JP2594128B2 - Image sensor - Google Patents

Image sensor

Info

Publication number
JP2594128B2
JP2594128B2 JP63198402A JP19840288A JP2594128B2 JP 2594128 B2 JP2594128 B2 JP 2594128B2 JP 63198402 A JP63198402 A JP 63198402A JP 19840288 A JP19840288 A JP 19840288A JP 2594128 B2 JP2594128 B2 JP 2594128B2
Authority
JP
Japan
Prior art keywords
photoconductive layer
image sensor
individual
common electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63198402A
Other languages
Japanese (ja)
Other versions
JPH0246771A (en
Inventor
繁 能口
金雄 渡邉
博之 栗山
景一 佐野
浩志 岩多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63198402A priority Critical patent/JP2594128B2/en
Publication of JPH0246771A publication Critical patent/JPH0246771A/en
Application granted granted Critical
Publication of JP2594128B2 publication Critical patent/JP2594128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、フアクシミリの画像読取部、あるいは、ワ
ープロ、パソコン等に画像データを入力する為のイメー
ジリーダの画像読取部に用いられるイメージセンサに関
する。
The present invention relates to an image sensor used in an image reading unit of a facsimile or an image reading unit of an image reader for inputting image data to a word processor, a personal computer, or the like. About.

(ロ) 従来の技術 近年、上述の如き画像処理機器の画像読取りに用いる
イメージセンサとして、小型化、経済性設計の容易さ等
に優れた密着型イメージセンサが開発されつつある。
(B) Conventional technology In recent years, as an image sensor used for reading an image of an image processing apparatus as described above, a contact type image sensor excellent in miniaturization, ease of economical design, and the like has been developed.

斯様な密着型イメージセンサは、例えばテレビジヨン
学会技術報告ED982(昭和61年10月23日)に報告されて
いるように、大面積形成が比較的容易なアモルフアスシ
リコン(以下α−Siと略記する)を光電変換材料として
用いる事が提案され、実用化に至っている。
Such a contact type image sensor is, for example, amorphous silicon (hereinafter referred to as α-Si) which is relatively easy to form a large area, as reported in the Technical Report of the Television Society of Japan ED982 (October 23, 1986). (Abbreviation) has been proposed as a photoelectric conversion material, and has been put to practical use.

密着型のイメージセンサの動作方式には、「上記テレ
ビジヨン学会技報」に記載の如く、光起電力方式と光導
電方式がある。前者はα−Si層に対してサンドイツチ型
の電極構造を有する光電変換部からなり、高速応答でき
るが、製造工程が複雑となる上に、各光電変換部毎にス
イツチング素子を付設しなければならない。一方、後者
はα−Si層に対してコプラーナ型の電極構造を有する光
電変換部からなり、応答面で遅いが製造工程が簡単で、
さらに回路構成でもマトリクス配線が容易となり、スイ
ツチング素子数を削減できるため、製造コストを低減で
きる利点を有する。
As described in the "Technical Report of the Television Society of Japan", there are a photovoltaic system and a photoconductive system as the operation system of the contact type image sensor. The former is composed of a photoelectric converter having a San-Germanic-type electrode structure for the α-Si layer, and can respond at high speed. However, the manufacturing process becomes complicated, and a switching element must be provided for each photoelectric converter. . On the other hand, the latter is composed of a photoelectric conversion unit having a coplanar electrode structure with respect to the α-Si layer.
Further, even in a circuit configuration, matrix wiring becomes easy, and the number of switching elements can be reduced.

第4図に光導電方式のイメージセンサの従来構造を示
す。同図(a)は平面図、同図(b)はB−B線断面図
である。
FIG. 4 shows a conventional structure of a photoconductive image sensor. FIG. 1A is a plan view, and FIG. 1B is a sectional view taken along line BB.

これ等の図に於いて、(1)はガラス基板、(2)は
該基板(1)の長手方向に延在した帯状のα−Siからな
る光導電層、(3)は個別電極、(4)は共通電極であ
り、いずれの電極(3)(4)も例えばアルミニウムの
如き第1の金属層を同時にパターン形成したものであ
る。(6)はα−Si層(2)上の保護、並びに個別電極
(3)上の層間絶縁をなすポリイミド等からなる絶縁
膜、(5)は個別電極(3)を下層配線とし、該配線上
に絶縁膜(6)を介して配置される上層配線であり、上
下両配線の交差部の内必要箇所の絶縁膜に開口(7)が
設けられ、これによって、上下両配線(3)(5)が第
3図に示す如きマトリクス結線される。(8)は上記光
導電層(2)上に各電極(3)(4)、絶縁膜(6)を
介して配置された反射板であり、上記上層配線(5)と
共に第2の金属層のパターン化によって得られる。
In these figures, (1) is a glass substrate, (2) is a photoconductive layer made of a band-like α-Si extending in the longitudinal direction of the substrate (1), (3) is an individual electrode, (3) Reference numeral 4) denotes a common electrode, and all of the electrodes (3) and (4) are formed by simultaneously patterning a first metal layer such as aluminum. (6) is an insulating film made of polyimide or the like for protection on the α-Si layer (2) and interlayer insulation on the individual electrode (3), and (5) is a wiring in which the individual electrode (3) is a lower wiring. An upper layer wiring is disposed on the upper layer via an insulating film (6), and an opening (7) is provided in a required portion of the insulating film at an intersection of the upper and lower wirings, whereby the upper and lower wirings (3) ( 5) is connected in a matrix as shown in FIG. (8) is a reflector disposed on the photoconductive layer (2) via the electrodes (3) and (4) and the insulating film (6), and a second metal layer together with the upper wiring (5). Is obtained by patterning.

斯様な構造のイメージセンサに於ては、複数の個別電
極(3)(3)…のマトリクス配線は、帯状の光導電層
(2)に対して、共通電極(4)の反対側に位置する事
となる。従って、個別電極(3)(3)…の出力パツド
と共通電極(4)の出力パツドとが光導電層(2)の両
側の基板(1)上に隔離して存在するので、基板(1)
が大面積となり、イメージセンサユニツトの大型化を招
く欠点があった。
In the image sensor having such a structure, the matrix wiring of the plurality of individual electrodes (3) (3)... Is positioned on the opposite side of the common electrode (4) with respect to the strip-shaped photoconductive layer (2). Will be done. Therefore, since the output pads of the individual electrodes (3), (3)... And the output pads of the common electrode (4) are present on the substrate (1) on both sides of the photoconductive layer (2), they are separated. )
However, there is a drawback that the image sensor unit becomes large in size and the image sensor unit becomes large.

さらに、光電変換効率を高める為の上記反射板(8)
は各個別電極(3)(3)…単位の画素毎には分離され
ておらず、画素列上に帯状に延在しているので、第5図
に示す如く、基板(1)下方から入射して来る光線が画
素間の境界部分でも反射板(8)によって反射されてし
まう。従ってこの境界部分の光導電層(2)の抵抗値も
画素部分のそれと同様に低下し、これに依って光電変換
するので、隣接画素間のクロストーク電流が画像信号の
分解能を低下させる欠点があった。
Furthermore, the above-mentioned reflector (8) for increasing the photoelectric conversion efficiency
Are not separated for each pixel of the individual electrodes (3), (3)... And extend in a strip shape on the pixel column, so that the light enters from below the substrate (1) as shown in FIG. The reflected light is reflected by the reflector (8) even at the boundary between pixels. Accordingly, the resistance value of the photoconductive layer (2) at the boundary portion also decreases similarly to that of the pixel portion, and photoelectric conversion is performed accordingly. Therefore, the crosstalk current between adjacent pixels lowers the resolution of the image signal. there were.

(ハ) 発明が解決しようとする課題 本発明は光電変換素子の画素間で流れ込むクロストー
ク電流を抑制する事のできる小型のイメージセンサを提
供するものである。
(C) Problems to be Solved by the Invention The present invention is to provide a small-sized image sensor capable of suppressing a crosstalk current flowing between pixels of a photoelectric conversion element.

(ニ) 課題を解決するための手段 本発明のイメージセンサは、絶縁基板上に帯状に延在
形成された半導体光導電層と、該光導電層の一方側に配
置形成された共通電極と、上記光導電層の他方側に配列
形成された複数の個別電極と、該個別電極毎に上記光導
電層の他方側から一方側に向っ共通電極上に絶縁膜を介
して延長した個別電極用の導出金属パターンとからな
り、該パターンは個別電極毎に個別電極と共通電極間の
ギヤツプを裏面から覆う構成となしたものである。
(D) Means for Solving the Problems An image sensor according to the present invention comprises a semiconductor photoconductive layer extending in a strip shape on an insulating substrate, a common electrode disposed on one side of the photoconductive layer, A plurality of individual electrodes arrayed and formed on the other side of the photoconductive layer, and for each individual electrode extending from the other side of the photoconductive layer to the one side via a dielectric film on the common electrode via an insulating film. It is composed of a lead-out metal pattern, and the pattern covers the gap between the individual electrode and the common electrode from the back surface for each individual electrode.

(ホ) 作用 本発明のイメージセンサに依れば、個別電極の導出用
金属パターンが個別電極毎にこの個別電極と共通電極と
の間のギヤツプを裏面から覆う事になり、個別電極の導
出用金属パターンの端子と共通電極の端子とが光導電層
に対して同一側に配置でき、しかも個別電極単位間の上
記ギヤツプには光反射効果のある上記金属パターンを備
えない。
(E) Function According to the image sensor of the present invention, the metal pattern for deriving the individual electrode covers the gap between the individual electrode and the common electrode from the back surface for each individual electrode. The terminal of the metal pattern and the terminal of the common electrode can be arranged on the same side with respect to the photoconductive layer, and the gap between the individual electrode units is not provided with the metal pattern having a light reflecting effect.

(ハ) 実 施 例 第1図は本発明の一次元のイメージセンサの一実施を
示しており、同図(a)は平面図、同図(b)は断面図
である。
(C) Embodiment FIG. 1 shows an embodiment of the one-dimensional image sensor of the present invention, wherein FIG. 1 (a) is a plan view and FIG. 1 (b) is a sectional view.

同図のイメージセンサの構成を、その製造工程に従っ
て、以下に説明する。
The configuration of the image sensor shown in FIG. 1 will be described below according to the manufacturing process.

まず、ガラス、石英、プラスチツク、有機樹脂などの
透明で絶縁性の基板(11)の光入射側と反対の面に光導
電性に優れたシリコンを主体とした非晶質半導体である
アモルフアスシリコン(以下a−Siと略記する)からな
る光導電層(12)をプラズマCVD法等で形成し、これを
帯状にパターン化する。このパターン化の方法としては
形成時に金属マスクを用いてパターン化する方法、形成
後にリソグラフイーを用いてエツチングする方法等が採
用できる。
First, amorphous silicon, which is an amorphous semiconductor mainly composed of silicon with excellent photoconductivity, is provided on the surface opposite to the light incident side of a transparent and insulating substrate (11) such as glass, quartz, plastic, or organic resin. A photoconductive layer (12) made of (hereinafter abbreviated as a-Si) is formed by a plasma CVD method or the like, and is patterned into a belt shape. As a method of patterning, a method of patterning using a metal mask at the time of formation, a method of etching using lithography after formation, and the like can be adopted.

次に、金属膜を蒸着しパターン化する事により、光導
電層(12)上の一方側に複数の個別電極(13)を設ける
と共に、この光導電層(12)上の他方側に特定数の個別
電極(13)(13)…と夫々相補的にくし歯状に対向する
共通電極(14)を適数設ける。さらにこのパターン化に
より、上記両電極(13)(14)と同時に上記共通電極
(14)に沿って独立したマトリクス配線用の下層配線
(15)を特定数本形成する。尚、この金属膜としては光
導電相(12)とオーミツクコンタクトする材料が好まし
く、例えばこの場合のa−Siに対してはAl、Ti、Mo、M
g、Au−Si、Crが開いられる。またさらに、良好なオー
ミツクコンタクトを得るには、a−Siとこれ等金属との
界面に燐ドープのn+型a−Si層を介在させる構成として
もよい。
Next, by depositing and patterning a metal film, a plurality of individual electrodes (13) are provided on one side on the photoconductive layer (12), and a specific number is provided on the other side on the photoconductive layer (12). Are provided with an appropriate number of common electrodes (14) which face each other in a comb-tooth shape complementary to the individual electrodes (13) (13). Further, by this patterning, a specific number of independent lower wirings (15) for matrix wiring are formed along the common electrode (14) simultaneously with the electrodes (13) and (14). As the metal film, a material that is in ohmic contact with the photoconductive phase (12) is preferable. For example, Al, Ti, Mo, M
g, Au-Si and Cr are opened. Further, in order to obtain a good ohmic contact, a structure in which a phosphorus-doped n + -type a-Si layer is interposed at the interface between a-Si and these metals may be employed.

その後、上記個別電極(13)と共通電極(14)との間
の蛇行したギヤツプを絶縁保護すると共に、この後に形
成されるマトリクス配線用の上層配線(18)と上記下層
配線(15)との間を層間絶縁する絶縁膜(16)を形成す
る。さらに、上層配線(18)と下層配線(15)との間に
所望マトリクス結線を行なう為と上層配線(18)に連な
る金属パターン(19)と個別電極(13)との結線を行な
う為のコンタクトホール(17)をこの絶縁膜(16)に開
口形成する。このような絶縁膜(16)としては、例えば
ポリイミド、感光性ポリイミド、アクリル等の有機樹脂
材料やSiO、SiN、SiON等の無機材料が用いられる。
Thereafter, the meandering gap between the individual electrode (13) and the common electrode (14) is insulated and protected, and the upper layer wiring (18) for the matrix wiring and the lower layer wiring (15) formed later are formed. An insulating film (16) for interlayer insulation is formed. Furthermore, a contact for making a desired matrix connection between the upper wiring (18) and the lower wiring (15) and a connection for connecting the metal pattern (19) connected to the upper wiring (18) and the individual electrode (13). A hole (17) is formed in the insulating film (16). As the insulating film (16), for example, an organic resin material such as polyimide, photosensitive polyimide, or acrylic, or an inorganic material such as SiO, SiN, or SiON is used.

最後に、金属を製膜し、個別電極(13)単位のパター
ン化により素子裏面の反射膜と上記個別電極(13)から
上層配線(18)に連なる引きまわし線を兼用した導電パ
ターン(19)を形成する。これによって、光導電層(1
2)に対して共通電極(14)側に個別電極(13)のマト
リクス配線が形成できる。この場合の金属膜としては下
層配線(15)と同様の材料が用いられる他、反射率の高
いAg、Au、Cu等を用いた単層、あるいは多層膜が用いら
れる。
Finally, a metal film is formed, and a conductive pattern (19) is formed by patterning the individual electrode (13) as a reflection film on the back surface of the element and also serving as a lead wire extending from the individual electrode (13) to the upper wiring (18). To form This allows the photoconductive layer (1
In contrast to 2), matrix wiring of individual electrodes (13) can be formed on the common electrode (14) side. In this case, as the metal film, the same material as that of the lower wiring (15) is used, and a single-layer or multilayer film using Ag, Au, Cu, or the like having high reflectivity is used.

このような構造のマトリツクス配線を行なう光導電型
のイメージセンサにおいては複数の個別電極(13)のマ
トリツクス配線は、光導電層(12)に対して共通電極
(14)と同じ側となるので、個別電極(13)の出力パツ
ドと共通電極の出力パツドは光センサアレイに対して同
一の側面より出力できるため、外部回路との結線、ある
いはICのオンチツプ化に共ない、イメージセンサ基板や
センサユニツトを大面積化する必要がない。
In a photoconductive image sensor having a matrix wiring having such a structure, the matrix wiring of the plurality of individual electrodes (13) is on the same side of the photoconductive layer (12) as the common electrode (14). Since the output pad of the individual electrode (13) and the output pad of the common electrode can be output from the same side to the optical sensor array, the image sensor board and the sensor unit are not connected with the external circuit or the on-chip IC. There is no need to increase the area.

また第1図(a)から明らかなように導電パターン
(19)が裏面反射材と個別電極(13)の配線を兼ねてい
るため個別電極単位の各画素間のギヤツプには裏面反射
材が無い構造となる。このため第2図の画素部では透明
基板(11)側から入射した光がa−Si光導電層(12)に
入射し吸収されキヤリアを発生する時、光の一部は透過
し絶縁膜(16)を経て導電パターン(19)で再びa−Si
光導電層(12)に入射するため光電流を20%〜50%程度
大きくする効果をもつ。一方、第2図の画素間ではa−
Si光導電層(12)を透過してきた光は、裏面反射材がな
いため再びa−Si光導電層(12)に戻る事はない。この
ため画素間での電気的クロストーク量を増す効果はな
く、光電流とクロストーク電流の比が大きくなり分解能
が向上する。
Further, as is apparent from FIG. 1 (a), since the conductive pattern (19) also serves as the wiring for the back surface reflection material and the individual electrode (13), there is no back surface reflection material in the gap between each pixel of the individual electrode unit. Structure. For this reason, in the pixel portion shown in FIG. 2, when light incident from the transparent substrate (11) side enters the a-Si photoconductive layer (12) and is absorbed to generate a carrier, part of the light is transmitted and the insulating film ( 16) After passing through the conductive pattern (19) again with a-Si
Since it is incident on the photoconductive layer (12), it has the effect of increasing the photocurrent by about 20% to 50%. On the other hand, between the pixels in FIG.
Light transmitted through the Si photoconductive layer (12) does not return to the a-Si photoconductive layer (12) again because there is no back reflector. For this reason, there is no effect of increasing the amount of electrical crosstalk between pixels, and the ratio between the photocurrent and the crosstalk current increases, thereby improving the resolution.

このような構造のセンサはa−Si光導電層(12)の膜
厚が3000〜8000Åの時に効果的であり特に光源として赤
色のLEDのように長波長の可視光LEDを用いた時など光導
電層(12)の光吸収係数α〔cm-1〕と膜厚d〔cm〕の積
αdが1に近い値の場合に特に効力を発揮する。
A sensor having such a structure is effective when the thickness of the a-Si photoconductive layer (12) is 3000 to 8000 mm, and is particularly effective when a long-wavelength visible light LED such as a red LED is used as a light source. It is particularly effective when the product αd of the light absorption coefficient α [cm −1 ] of the conductive layer (12) and the film thickness d [cm] is close to 1.

(ト) 発明の効果 本発明のイメージセンサによれば、非常にコンパクト
な例えば1対1の密着型イメージセンサユニツトが実現
できるとともに、光電流が大きくなりクロストークとの
比が改善されるため分解能の優れた画像読み取りが可能
となる。
(G) According to the image sensor of the present invention, a very compact, for example, one-to-one contact type image sensor unit can be realized, and the photocurrent is increased to improve the ratio with respect to crosstalk. This makes it possible to perform excellent image reading.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)(b)は本発明のイメージセンサの平面図
及び断面図、第2図は本発明のイメージセンサの入射光
光路を示す主走査方向の断面図、第3図はマトリツクス
配線回路図、第4図(a)(b)は従来のイメージセン
サの平面図及び断面図、第5図は従来のイメージセンサ
の入射光光路を示す主走査方向の断面図である。 (1)(11)……透明絶縁基板、(2)(12)……光導
電層、(3)(13)……個別電極、(4)(14)……共
通電極、(6)(16)……絶縁膜、(19)……金属パタ
ーン。
1 (a) and 1 (b) are a plan view and a cross-sectional view of an image sensor of the present invention, FIG. 2 is a cross-sectional view in the main scanning direction showing an optical path of incident light of the image sensor of the present invention, and FIG. 3 is a matrix wiring. 4A and 4B are a plan view and a cross-sectional view of a conventional image sensor, and FIG. 5 is a cross-sectional view in the main scanning direction showing an incident light optical path of the conventional image sensor. (1) (11) ... transparent insulating substrate, (2) (12) ... photoconductive layer, (3) (13) ... individual electrode, (4) (14) ... common electrode, (6) ( 16) Insulating film, (19) Metal pattern.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐野 景一 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 岩多 浩志 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 昭63−17554(JP,A) ──────────────────────────────────────────────────の Continuing on the front page (72) Keiichi Sano 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Hiroshi Iwata 2-18 Keihanhondori, Moriguchi-shi, Osaka No. Sanyo Electric Co., Ltd. (56) References JP-A-63-17554 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁基板と、該絶縁基板上に帯状に延在形
成された半導体光導電層と、該光導電層の一方側に配置
形成された共通電極と、上記光導電層の他方側に配列形
成された複数の個別電極と、該個別電極毎に上記光導電
層の他方側から一方側に向かって上記共通電極上に絶縁
膜を介して延長された個別電極用の導電パターンとから
なり、該導電パターンは個別電極と共通電極との間のギ
ヤツプを個別電極単位毎に覆うことを特徴としたイメー
ジセンサ。
1. An insulating substrate, a semiconductor photoconductive layer extending in a strip shape on the insulating substrate, a common electrode disposed on one side of the photoconductive layer, and the other side of the photoconductive layer A plurality of individual electrodes arranged in a matrix, and a conductive pattern for the individual electrodes extending from the other side of the photoconductive layer to one side of the photoconductive layer on the common electrode via an insulating film for each individual electrode. The conductive pattern covers a gap between the individual electrode and the common electrode for each individual electrode unit.
JP63198402A 1988-08-09 1988-08-09 Image sensor Expired - Fee Related JP2594128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63198402A JP2594128B2 (en) 1988-08-09 1988-08-09 Image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63198402A JP2594128B2 (en) 1988-08-09 1988-08-09 Image sensor

Publications (2)

Publication Number Publication Date
JPH0246771A JPH0246771A (en) 1990-02-16
JP2594128B2 true JP2594128B2 (en) 1997-03-26

Family

ID=16390532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63198402A Expired - Fee Related JP2594128B2 (en) 1988-08-09 1988-08-09 Image sensor

Country Status (1)

Country Link
JP (1) JP2594128B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360744A (en) * 1990-01-11 1994-11-01 Fuji Xerox Co., Ltd. Method of manufacturing image sensor

Also Published As

Publication number Publication date
JPH0246771A (en) 1990-02-16

Similar Documents

Publication Publication Date Title
US5525813A (en) Image sensor having TFT gate electrode surrounding the photoelectric conversion element
US5200634A (en) Thin film phototransistor and photosensor array using the same
US5032718A (en) Photo sensor array and reader with hexagonal fiber bundles
JP2584774B2 (en) Contact type photoelectric conversion device
US5027176A (en) Photo-electric converter with intervening wirings for capacitive shielding
JPS6115626B2 (en)
EP0297413B1 (en) Photoelectric conversion device
EP0361515B1 (en) Thin film phototransistor and photosensor array using the same
JP2594128B2 (en) Image sensor
US4772951A (en) Solid state image sensor with cell array of amorphous semiconductor photoelectric converting elements
US4831429A (en) Transparent photo detector device
JPS61263156A (en) Image sensor
JPH0222872A (en) Optical sensor device
JPH11224975A (en) Integrated device and encoder using the same
JP3146509B2 (en) 2D contact image sensor
KR960001344B1 (en) Process for fabricating electronic devices and image sensor
JP2907238B2 (en) Image reading device
JPS58222563A (en) Semiconductor photodetecting device
JP2959854B2 (en) Image reading device
JPS6317554A (en) Photoconductive device
JPH01184953A (en) Photoelectric conversion element array for hybrid integration photosensor
JPH065834A (en) Image sensor
KR960006198B1 (en) Contact image sensor
JP2000114534A (en) Photoelectric conversion device
KR930007530B1 (en) Image sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees