JP2595549Y2 - Sealed zinc-bromine battery - Google Patents

Sealed zinc-bromine battery

Info

Publication number
JP2595549Y2
JP2595549Y2 JP1993022983U JP2298393U JP2595549Y2 JP 2595549 Y2 JP2595549 Y2 JP 2595549Y2 JP 1993022983 U JP1993022983 U JP 1993022983U JP 2298393 U JP2298393 U JP 2298393U JP 2595549 Y2 JP2595549 Y2 JP 2595549Y2
Authority
JP
Japan
Prior art keywords
electrode
tank
battery
sealed
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1993022983U
Other languages
Japanese (ja)
Other versions
JPH0682758U (en
Inventor
保雄 安藤
靖浩 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP1993022983U priority Critical patent/JP2595549Y2/en
Publication of JPH0682758U publication Critical patent/JPH0682758U/en
Application granted granted Critical
Publication of JP2595549Y2 publication Critical patent/JP2595549Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hybrid Cells (AREA)

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は電解液循環型積層二次電
池、特に密閉型亜鉛−臭素電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyte circulation type laminated secondary battery, and more particularly to a sealed zinc-bromine battery.

【0002】[0002]

【従来の技術】亜鉛−臭素電池は正極活物質に臭素、負
極活物質に亜鉛を用いた2次電池であり、この電池は例
えば電力の昼と夜のアンバランスを解決させるために、
電力需要が少ない夜間に電力を貯蔵して、昼間に放出さ
せるため等に使用される。
2. Description of the Related Art A zinc-bromine battery is a secondary battery in which bromine is used as a positive electrode active material and zinc is used as a negative electrode active material.
It is used for storing electric power at night when power demand is small and releasing it during the day.

【0003】充電時に正極電極側で発生した臭素は、電
解液に添加した臭素錯化剤と反応し、オイル状の沈殿物
となって正極側貯蔵槽へ戻され、放電時はポンプで単電
池内へ送り込まれ還元される。電解液の成分はZnBr
2水溶液と、抵抗を下げるためのNH4Cl等の塩と、負
極亜鉛側のデンドライトを防止し、均一な電着を促進さ
せるためのPb,Sn,4級アンモニウム塩類と、臭素
錯化剤とである。正極電極と負極電極の間にはセパレー
タを介挿してあり、正極電極で発生した臭素が負極電極
へ拡散して亜鉛と反応することによる自己放電を防止し
ている。
[0003] The bromine generated on the positive electrode side during charging reacts with a bromine complexing agent added to the electrolytic solution and returns as an oily precipitate to the positive electrode side storage tank. It is sent inside and reduced. The component of the electrolyte is ZnBr
(2) an aqueous solution, a salt such as NH 4 Cl for lowering resistance, Pb, Sn, and quaternary ammonium salts for preventing dendrite on the negative electrode zinc side and promoting uniform electrodeposition, and a bromine complexing agent. It is. A separator is interposed between the positive electrode and the negative electrode to prevent self-discharge caused by bromine generated at the positive electrode diffusing into the negative electrode and reacting with zinc.

【0004】この亜鉛−臭素電池の化学反応は、The chemical reaction of this zinc-bromine battery is as follows:

【0005】[0005]

【化1】 充電時……正極:2Br-→Br2+2e-,負極:Zn+++2e-→Zn 放電時……正極:2Br-←Br2+2e-,負極:Zn+++2e-←Zn で表される。[Chemical Formula 1] During charging: positive electrode: 2Br → Br 2 + 2e , negative electrode: Zn ++ + 2e → Zn Discharging: positive electrode: 2Br ← Br 2 + 2e , negative electrode: Zn ++ + 2e ← Zn It is represented by

【0006】この亜鉛−臭素電池は、主に電極をバイポ
ーラ型とし、複数個の単電池(単セル)を電気的に直列
に積層した電池本体と、電解液貯蔵槽と、これらの間に
電解液を循環させるポンプおよび配管系とで構成されて
いる。
This zinc-bromine battery mainly has a bipolar type electrode, a battery body in which a plurality of unit cells (single cells) are electrically stacked in series, an electrolytic solution storage tank, and an electrolytic solution between them. It is composed of a pump and a piping system for circulating the liquid.

【0007】図6は上記亜鉛−臭素電池を構成する電池
本体の一例を示す分解斜視図であり、矩形平板状のバイ
ポーラ型中間電極1の電極部1aの外周に絶縁性の枠体
1bが配置され、同様に矩形平板状のセパレータ板2
は、セパレータ3の外周に枠体2aが形成されている。
そして上記中間電極1にセパレータ板2及び必要に応じ
てパッキン4,スペーサメッシュ5を重ねて単セルを構
成し、この単セルを複数個積層して電池本体が構成され
ている。
FIG. 6 is an exploded perspective view showing an example of a battery main body constituting the zinc-bromine battery. An insulating frame 1b is arranged on the outer periphery of an electrode portion 1a of a bipolar plate-like bipolar intermediate electrode 1. Similarly, the rectangular flat separator plate 2
Has a frame 2 a formed on the outer periphery of the separator 3.
The separator plate 2 and, if necessary, the packing 4 and the spacer mesh 5 are stacked on the intermediate electrode 1 to form a single cell, and a plurality of the single cells are laminated to form a battery body.

【0008】積層された電池本体の両端部には、集電メ
ッシュ6を有する集電電極7と、一対の締付端板8と、
その内側に位置する押さえ用の積層端板9とが配置され
ている。そして両締付端板8,8間に図示しないボルト
を通して、このボルトを締め付けることにより、一体的
に積層固定された電池本体が構成される。
[0008] At both ends of the stacked battery main body, a collecting electrode 7 having a collecting mesh 6, a pair of tightening end plates 8,
A holding laminated end plate 9 located on the inside thereof is arranged. Then, a bolt (not shown) is passed between the two tightening end plates 8 and 8, and the bolts are tightened to form a battery body integrally laminated and fixed.

【0009】上記のように構成された電池本体の各単セ
ル内には、各中間電極1及びセパレータ板2の枠体2a
の上下2箇所の隅角部に形成した正極マニホールド10
と、負極マニホールド11より、セパレータ板2の枠体
2aに設けられたチャンネル12及びマイクロチャンネ
ル13を介して電解液が夫々流入排出する。上記中間電
極1とセパレータ板2との積層数と電池起電力の積が電
池の電圧となる。
In each unit cell of the battery body constructed as described above, each intermediate electrode 1 and the frame 2a of the separator plate 2 are provided.
Positive electrode manifold 10 formed at the upper and lower two corners of
Then, the electrolyte flows in and out of the negative electrode manifold 11 through the channel 12 and the micro channel 13 provided in the frame 2a of the separator plate 2, respectively. The product of the number of layers of the intermediate electrode 1 and the separator plate 2 and the battery electromotive force is the battery voltage.

【0010】このように構成された亜鉛−臭素電池は、
50KW級電池における電池効率として約80%、総合
エネルギー効率として約70%が確認されている。
[0010] The zinc-bromine battery thus constructed is
It has been confirmed that the battery efficiency of a 50 kW class battery is about 80%, and the total energy efficiency is about 70%.

【0011】図7は上記亜鉛−臭素電池の作動原理を説
明するための概要図であり、図中の14は正極側貯蔵槽
であって該正極側貯蔵槽14内に正極電解液15と臭素
錯化合物16とが貯蔵されている。17は負極側貯蔵槽
であって該負極側貯蔵槽17内に負極電解液18が貯蔵
されている。そして正極電解液15は正極側ポンプ19
の駆動に伴って、四方弁20を介して図中の矢印に示し
た如く電池本体の正極マニホールド10から単セル内を
流通し、正極側貯蔵槽14に還流する一方、負極電解液
18は負極側ポンプ21の駆動に伴って、電池本体の負
極マニホールド11からセパレータ3に隔てられた単セ
ル内を流通して負極側貯蔵槽17に還流する。
FIG. 7 is a schematic diagram for explaining the operation principle of the zinc-bromine battery. In FIG. 7, reference numeral 14 denotes a positive electrode storage tank, and a positive electrode electrolyte 15 and bromine are stored in the positive electrode storage tank 14. The complex compound 16 is stored. Reference numeral 17 denotes a negative electrode storage tank in which a negative electrode electrolyte 18 is stored. The positive electrode electrolyte 15 is supplied to the positive electrode pump 19.
As shown in the figure, a single cell is circulated from the positive electrode manifold 10 of the battery body through the four-way valve 20 and returned to the positive electrode side storage tank 14 through the four-way valve 20, while the negative electrode electrolyte 18 is With the driving of the side pump 21, the gas flows from the negative electrode manifold 11 of the battery body through the single cell separated by the separator 3 and returns to the negative electrode storage tank 17.

【0012】[0012]

【考案が解決しようとする課題】しかしながらこのよう
な従来の亜鉛−臭素電池は、電池自体の構成が電解液の
貯蔵槽,電池本体及び配管系に分かれているため、ジョ
イント等からの電解液の液漏れが生じ易い上、各構成部
材間のデッドスペースが大きくなり、且つ装置が大型化
してしまうという難点があった。
However, in such a conventional zinc-bromine battery, since the configuration of the battery itself is divided into an electrolyte storage tank, a battery main body, and a piping system, the electrolytic solution from a joint or the like is not used. There is a problem that the liquid leaks easily, a dead space between the components increases, and the apparatus becomes large.

【0013】即ち、この電池は電解液の循環によって作
動する構造であるため、配管系を連繋するジョイントと
か、ボルトによる積層部材の締付圧力が低下した時に液
漏れが発生する惧れがある。又、正極電解液と負極電解
液とを輸送するために電池本体の外部に設置した正極側
ポンプと負極側ポンプとの2台のポンプが必要であり、
前記デッドスペースの問題とともに大きな補機エネルギ
ーを必要とし、ランニングコストが高くなってしまうと
いう問題がある。更に電解液は電池本体内で正極,負極
マニホールドを通して流れるため、シャントカレント作
用によってクーロン効率が低いという課題をも有してい
る。
That is, since this battery is structured to operate by circulating the electrolyte, there is a concern that liquid leakage may occur when the tightening pressure of the joints connecting the piping systems or the bolts with the bolts decreases. Also, in order to transport the positive electrode electrolyte and the negative electrode electrolyte, two pumps, a positive electrode side pump and a negative electrode side pump installed outside the battery body, are required,
Along with the problem of the dead space, there is a problem that a large amount of auxiliary equipment energy is required and the running cost is increased. Furthermore, since the electrolytic solution flows through the positive and negative electrode manifolds in the battery body, there is also a problem that the shunt current effect lowers Coulomb efficiency.

【0014】本考案は上記の点に鑑みてなされたもので
あり、配管とかジョイントに起因する電解液の液漏れが
なく、電流効率を高めることができる上、各構成部材間
のデッドスペースを最小限とし、且つ装置の小型化をは
かることができる密閉型亜鉛−臭素電池を提供すること
を目的とするものである。
The present invention has been made in view of the above points, there is no leakage of electrolyte due to pipes or joints, the current efficiency can be increased, and the dead space between each component is minimized. It is an object of the present invention to provide a sealed zinc-bromine battery capable of reducing the size of the device.

【0015】[0015]

【課題を解決するための手段】本考案は上記目的を達成
するために、密閉型電池槽内の適宜位置に収納され、底
壁に電解液循環用穴が開口された電極槽と、この電極槽
の下方に形成された電解液貯留域及び該電解液を前記電
極槽に給送するポンプと、上記電極槽内に交互に挿入配
置され、上端部が密閉型電池槽の上方に突出して、正極
及び負極毎に並列に接続されてそれぞれプラス端子とマ
イナス端子に接続された正極側の中間電極及び負極側の
中間電極とから成る密閉型亜鉛−臭素電池の構成にして
ある。
In order to achieve the above object, the present invention provides an electrode tank which is housed at an appropriate position in a sealed battery tank and has an electrolyte circulation hole formed in a bottom wall thereof, A pump for feeding the electrolyte storage area and the electrolyte to the electrode tank formed below the tank, and alternately inserted and disposed in the electrode tank, and an upper end protruding above the sealed battery tank; The sealed zinc-bromine battery is composed of a positive electrode side intermediate electrode and a negative electrode side intermediate electrode connected in parallel for each positive electrode and negative electrode and connected to a plus terminal and a minus terminal, respectively.

【0016】前記負極側の中間電極は略矩形状の絶縁枠
に支持され、且つ該中間電極の表裏両面に、適宜な間隙
を保持してポスト付きのセパレータを配設してあり、こ
のセパレータとして、負極側の中間電極に亜鉛イオンを
供給するために多孔質膜を用いている。更に前記正極側
の中間電極の両面に、活性炭素繊維をラミネート処理に
よって付着した活性層を形成してある。
The intermediate electrode on the negative electrode side is supported by a substantially rectangular insulating frame, and a separator with a post is provided on both the front and back surfaces of the intermediate electrode while maintaining an appropriate gap. In order to supply zinc ions to the intermediate electrode on the negative electrode side, a porous film is used. Further, on both surfaces of the intermediate electrode on the positive electrode side, an active layer in which activated carbon fibers are adhered by a lamination process is formed.

【0017】[0017]

【作用】かかる密閉型亜鉛−臭素電池によれば、組付時
には密閉型電池槽内に電極槽を収納し、この電極槽内に
負極側の中間電極と正極側の中間電極を互に挿入配置し
て、これら各中間電極の上端部を密閉型電池槽の上方で
正極及び負極毎に並列に接続してそれぞれプラス端子と
マイナス端子に接続し、電池槽内に所定量の電解液を充
填して目的とする密閉型亜鉛−臭素電池が完成する。
According to this sealed zinc-bromine battery, the electrode tank is housed in the sealed battery tank during assembly, and the negative electrode-side intermediate electrode and the positive electrode side intermediate electrode are inserted and arranged in this electrode tank. Then, the upper end of each of these intermediate electrodes is connected in parallel for each of the positive electrode and the negative electrode above the sealed battery tank, connected to the plus terminal and the minus terminal, respectively, and a predetermined amount of electrolyte is filled in the battery tank. Thus, the intended sealed zinc-bromine battery is completed.

【0018】そして電解液貯留域に貯留された電解液が
ポンプの駆動に伴って電極槽内に流入し、電解液循環用
穴から電解液貯留域に還流するが、充電時に正極側中間
電極で発生した臭素が電解液に添加した臭素錯化剤と反
応し、オイル状の沈殿物となって電解液循環用穴から電
解液貯蔵域に戻され、放電時にはポンプで電極槽内へ送
り込まれて還元される。負極側の中間電極にはセパレー
タに形成された多孔質膜を介して亜鉛イオンが供給さ
れ、得られた電力はプラス端子とマイナス端子から取り
出される。
Then, the electrolyte stored in the electrolyte storage area flows into the electrode tank with the driving of the pump, and returns to the electrolyte storage area through the electrolyte circulation hole. The generated bromine reacts with the bromine complexing agent added to the electrolyte to form an oily precipitate, which is returned to the electrolyte storage area through the electrolyte circulation hole, and is pumped into the electrode tank during discharge. Be reduced. Zinc ions are supplied to the intermediate electrode on the negative electrode side through a porous film formed on the separator, and the obtained power is taken out from the plus terminal and the minus terminal.

【0019】[0019]

【実施例】以下図面を参照しながら本考案にかかる密閉
型亜鉛−臭素電池の一実施例を説明する。図1は本考案
にかかる密閉型亜鉛−臭素電池40の基本的実施例を示
す要部縦断面図であり、図中の22は密閉型電池槽であ
って、この密閉型電池槽22の内壁面適宜位置に突設し
た支持ブラケット22a上に電極槽23が載置された状
態として収納されている。この電極槽23の底壁には電
解液循環用穴23a,23aが開口されている。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded perspective view of a sealed zinc-bromine battery according to the present invention. FIG. 1 is a longitudinal sectional view of a main part showing a basic embodiment of a sealed zinc-bromine battery 40 according to the present invention. In the figure, reference numeral 22 denotes a sealed battery tank. The electrode tank 23 is stored on a support bracket 22a protruding from an appropriate position on a wall surface. Electrolyte circulation holes 23a, 23a are opened in the bottom wall of the electrode tank 23.

【0020】この電極槽23内には、正極側の中間電極
24と負極側の中間電極25とが交互に挿入配置されて
おり、各中間電極24,25の上端部は密閉型電池槽2
2の上方に突出して、正極及び負極毎に並列に接続され
てそれぞれプラス端子26とマイナス端子27に接続さ
れている。本実施例では中間電極24,25としてカー
ボンプラスチック電極を採用した。
In the electrode tank 23, positive electrode-side intermediate electrodes 24 and negative electrode-side intermediate electrodes 25 are alternately inserted and arranged.
2 and are connected in parallel for each of the positive electrode and the negative electrode, and are connected to the plus terminal 26 and the minus terminal 27, respectively. In this embodiment, carbon plastic electrodes are used as the intermediate electrodes 24 and 25.

【0021】上記電極槽23の下方には、隔壁28によ
って空間部31が画成され、この空間部31内にポンプ
29が配備されている。そして該ポンプ29から導出さ
れた配管36が支持ブラケット22aを貫通して上方に
延設されている。32は電極槽23の下方に形成された
電解液貯留域であり、該電解液貯留域32に貯留された
電解液が吸入管30からポンプ29に吸入される。
A space 31 is defined below the electrode tank 23 by a partition wall 28, and a pump 29 is provided in the space 31. A pipe 36 led out from the pump 29 extends upward through the support bracket 22a. Reference numeral 32 denotes an electrolyte solution storage area formed below the electrode tank 23, and the electrolyte solution stored in the electrolyte solution storage area 32 is sucked into the pump 29 from the suction pipe 30.

【0022】上記の各構成部品の具体的な構造を以下に
説明する。図2(A)(B)は前記負極側の中間電極2
5の構造を示しており、この中間電極25は略矩形状の
絶縁枠33に支持され、且つ該中間電極25の表裏両面
に適宜な間隙を保持してポスト34a付きのセパレータ
34が配設されている。このポスト34aはセパレータ
34の位置を規制して中間電極25との間に形成されて
いる空間部を維持する機能を有している。又、セパレー
タ34は後述するように負極側の中間電極25に亜鉛イ
オンを供給するために多孔質膜を用いている。
The specific structure of each of the above components will be described below. FIGS. 2A and 2B show the intermediate electrode 2 on the negative electrode side.
5, the intermediate electrode 25 is supported by a substantially rectangular insulating frame 33, and a separator 34 with a post 34a is disposed on both front and back surfaces of the intermediate electrode 25 with an appropriate gap therebetween. ing. The post 34a has a function of regulating the position of the separator 34 and maintaining the space formed between the post 34a and the intermediate electrode 25. The separator 34 uses a porous film for supplying zinc ions to the negative electrode-side intermediate electrode 25 as described later.

【0023】図3(A)(B)は前記正極側の中間電極
24の構造を示しており、この中間電極24の両面には
活性層24aが付着されている。この活性層24aとし
ては例えば活性炭素繊維をラミネート処理によって付着
した層が用いられる。
FIGS. 3A and 3B show the structure of the intermediate electrode 24 on the positive electrode side. Active layers 24a are attached to both surfaces of the intermediate electrode 24. FIG. As the active layer 24a, for example, a layer to which activated carbon fibers are attached by a lamination process is used.

【0024】図4は前記電極槽23の構造を示してお
り、この電極槽23は上面が開口されたボックス体で成
り、前記したように該電極槽23の底壁には複数個の電
解液循環用穴23a,23aが開口されている。
FIG. 4 shows the structure of the electrode tank 23. The electrode tank 23 is formed of a box having an open top, and a plurality of electrolytes are provided on the bottom wall of the electrode tank 23 as described above. Circulation holes 23a, 23a are opened.

【0025】図5は上記電極槽23を取り除いた時の密
閉型電池槽22の構造を示しており、該電池槽22の上
壁には、前記各中間電極24,25の上端部を密閉型電
池槽22の上方に突出させるための孔部35,35が開
口されている。尚、ポンプ29及びその付属部品の配備
構造は図1で説明した通りである。
FIG. 5 shows the structure of the sealed battery tank 22 when the electrode tank 23 is removed. The upper wall of the battery tank 22 has the upper ends of the intermediate electrodes 24 and 25 sealed. Holes 35, 35 for projecting above the battery tank 22 are opened. The arrangement of the pump 29 and its attached parts is as described with reference to FIG.

【0026】そして図5に示す密閉型電池槽22内に図
4に示す電極槽23を収納し、この電極槽23内に、図
2,図3に示した負極側の中間電極25と正極側の中間
電極24を互に挿入配置して、これら各中間電極24,
25の上端部を密閉型電池槽22の上方で正極及び負極
毎に並列に接続してそれぞれプラス端子26とマイナス
端子27に接続し、電池槽22内に所定量の電解液を充
填することにより、本実施例にかかる密閉型亜鉛−臭素
電池40が完成する。
The electrode tank 23 shown in FIG. 4 is housed in the sealed battery tank 22 shown in FIG. 5, and the negative electrode-side intermediate electrode 25 shown in FIGS. Of the intermediate electrodes 24 are inserted and arranged with respect to each other.
25 is connected in parallel for each of the positive electrode and the negative electrode above the sealed battery tank 22 and connected to the plus terminal 26 and the minus terminal 27, respectively, and the battery tank 22 is filled with a predetermined amount of electrolyte. Thus, the sealed zinc-bromine battery 40 according to the present embodiment is completed.

【0027】かかる構成によれば、電解液貯留域32に
貯留された電解液がポンプ29の駆動に伴って配管36
を介して図中の矢印Cに示した如く上昇して電極槽23
内に流入する。そして該電極槽23内を流通してから電
解液循環用穴23aから電解液貯留域32に還流する。
According to this configuration, the electrolyte stored in the electrolyte storage area 32 is supplied to the pipe 36 along with the driving of the pump 29.
And rises as shown by the arrow C in FIG.
Flows into. Then, after flowing through the electrode tank 23, it is returned to the electrolyte storage area 32 through the electrolyte circulation hole 23 a.

【0028】通常の電解液の成分はZnBr2水溶液
と、抵抗を下げるためのNH4Cl等の塩と、負極亜鉛
側のデンドライトを防止して均一な電着を促進するP
b,Sn,4級アンモニウム塩類と、臭素錯化剤であ
る。そして充電時に正極側中間電極24で発生した臭素
が電解液に添加した臭素錯化剤と反応し、オイル状の沈
殿物となって電解液循環用穴23aから電解液貯蔵域3
2に戻され、放電時はポンプ29で電極槽23内へ送り
込まれて還元される。セパレータ34は多孔質膜を用い
て構成されているので、負極側の中間電極25にはこの
多孔質膜を介して亜鉛イオンが供給される。得られた電
力はプラス端子26とマイナス端子27から取り出すこ
とができる。
The usual components of the electrolytic solution are a ZnBr 2 aqueous solution, a salt such as NH 4 Cl for lowering the resistance, and P which promotes uniform electrodeposition by preventing dendrite on the zinc side of the negative electrode.
b, Sn, quaternary ammonium salts and a bromine complexing agent. Then, bromine generated at the positive electrode side intermediate electrode 24 at the time of charging reacts with the bromine complexing agent added to the electrolytic solution to form an oily precipitate from the electrolytic solution circulating hole 23a through the electrolytic solution storage area 3.
2 and is discharged into the electrode tank 23 by the pump 29 at the time of discharge to be reduced. Since the separator 34 is formed using a porous film, zinc ions are supplied to the intermediate electrode 25 on the negative electrode side through the porous film. The obtained electric power can be taken out from the plus terminal 26 and the minus terminal 27.

【0029】[0029]

【考案の効果】以上詳細に説明したように、本考案にか
かる密閉型亜鉛−臭素電池によれば、電池自体の構成が
従来のように電池本体と配管系及び電解液の貯蔵槽等に
分かれていないので、長期に亙る使用時にあっても電解
液の液漏れ現象が生じることがなくなり、且つ各構成部
材間のデッドスペースは最小限となって装置の小型化を
はかることができる。
As described in detail above, according to the sealed zinc-bromine battery of the present invention, the configuration of the battery itself is divided into a battery main body, a piping system, an electrolyte storage tank, and the like as in the conventional case. Therefore, even when used for a long period of time, the leakage of the electrolyte does not occur, and the dead space between the components is minimized, so that the apparatus can be miniaturized.

【0030】又、充電時に正極側中間電極で発生した臭
素は、電解液に添加した臭素錯化剤と反応し、オイル状
の沈殿物となって電解液貯蔵域に貯蔵されるので、自己
放電はほとんど発生しないという効果がある。
In addition, bromine generated at the positive electrode side intermediate electrode during charging reacts with the bromine complexing agent added to the electrolytic solution and is stored as an oily precipitate in the electrolytic solution storage area. Has the effect that almost no occurrence occurs.

【0031】更に電解液給送用のポンプは1台あればよ
いため、スペースの縮小効果とともに補機エネルギーは
最小となり、ランニングコストを低廉化することができ
る。更に電解液は従来のように正極,負極マニホールド
を通して流れないので、シャントカレント作用に伴うク
ーロン効率の低下がなくなり、電池効率が高められると
いう効果を発揮する。
Further, since only one pump for feeding the electrolyte is required, the space saving effect and the auxiliary equipment energy are minimized, and the running cost can be reduced. Further, since the electrolytic solution does not flow through the positive and negative electrode manifolds as in the related art, a decrease in Coulomb efficiency due to a shunt current effect is eliminated, and an effect of increasing battery efficiency is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案にかかる密閉型亜鉛−臭素電池の一実施
例を示す要部断面図。
FIG. 1 is a sectional view of a main part showing an embodiment of a sealed zinc-bromine battery according to the present invention.

【図2】図2(A)は本実施例にかかる負極側の中間電
極の構造を示す正断面図。図2(B)は同側面図。
FIG. 2A is a front sectional view showing the structure of a negative electrode-side intermediate electrode according to the present embodiment. FIG. 2B is a side view thereof.

【図3】図3(A)は本実施例にかかる正極側の中間電
極の構造を示す正断面図。図3(B)は同側面図。
FIG. 3A is a front sectional view showing a structure of a positive electrode side intermediate electrode according to the present embodiment. FIG. 3B is a side view of the same.

【図4】本実施例にかかる電極槽の構造を示す断面図。FIG. 4 is a sectional view showing the structure of the electrode tank according to the present embodiment.

【図5】本実施例にかかる電池槽の構造を示す要部断面
図。
FIG. 5 is an essential part cross-sectional view showing the structure of the battery tank according to the embodiment.

【図6】亜鉛−臭素電池本体の構成を示す分解斜視図。FIG. 6 is an exploded perspective view showing a configuration of a zinc-bromine battery main body.

【図7】亜鉛−臭素電池の動作原理を示す概要図。FIG. 7 is a schematic diagram showing the operation principle of a zinc-bromine battery.

【符号の説明】[Explanation of symbols]

22…密閉型電池槽 23…電極槽 23a…電解液循環用穴 24…(正極側の)中間電極 25…(負極側の)中間電極 26…プラス端子 27…マイナス端子 28…隔壁 29…ポンプ 30…吸入管 32…電解液貯留域 33…絶縁枠 34…セパレータ 34a…ポスト 35…孔部 Reference numeral 22: sealed battery tank 23 ... electrode tank 23a ... electrolyte circulation hole 24 ... intermediate electrode (on the positive electrode side) 25 ... intermediate electrode (on the negative electrode side) 26 ... plus terminal 27 ... minus terminal 28 ... partition wall 29 ... pump 30 ... Suction pipe 32 ... Electrolyte storage area 33 ... Insulating frame 34 ... Separator 34a ... Post 35 ... Hole

Claims (4)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 密閉型電池槽と、この密閉型電池槽内の
適宜位置に収納され、底壁に電解液循環用穴が開口され
た電極槽と、この電極槽の下方に形成された電解液貯留
域及び該電解液を前記電極槽に給送するポンプと、上記
電極槽内に交互に挿入配置され、上端部が密閉型電池槽
の上方に突出して、正極及び負極毎に並列に接続されて
それぞれプラス端子とマイナス端子に接続された正極側
の中間電極及び負極側の中間電極とから成ることを特徴
とする密閉型亜鉛−臭素電池。
1. A sealed battery tank, an electrode tank housed at an appropriate position in the sealed battery tank and having an electrolyte circulation hole opened in a bottom wall, and an electrolytic cell formed below the electrode tank. A liquid storage area and a pump for feeding the electrolytic solution to the electrode tank, and alternately inserted and disposed in the electrode tank, the upper end protruding above the sealed battery tank, and connected in parallel for each of the positive electrode and the negative electrode A sealed zinc-bromine battery comprising a positive electrode side intermediate electrode and a negative electrode side intermediate electrode connected to a positive terminal and a negative terminal, respectively.
【請求項2】 前記負極側の中間電極は略矩形状の絶縁
枠に支持され、且つ該中間電極の表裏両面に適宜な間隙
を保持してポスト付きのセパレータを配設した請求項1
記載の密閉型亜鉛−臭素電池。
2. The intermediate electrode on the negative electrode side is supported by a substantially rectangular insulating frame, and a post-mounted separator is disposed on both front and back surfaces of the intermediate electrode while maintaining an appropriate gap.
The sealed zinc-bromine battery according to the above description.
【請求項3】 前記セパレータとして、負極側の中間電
極に亜鉛イオンを供給するために多孔質膜を用いた請求
項1,2記載の密閉型亜鉛−臭素電池。
3. The sealed zinc-bromine battery according to claim 1, wherein a porous film is used as the separator to supply zinc ions to the intermediate electrode on the negative electrode side.
【請求項4】 前記正極側の中間電極の両面に、活性炭
素繊維をラミネート処理によって付着した活性層を形成
した請求項1記載の密閉型亜鉛−臭素電池。
4. The sealed zinc-bromine battery according to claim 1, wherein an active layer having activated carbon fibers attached thereto by lamination is formed on both surfaces of the intermediate electrode on the positive electrode side.
JP1993022983U 1993-04-30 1993-04-30 Sealed zinc-bromine battery Expired - Fee Related JP2595549Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1993022983U JP2595549Y2 (en) 1993-04-30 1993-04-30 Sealed zinc-bromine battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1993022983U JP2595549Y2 (en) 1993-04-30 1993-04-30 Sealed zinc-bromine battery

Publications (2)

Publication Number Publication Date
JPH0682758U JPH0682758U (en) 1994-11-25
JP2595549Y2 true JP2595549Y2 (en) 1999-05-31

Family

ID=12097791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1993022983U Expired - Fee Related JP2595549Y2 (en) 1993-04-30 1993-04-30 Sealed zinc-bromine battery

Country Status (1)

Country Link
JP (1) JP2595549Y2 (en)

Also Published As

Publication number Publication date
JPH0682758U (en) 1994-11-25

Similar Documents

Publication Publication Date Title
JP5270656B2 (en) Cell stack of electrolyte circulation battery
KR940010444A (en) Membrane flow cell battery
JP2595549Y2 (en) Sealed zinc-bromine battery
JPH0714617A (en) Current collecting electrode of zinc-bromine battery
JP3979774B2 (en) Redox flow battery
JPH0765871A (en) Electrolyte circulating type layer built secondary battery
JP2970149B2 (en) Electrolyte circulation type laminated secondary battery
JP3198696B2 (en) Zinc-bromine battery
JP2853295B2 (en) Stacked secondary battery
JP3307048B2 (en) Operating method of zinc-bromine battery
CN217035834U (en) Battery module
JP2505007Y2 (en) Electrolyte circulation type laminated battery
JP2853264B2 (en) Electrolyte stationary metal-bromine battery
JP2853271B2 (en) Electrolyte static zinc-bromine battery
JPH0553132U (en) Electrolyte circulation type laminated secondary battery
KR101862369B1 (en) Redox flow battery
JP2595540Y2 (en) Storage structure of zinc-bromine battery for power storage
JPH06333609A (en) Method for operating zinc-bromine battery
JPH0334843Y2 (en)
JP3141599B2 (en) Current collecting electrode of zinc-bromine battery and method of manufacturing the same
JPS614169A (en) Redox flow battery
JPH01213967A (en) Non-continuous circulation type redox battery
JPH0550657U (en) Electrolyte circulation type laminated secondary battery
JPS61296659A (en) Operating method for zinc-bromine secondary cell
JPH01279571A (en) Molten carbonate fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees