】この室生火山岩2を露天掘によって採掘す
るのであるが、室生火山岩では、柱状節理が発達してい
るのでその割れ目に沿って採掘することができる。この
柱状節理は、1本の直径が1.0〜1.5mで、かつ、
直径よりもやや短い間隔で横断方向に板状節理が入って
いるので、採掘搬送に都合のよい大きさの塊状として切
出すことができる。
The Murou volcanic rock 2 is mined by open pit mining. Since the Murou volcanic rock has columnar joints, it can be mined along the cracks. This columnar joint has a diameter of 1.0 to 1.5 m, and
Since plate joints are provided in the transverse direction at intervals slightly shorter than the diameter, the joints can be cut out as a lump having a size convenient for mining and transportation.

【0022】これを図1に示すように、ジョークラッシ
ャAを使用してコーンクラッシャBに投入できる程度の
大きさの原石2aに破砕する。
As shown in FIG. 1, this is crushed by using a jaw crusher A into an ore 2a large enough to be put into a cone crusher B.

【0023】この原石2aをコーンクラッシャBで50
mm〜100mm程度の直径の小栗石2bに2次破砕し
た後、この小栗石2bをハンマクラッシャCに投入し、
結晶粒間の弱溶結部分(ガラス質)3だけを3次破砕し
て全体を粒径5mm以下の砕石砂とする。なお、ハンマ
クラッシャCは主としてアーム先端のハンマHとロスト
ルRで小栗石2bを破砕する装置である。
The rough 2a is mixed with a cone crusher B for 50 minutes.
After secondary crushing into Oguri stone 2b having a diameter of about 100 mm to 100 mm, this Oguri stone 2b is put into a hammer crusher C,
Only the weakly welded portion (vitreous) 3 between the crystal grains is crushed three times, and the whole is crushed sand having a particle size of 5 mm or less. Note that the hammer crusher C is a device for crushing the Oguriishi 2b mainly by the hammer H and the rostor R at the tip of the arm.

【0024】2次破砕及び3次破砕する際に要する動力
を、図3を参照しながら、玄武岩等の破砕との比較にお
いて説明する。
The power required for secondary crushing and tertiary crushing will be described with reference to FIG. 3 in comparison with crushing of basalt and the like.

【0025】室生火山岩2の基本破砕動力値(WM値)
は、20.8(wh/t)であり、石灰岩の基本破砕動
力値と比較しても約2分の1、玄武岩の基本破砕動力値
と比較すると約3分の1ないし4分の1という低動力値
で済む。
Basic crushing power value (WM value) of Murou volcanic rock 2
Is 20.8 (wh / t), about one-half as compared with the basic crushing power of limestone, and about one-third to one-quarter as compared with the basic crushing power of basalt. Low power value is required.

【0026】また、室生火山岩2の衝撃破砕抵抗値(C
値)は、9.46(ft・Lb/in)であり、安山岩
あるいは玄武岩と比較して、約2分の1以下で済む。
Further, the resistance to impact crushing of Murou volcanic rock 2 (C
Value) is 9.46 (ft · Lb / in), which is less than about one half of that of andesite or basalt.

【0027】このように破砕に要するエネルギが少なく
て済むのは、室生火山岩2に含有される高温型石英5、
カリ長石6、斜長石7といった主要結晶体をそのままに
して各結晶体5〜7間の各結晶体5〜7よりも非常に脆
い弱溶結部分(ガラス質の部分)3だけを破砕するため
である。
The reason why the energy required for the crushing is small is that the high-temperature quartz 5 contained in the Murou volcanic rock 2,
This is because the main crystals such as potassium feldspar 6 and plagioclase 7 are kept as they are, and only the weakly welded portions (vitreous portions) 3 that are much more brittle than the respective crystals 5 to 7 between the crystals 5 to 7 are crushed. is there.

【0028】したがって、室生火山岩2を破砕するに
は、石灰岩の破砕データで破砕能力を設計し、かつモー
タの動力(kw)は、石灰岩用のモータよりも小さなも
ので十分である。さらに、通常の破砕機械の回転数より
も低い回転数で室生火山岩2を容易に破砕することがで
きる。
Therefore, in order to crush the Murou volcanic rock 2, the crushing capacity is designed based on the crushing data of the limestone, and the power (kw) of the motor is smaller than that of the limestone motor. Further, the Murou volcanic rock 2 can be easily crushed at a rotation speed lower than the rotation speed of a normal crushing machine.

【0029】弱溶結部分で分離された結晶体は、上述し
たように高温型石英5、カリ長石6、斜長石7がほとん
どであるから(図1参照)、これらの結晶体5〜7をそ
のまま細骨材1として使用する。
As described above, most of the crystals separated at the weakly welded portions are high-temperature quartz 5, potassium feldspar 6, and plagioclase 7 (see FIG. 1). Used as fine aggregate 1.

【0030】次に、室生火山岩2から製造された砕石砂
が細骨材1としてどのような特性を備えるのか説明す
る。細骨材1としての品質を調べるため、比重試験、吸
水試験、安定性試験、洗い試験をそれぞれ実施した(J
IS A 5004)。
Next, what characteristics the crushed stone produced from the Murou volcanic rock 2 has as the fine aggregate 1 will be described. In order to examine the quality as fine aggregate 1, a specific gravity test, a water absorption test, a stability test, and a washing test were respectively performed (J
IS A 5004).

【0031】その結果を図4に示す。図4によれば、室
生火山岩2を破砕した砕石砂の絶乾比重は、2.52、
吸水率が2.55%、安定性が6.3%、洗い試験で失
われる量が全体の5.8%という数値を得た。これらの
数値から、この砕石砂は細骨材1として十分満足できる
ことが発見された。
FIG. 4 shows the results. According to FIG. 4, the absolute dry specific gravity of the crushed sand obtained by crushing the Murou volcanic rock 2 is 2.52,
The water absorption was 2.55%, the stability was 6.3%, and the amount lost in the washing test was 5.8% of the whole. From these figures, it was discovered that this crushed sand was sufficiently satisfactory as fine aggregate 1.

【0032】特に、硫酸ナトリウムによる骨材の安定性
試験方法(JIS A1122)によれば、室生火山岩によ
り製造した粒径5mm以上の砕石の段階では、安定性試
験の数値が20%を超えていたの対し、室生火山岩2を
粒径5mm以下の砕石砂に破砕することにより、この安
定性試験の数値が6.3%まで大幅に低下している。こ
れは、室生火山岩2特有の弱溶結部分3は、砕石の段階
では硫酸ナトリウム溶液が侵入して安定性試験等におい
て欠点となるが、砕石砂になった段階では砂が滑らかな
表面の結晶体を単位としていることと、破砕にハンマク
ラッシャを使用したことによりこの結晶体が殆ど損傷さ
れないため、硫酸ナトリウム溶液が結晶体内に侵入しな
いためである。
In particular, according to the method for testing the stability of aggregates with sodium sulfate (JIS A1122), the value of the stability test exceeded 20% at the stage of crushed stone having a particle size of 5 mm or more produced from Murou volcanic rock. On the other hand, by crushing the Murou volcanic rock 2 into crushed sand having a particle size of 5 mm or less, the numerical value of this stability test is greatly reduced to 6.3%. This is because the weakly welded portion 3 peculiar to the Murou volcanic rock 2 has a drawback in the stability test due to the intrusion of the sodium sulfate solution at the stage of crushed rock, but the crystal with a smooth surface is formed at the stage of crushed sand. And the use of a hammer crusher for crushing hardly damages the crystal, so that the sodium sulfate solution does not enter the crystal.

【0033】また、図5は、本実施例の破砕データを示
す。この図5によれば、この室生火山岩2を破砕してな
る細骨材1は、粒径0.074mm以下の微粉の発生が
きわめて少なく日本工業規格(JIS A 5004)に合
致していることが証明された。
FIG. 5 shows crushing data of this embodiment. According to FIG. 5, the fine aggregate 1 obtained by crushing the Murou volcanic rock 2 has very little generation of fine powder having a particle size of 0.074 mm or less and conforms to Japanese Industrial Standards (JIS A 5004). Proven.

【0034】これは、破砕エネルギが弱溶結部分3に集
中し、結晶粒自体は破砕を免れ、微粉(過粉砕物)を発
生させないことを意味する。
This means that the crushing energy is concentrated on the weakly welded portion 3, the crystal grains themselves are not crushed, and do not generate fine powder (over-crushed material).

【0035】なお、この室生火山岩2の可採鉱量は、少
なくとも4億m3程度と見込まれており資源量がきわめ
て大きいため、近畿圏内の需要を百数十年にわたってす
べて満たし得る。
It is to be noted that the recoverable amount of the Murou volcanic rock 2 is expected to be at least about 400 million m 3 and the amount of resources is extremely large, so that the demand in the Kinki region can be fully satisfied over a hundred and several decades.

【0036】さらに、室生火山岩2は弱溶結部分3から
破砕されて各結晶体5〜7は破壊されないため微粉がほ
とんどなく、水洗い工程を省略できる乾式製法が可能と
なり製造コストを大幅に低減できる。
Further, since the Murou volcanic rock 2 is crushed from the weakly welded portion 3 and the respective crystalline bodies 5 to 7 are not destroyed, there is almost no fine powder, and a dry manufacturing method in which a washing step can be omitted becomes possible, and the manufacturing cost can be greatly reduced.

【0037】[0037]

【発明の効果】以上説明したように、本発明によれば、
原石となる流紋岩質凝灰岩が、一般の溶結凝灰岩よりも
溶結度が低く結晶間の結合力が弱いため破砕時に溶結部
分だけを破砕し易く、非常に低コストで砕石砂を製造す
ることができる。
As described above, according to the present invention,
The rhyolite tuff, which is a rough stone, has a lower degree of welding than ordinary welded tuff and has a weaker bonding force between crystals, so it is easy to crush only the welded part when crushing, making it possible to produce crushed stone at very low cost. it can.

【0038】また、流紋岩質凝灰岩は、高温型石英等の
粒度構成が砕石砂として好ましく、雲母や粘土鉱物はき
わめて少ないため、これを粉砕して製造された細骨材は
微粉がほとんどなく水洗浄が不要となりコンクリート用
砕石砂としてたいへん好適である。また、流紋岩質凝灰
岩である室生火山岩は、その資源量がきわめて大きいた
め、コンクリート用砕石砂として不純物の混入のない良
質の細骨材を長期に渡って安定してかつ安価に供給する
ことができる。
The rhyolitic tuff is preferably composed of high-temperature quartz or the like as crushed sand, and since mica and clay minerals are extremely small, fine aggregate produced by pulverizing it has almost no fine powder. Since water washing is not required, it is very suitable as crushed stone for concrete. In addition, Murou volcanic rock, a rhyolitic tuff, has a very large amount of resources. Therefore, it is necessary to supply high-quality fine aggregate free of impurities as crushed stone for concrete over a long period of time stably and inexpensively. Can be.

【0039】さらに、室生火山岩は、近畿、中部の大規
模消費地帯に隣接して交通の便もよいため運搬コストも
低く抑えることができる等の効果を奏する。
Further, the Murou volcanic rock has an effect that the transportation cost is low because the transportation is convenient adjacent to the large-scale consumption zone in the Kinki and Chubu areas, and the transportation cost can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】室生火山岩を破砕してなる細骨材及びその製造
方法の概略を示す図。
FIG. 1 is a view schematically showing fine aggregate obtained by crushing Murou volcanic rock and a method for producing the fine aggregate.

【図2】室生火山岩の分析値とノルム値を示す図。FIG. 2 is a diagram showing analysis values and norm values of Murou volcanic rock.

【図3】基本破砕動力値(WM値)と衝撃破砕抵抗値
(C値)を示す図。
FIG. 3 is a diagram showing a basic crushing power value (WM value) and an impact crush resistance value (C value).

【図4】室生火山岩より製造した砕石と砕石砂の骨材性
能を示す図。
FIG. 4 is a view showing aggregate performance of crushed stone and crushed stone manufactured from Murou volcanic rock.

【図5】室生火山岩を破砕して得た砕石砂の破砕データ
及び砕石砂の粒度曲線を示す図。
FIG. 5 is a view showing crushing data of crushed sand obtained by crushing Muro volcanic rock and a particle size curve of crushed sand.

【符号の説明】[Explanation of symbols]

1 細骨材 2 流紋岩質溶結凝灰岩(室生火山岩) 3 溶結部分 5,6,7 結晶体 C ハンマクラッシャ DESCRIPTION OF SYMBOLS 1 Fine aggregate 2 Rhyolite welded tuff (Muro volcanic rock) 3 Welded part 5, 6, 7 Crystal C Hamma crusher

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流紋岩質溶結凝灰岩を粒径5mm以下に
破砕してなる細骨材。
1. Fine aggregate obtained by crushing rhyolitic welded tuff to a particle size of 5 mm or less.
【請求項2】 流紋岩質溶結凝灰岩の砕石をハンマクラ
ッシャにより溶結部分で分離して粒径5mm以下の結晶
体群にすることを特徴とする細骨材を製造する方法。
2. A method for producing fine aggregate, characterized in that crushed rhyolitic welded tuff is separated at a welded portion by a hammer crusher into crystallites having a grain size of 5 mm or less.
【請求項3】 流紋岩質溶結凝灰岩が、室生火山岩であ
ることを特徴とする請求項1記載の細骨材。
3. The fine aggregate according to claim 1, wherein the rhyolitic welded tuff is Muro volcanic rock.
JP6210819A 1994-09-05 1994-09-05 Fine aggregate obtained by crushing rhyolitic welded tuff and its production method Expired - Lifetime JP2598616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6210819A JP2598616B2 (en) 1994-09-05 1994-09-05 Fine aggregate obtained by crushing rhyolitic welded tuff and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6210819A JP2598616B2 (en) 1994-09-05 1994-09-05 Fine aggregate obtained by crushing rhyolitic welded tuff and its production method

Publications (2)

Publication Number Publication Date
JPH0873246A JPH0873246A (en) 1996-03-19
JP2598616B2 true JP2598616B2 (en) 1997-04-09

Family

ID=16595653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6210819A Expired - Lifetime JP2598616B2 (en) 1994-09-05 1994-09-05 Fine aggregate obtained by crushing rhyolitic welded tuff and its production method

Country Status (1)

Country Link
JP (1) JP2598616B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102418529A (en) * 2011-09-02 2012-04-18 湖州鹿山坞矿业有限公司 Mining method
JP6464011B2 (en) * 2015-03-27 2019-02-06 株式会社ホクコン Environmentally improved concrete block

Also Published As

Publication number Publication date
JPH0873246A (en) 1996-03-19

Similar Documents

Publication Publication Date Title
Bellopede et al. Main aspects of tunnel muck recycling
CN102503281A (en) Baking-free gravel attapulgite building garbage ceramsite
CN102515814B (en) Unburned spheroidal attapulgite building rubbish ceramic grain
CN104271528A (en) Method for manufacturing of supplementary cementitious materials (SCMs)
Karaca et al. Classification of dimension stone wastes
CN104556766A (en) Construction method for building foundation bed employing recycled concrete
CN102863242A (en) Attapulgite volcaniclastic rock heat insulation raw material powder
JP2598616B2 (en) Fine aggregate obtained by crushing rhyolitic welded tuff and its production method
Kassim et al. Recycling solid wastes as road construction materials: An environmentally sustainable approach
CN204412428U (en) A kind of Vehicular concrete reclaims, reducing mechanism
CN102924053A (en) Attapulgite shale ceramsite sintering porous building block
CN211587914U (en) Shield debris recycling system
CN212040902U (en) Dust removal stores up whitewashed environmental protection shape system sand integration system
US20030205182A1 (en) Brick making and in the manufacture of other types of man-made stone like materials
CN102910875A (en) Attapulgite-shale hollow block
CN113024138A (en) Production method for making sand by using tunnel hole slag powder sandstone wet processing machine
Novotná et al. Review of possible fillers and additives for geopolymer materials
Pascoe et al. Autogenous grinding of glass cullet in a stirred mill
Rajgor et al. A study on marble waste management: opportunities and challenges in current age for making value added bricks
CN203007152U (en) Regenerated broken stone fixing equipment
CN102863238B (en) Method for producing attapulgite volcaniclastic rock siliceous refractory aggregate
CN217368580U (en) Crusher for quickly replacing screen mesh for machine-made sand crushing
CN102924058B (en) Perforated brick prepared by sintering attapulgite and shale
CN112570125A (en) Rock sand making method based on building wall recovery
JP3221663B2 (en) Glass cullet as a substitute for natural stone

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961029