JP2593243B2 - Press forming apparatus and forming method for optical element - Google Patents

Press forming apparatus and forming method for optical element

Info

Publication number
JP2593243B2
JP2593243B2 JP2411316A JP41131690A JP2593243B2 JP 2593243 B2 JP2593243 B2 JP 2593243B2 JP 2411316 A JP2411316 A JP 2411316A JP 41131690 A JP41131690 A JP 41131690A JP 2593243 B2 JP2593243 B2 JP 2593243B2
Authority
JP
Japan
Prior art keywords
glass material
glass
optical element
mold
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2411316A
Other languages
Japanese (ja)
Other versions
JPH04219329A (en
Inventor
正樹 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2411316A priority Critical patent/JP2593243B2/en
Publication of JPH04219329A publication Critical patent/JPH04219329A/en
Application granted granted Critical
Publication of JP2593243B2 publication Critical patent/JP2593243B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/16Gearing or controlling mechanisms specially adapted for glass presses

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば、非球面レンズ
などの高精度な光学素子をプレス成形で形成するように
した光学素子のプレス成形装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a press forming apparatus for an optical element in which a high precision optical element such as an aspherical lens is formed by press molding.

【0002】[0002]

【従来の技術】近時、光学機器などに使用されるガラス
レンズを、研磨工程を経ずに、一発成形で成形してしま
う製造法が提唱された。この方法ではガラス素材を溶融
状態から型に流し込み、加圧成形するので、作業効率の
面では最も能率的であるが、冷却時のガラスの収縮に対
応する制御が難しく、成形面を精密に成形する必要があ
る光学素子については適当な製造法ではない。そこで、
例えば、特開昭58−84134号公報に開示してある
ように、最終成形品の形状に近似したガラス素材(ガラ
スブランク)を、予め用意して、所要の高精度な成形面
を有する成形用型部材内に収容し、加熱して、上記ガラ
ス素材の粘度が108 〜1012ポアズの範囲の成形可能な温
度になった時、上記型部材で上記ガラス素材を加圧し、
キャビティ形状、特に成形面に対応した表面を有する最
終成形品としての光学素子を得るようにした光学部品の
プレス成形法が既に提唱されている。このようなリヒ−
トプレス成形法によれば、ガラスの収縮に関する問題を
或る程度、解決でき、しかも、成形後の研削、研磨など
の後加工が不要となる。
2. Description of the Related Art Recently, there has been proposed a manufacturing method in which a glass lens used for an optical device or the like is formed by one-shot molding without a polishing step. In this method, the glass material is poured into the mold from the molten state and press-molded, which is the most efficient in terms of work efficiency, but it is difficult to control the shrinkage of the glass during cooling, and the molding surface is precisely formed. It is not an appropriate manufacturing method for an optical element that needs to be manufactured. Therefore,
For example, as disclosed in Japanese Patent Application Laid-Open No. 58-84134, a glass material (glass blank) approximating the shape of the final molded product is prepared in advance and used for molding having a required highly accurate molding surface. When housed in a mold member and heated, when the viscosity of the glass material reaches a moldable temperature in the range of 10 8 to 10 12 poise, the glass material is pressed with the mold member,
A press molding method of an optical component for obtaining an optical element as a final molded product having a cavity shape, particularly a surface corresponding to a molding surface, has already been proposed. Such Richie
According to the topless molding method, the problem relating to shrinkage of glass can be solved to some extent, and further, post-processing such as grinding and polishing after molding is not required.

【0003】しかしながら、高精度な成形表面を必要と
する、例えば、非球面レンズなどの光学素子を製造する
場合、型部材の成形面が確実にガラス素材に転写される
ことが必要である。このため、成形終了後の冷却過程で
上記成形面がガラス素材に密着していることが大切にな
る。すなわち、上記成形面をガラス素材に転写する上
で、冷却過程でガラス素材の温度がガラス転移点を越え
て所望温度まで降下する間、上記成形面にガラス素材が
密着していないと、ガラスの粘性流動により、折角、形
成されたガラス素材の光学機能面が変形してしまうので
ある。このような目的を達成するため、従来から以下に
示すようなプレス成形法が提唱されている。ここでは、
冷却にともなうガラス素材の体積収縮に連動して上下の
型部材の間隔が縮小されるように、上記型部材に付勢力
を掛ける手段が示されている。
However, when manufacturing an optical element such as an aspherical lens which requires a high-precision molding surface, it is necessary that the molding surface of the mold member be reliably transferred to a glass material. For this reason, it is important that the molding surface is in close contact with the glass material during the cooling process after the molding is completed. That is, when transferring the molding surface to the glass material, while the temperature of the glass material drops to a desired temperature beyond the glass transition point in the cooling process, if the glass material is not in close contact with the molding surface, the Due to the viscous flow, the optically functional surface of the formed glass material is deformed. In order to achieve such an object, the following press molding method has been conventionally proposed. here,
Means for applying an urging force to the mold member is shown so that the distance between the upper and lower mold members is reduced in conjunction with the volume shrinkage of the glass material accompanying cooling.

【0004】すなわち、図7に示すように、上下一対の
型部材48、49は、予め成形可能な温度まで加温され
たガラス素材51aを上下方向からプレスするために配
置されており、上の型部材48は吊持部材52で吊持さ
れ、ラム55の働きで、下向きに移動され、その下面に
形成した成形面48aで、上記ガラス素材51aの上面
を押圧し、所要の光学機能面を形成する。また、下の型
部材49は胴型50に対して摺動自在に嵌合されてお
り、基台54に対して圧縮スプリング53を介して上向
きに弾持されており、上記胴型50に形成されたストッ
パ部50bに受け部49bを対向していて、プレス成形
前の状態では上記受け部49bが上記ストッパ部50b
に当接するように上向きに保持されているが(図7
(a)参照)、上記型部材48の下降のとき、ガラス素
材51aを介して上記型部材からの押圧力を受け、その
弾持スプリングの弾持力に抗して、下降しながら、上記
ガラス素材51aの下面に、その上面に形成した成形面
を押し付け、上記ガラス素材の下面に、所要の光学機能
面を形成するのである(図7(b)参照)。この時、上
記型部材48は胴型50の上端に当接し、それ以上の下
降を阻止されるので、ガラス素材51aは上記スプリン
グ圧縮量に相当する所定の圧力しか受けない。
That is, as shown in FIG. 7, a pair of upper and lower mold members 48 and 49 are arranged to press a glass material 51a, which has been heated to a temperature at which molding can be performed beforehand, from above and below. The mold member 48 is suspended by the suspending member 52, is moved downward by the action of the ram 55, and presses the upper surface of the glass material 51a with the molding surface 48a formed on the lower surface thereof, so that the required optical function surface is formed. Form. Further, the lower mold member 49 is slidably fitted to the body mold 50 and is elastically held upward by a compression spring 53 with respect to the base 54, and is formed on the body mold 50. The receiving portion 49b faces the stopper portion 50b thus formed, and in a state before press forming, the receiving portion 49b is in contact with the stopper portion 50b.
7 is held upward so as to contact
(See (a)), when the mold member 48 is lowered, the glass member 51a receives a pressing force from the mold member via the glass material 51a, and the glass member 51 descends against the elastic force of the elastic spring. The molding surface formed on the upper surface of the material 51a is pressed against the lower surface of the material 51a to form a required optical function surface on the lower surface of the glass material (see FIG. 7B). At this time, the mold member 48 comes into contact with the upper end of the body mold 50 and is prevented from descending further, so that the glass material 51a receives only a predetermined pressure corresponding to the spring compression amount.

【0005】その後、冷却過程に入り、型部材、ガラス
素材などが、全て冷却されるが、上記型部材は閉じた状
態を持続する。そして、その後、ラム55を上昇し(図
7(c)参照)、次に、上の型部材48を上昇し、型を
開放する(図7(d)参照)。この場合、上記ガラス素
材は、図8に示すように、転移点より上で高い熱膨張率
を維持するので、軟化点から屈服点(プレス成形温度)
を経由した後の冷却過程での収縮量が型部材のそれより
大きく(因に、金属の熱膨張率を図8中、b線で示して
いる)、成形面より離れようとするが、上記スプリング
53の働きで、下の型部材が、収縮率差を吸収するよう
に上昇でき、ガラス素材の光学面の剥離を防止する。
Thereafter, a cooling process is started, and the mold member, the glass material, and the like are all cooled, but the mold member remains closed. Thereafter, the ram 55 is raised (see FIG. 7C), and then the upper mold member 48 is raised to open the mold (see FIG. 7D). In this case, since the glass material maintains a high coefficient of thermal expansion above the transition point as shown in FIG. 8, the glass material is converted from the softening point to the yield point (press forming temperature).
The shrinkage in the cooling process after passing through the mold member is larger than that of the mold member (due to the coefficient of thermal expansion of the metal is shown by the b line in FIG. 8) and tends to separate from the molding surface. By the action of the spring 53, the lower mold member can be raised so as to absorb the difference in shrinkage ratio, thereby preventing the optical surface of the glass material from peeling.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来例では、冷却過程において、ガラス素材の収縮に応じ
て、常に、上下の型部材の相対間隔が追従するから、以
下に述べるような不都合が生じる。即ち、型部材の成形
面がガラス素材に密着したまま冷却が進行し、ガラス素
材がガラス歪み点以下の温度まで冷却されると、上記成
形面とガラス素材との接触個所に大きな熱応力が働く。
即ち、ガラス素材はガラス歪み点以上では粘弾性的な性
質を維持しているので、上記熱応力は時間経過とともに
緩和されてしまうが、上記歪み点以下ではその弾性的な
性質が失われてくるので、熱応力で歪みが起こり、ワレ
(クラック)を発生してしまう。
However, in the above conventional example, in the cooling process, the relative distance between the upper and lower mold members always follows the contraction of the glass material, so that the following inconvenience occurs. . That is, the cooling proceeds while the molding surface of the mold member is in close contact with the glass material, and when the glass material is cooled to a temperature equal to or lower than the glass distortion point, a large thermal stress acts on a contact point between the molding surface and the glass material. .
That is, since the glass material maintains its viscoelastic properties above the glass strain point, the above-mentioned thermal stress is alleviated with the passage of time, but its elastic properties are lost below the above strain point. Therefore, distortion occurs due to thermal stress and cracks occur.

【0007】[0007]

【発明の目的】本発明は上記事情に基いてなされたもの
で、ガラス素材の体積収縮に連動して型部材を追従させ
るのを或る特定の温度(ガラス歪み点以上の温度)条件
下では制限し、ガラス素材がガラス転移点以下の温度に
なるまで、成形表面の形状転写性を維持しながら、しか
も、その後の冷却過程で型部材内で起こるクラックを防
止できるように構成した光学素子のプレス成形装置を提
供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made on the basis of the above circumstances, and it is required that a mold member follow a volumetric shrinkage of a glass material under a specific temperature (a temperature higher than a glass strain point). Restriction, until the glass material reaches a temperature below the glass transition point, while maintaining the shape transferability of the molding surface, and furthermore, it is possible to prevent cracks occurring in the mold member during the subsequent cooling process of the optical element. It is intended to provide a press molding device.

【0008】[0008]

【課題を解決するための手段】このため、本発明では、
軟化状態にあるガラス素材を成形用型部材を用いてプレ
スし、上記型部材の成形面に対応した光学機能面を上記
ガラス素材に形成するようにした光学素子のプレス成形
装置において、加圧成形後の冷却過程で、上記ガラス素
材の転移点の温度までは冷却にともなう上記ガラス素材
の体積収縮に連動して上下の型部材が相対的にその間隔
を縮小する方向に相対移動するように、又、上記転移点
以下の温度では上記ガラス素材の体積収縮に追従しない
ように相対移動を制限する間隔調整部材を、上記型部材
に関連して配置している。ここでは、光学素子形状に加
工するガラス材料を所定の軟化温度に加熱し、一対の型
部材と該型部材の間隔を調整する調整部材を設け、前記
ガラス材料を前記型部材の中に入れて加圧して、前記型
部材の加圧面形状を前記ガラス材料に転写して光学素子
形状のガラス光学素子に変形させ、前記形状変形過程の
後に前記ガラス光学素子を冷却工程に移行し、前記冷却
工程においてガラス材料の体積収縮に伴って一方の型部
材を前記ガラス材料と共に追従移動させ、前記ガラス材
料の温度がガラス転移点相当温度以下の温度で前記一方
の型部材の移動を禁止させるようにして成形する。
Therefore, in the present invention,
A glass material in a softened state is pressed using a molding die member, and a press molding apparatus for an optical element in which an optical functional surface corresponding to the molding surface of the mold member is formed on the glass material. In the subsequent cooling process, the upper and lower mold members are relatively moved in a direction to reduce the distance between the upper and lower mold members in conjunction with the volume shrinkage of the glass material with cooling up to the temperature of the transition point of the glass material, In addition, an interval adjusting member for restricting relative movement so as not to follow the volume shrinkage of the glass material at a temperature below the transition point is arranged in relation to the mold member. Here, a glass material to be processed into an optical element shape is heated to a predetermined softening temperature, a pair of mold members and an adjusting member for adjusting the distance between the mold members are provided, and the glass material is put into the mold members. Pressing, transferring the pressed surface shape of the mold member to the glass material and deforming the glass optical element into an optical element shaped glass optical element, and after the shape deformation step, moving the glass optical element to a cooling step; In accordance with the volume contraction of the glass material, one of the mold members is moved together with the glass material, and the movement of the one mold member is prohibited at a temperature of the glass material equal to or lower than the glass transition temperature. Molding.

【0009】[0009]

【実施例】以下、本発明を図示の実施例にもとずいて具
体的に説明する。図1において、符号1は成形されたガ
ラス素材(ガラスブランク)であり、上下の型部材2及
び3の間に位置している。そして、上記型部材2及び3
は、上下の対向面に成形面2aおよび3aを備え、ま
た、胴型としての間隔制御部材4の中で光軸が合うよう
な嵌合構造になっており、いずれもその外周を上下に摺
動できるようにしてある。上記間隔制御部材4はベ−ス
5にボルトなどで固定されている。そして、上側の型部
材2の上端部には円環状の凸部2bが設けられていて、
上記間隔制御部材4の上端4aに対向しており、下側の
型部材3の下端部には円環状の凸部3bが設けられ、間
隔制御部材4の下端部内周には上記型部材3の下端部3
bより空隙6aを設けるために、型部材3の下端部3b
より上記空隙6aだけ大きい幅を有する円環状の凹部4
bを設けている。ここで、空隙6aはプレス温度から転
移点迄のガラス素材1、型部材2および3の熱収縮量の
和から間隔制御部材4の収縮量を引いた寸法になってい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be specifically described based on the illustrated embodiments. In FIG. 1, reference numeral 1 denotes a molded glass material (glass blank), which is located between upper and lower mold members 2 and 3. Then, the mold members 2 and 3
Is provided with molding surfaces 2a and 3a on upper and lower opposing surfaces, and has a fitting structure in which the optical axis is aligned in the spacing control member 4 as a body die. I can move. The spacing control member 4 is fixed to the base 5 with bolts or the like. An annular convex portion 2b is provided at the upper end of the upper mold member 2,
An annular protrusion 3b is provided at the lower end of the lower mold member 3 so as to face the upper end 4a of the gap control member 4, and the inner periphery of the lower end of the gap control member 4 is Lower end 3
b, the lower end 3b of the mold member 3
An annular recess 4 having a width larger by the gap 6a
b is provided. Here, the space 6a has a size obtained by subtracting the contraction amount of the interval control member 4 from the sum of the heat contraction amounts of the glass material 1, the mold members 2 and 3 from the pressing temperature to the transition point.

【0010】このようなプレス成形装置は次のようにし
て使用される。先ず、図1(a)に示すように、上の型
部材2を持上げ手段(図示せず)を用いて上昇させ、下
の型部材3の上に、ガラス素材1を装填する。このガラ
ス素材1はプレス可能な温度に予め加熱するか、その個
所で加熱する。上記ガラス素材1が所要のプレス温度に
ある内に、あるいはその温度に到達した後に、ラムなど
の型操作部材7を用いて上記型部材2を降下して、型部
材2および3間でガラス素材をプレス成形し、成形面2
a,3aをガラス素材1の上下に転写する。そして、上
の型部材2がその凸部2aを間隔制御部材4に接触した
時点で、ガラス素材の肉厚は決定される。その状態は図
1(b)に示されている。
[0010] Such a press forming apparatus is used as follows. First, as shown in FIG. 1A, the upper mold member 2 is lifted using a lifting means (not shown), and the glass material 1 is loaded on the lower mold member 3. The glass material 1 is preheated to a temperature at which it can be pressed or is heated at that point. While the glass material 1 is at or at a required press temperature, the mold member 2 is lowered using a mold operating member 7 such as a ram, and the glass material 1 is moved between the mold members 2 and 3. Press forming, forming surface 2
a and 3a are transferred above and below the glass material 1. The thickness of the glass material is determined when the upper mold member 2 comes into contact with the protrusion 2a with the interval control member 4. The state is shown in FIG.

【0011】その後、型部材2、3および間隔制御部材
4を介して、ガラス素材1の冷却を行うが、この時、上
記ガラス素材1は上記型部材2、3および間隔制御部材
4に比べて非常に熱膨張率が高いので、下の型部材3は
上記ガラス素材1との密着力により、上記ガラス素材1
の収縮につれて上昇し、空隙6aを図1(c)に示すよ
うに空隙6bへと縮小する。
Thereafter, the glass material 1 is cooled via the mold members 2 and 3 and the space control member 4. At this time, the glass material 1 is compared with the mold members 2 and 3 and the space control member 4. Since the coefficient of thermal expansion is very high, the lower mold member 3 is pressed against the glass material 1 by the adhesive force with the glass material 1.
And contracts, and the gap 6a is reduced to the gap 6b as shown in FIG. 1 (c).

【0012】上記型部材2、3およびガラス成形品(ガ
ラス素材)が転移点以下の所定温度(但し、ガラス歪み
点に対してはそれ以上の適当な温度)に到達すると、空
隙6bはほぼ無くなり、両型部材2、3の相対間隔は間
隔制御部材4の働きで拘束される(図1(d)参照)。
上記ガラス素材および両型部材の温度が転移点以下の温
度、例えば、520℃に降下してくると、上記ガラス素
材は収縮を続けるが、型部材2、3が間隔制御部材4に
よって相対間隔を制限されており、その熱膨張率の差
で、上下の型部材2、3とガラス素材との間には、互い
に分離する力が働き、両者間で働いていた吸着力に打ち
勝つので、上記型部材3が自重で下降して、上の型部材
2からガラス成形品を剥離する(図1(e)参照)。こ
のため、ガラス成形品の光学機能面に対して熱応力を負
荷しない。その後、ガラス歪み点の温度にならない内
に、例えば、500℃前後で、上の型部材2を上昇させ
(図1(f)参照)、下の型部材3の上にあるガラス成
形品を取出すのである。このように、温度分布のバラツ
キによる変形が無くなるまで成形面2a,3aをガラス
成形品に密着しているので、形成された光学機能面の変
形を防止することができ、しかも、ガラス成形品の光学
機能面にクラックを発生することがない。
When the mold members 2, 3 and the glass molded product (glass material) reach a predetermined temperature below the transition point (however, an appropriate temperature higher than the glass distortion point), the void 6b is almost eliminated. The relative distance between the two mold members 2 and 3 is restricted by the action of the distance control member 4 (see FIG. 1D).
When the temperature of the glass material and the temperature of the two mold members drop below the transition point, for example, 520 ° C., the glass material continues to shrink, but the relative distance between the mold members 2 and 3 is controlled by the distance control member 4. Due to the difference in the coefficient of thermal expansion, the separating force acts between the upper and lower mold members 2, 3 and the glass material, and overcomes the attraction force acting between the two. The member 3 descends by its own weight, and peels off the glass molded product from the upper mold member 2 (see FIG. 1E). Therefore, no thermal stress is applied to the optically functional surface of the glass molded product. Thereafter, before the temperature reaches the glass strain point, the upper mold member 2 is raised at, for example, about 500 ° C. (see FIG. 1F), and the glass molded product on the lower mold member 3 is taken out. It is. As described above, since the molding surfaces 2a and 3a are kept in close contact with the glass molded product until the deformation due to the variation in the temperature distribution is eliminated, it is possible to prevent the formed optical functional surface from being deformed, and furthermore, to prevent the deformation of the glass molded product No crack is generated on the optical function surface.

【0013】図2は本発明の別の実施例を示すもので、
第1の実施例と異なるのは、上の型部材2が吊持部材1
2で吊持され、空隙16aを上記型部材2の頂部と上記
吊持部材12の内部天井との間に形成しており、反対
に、下の型部材3はベ−ス5に固定的に保持されている
点である。そして、ラムなどの型操作部材7は上記吊持
部材12を介して上記型部材に押圧力を加えるようにな
っている。
FIG. 2 shows another embodiment of the present invention.
The difference from the first embodiment is that the upper mold member 2 is
2 and a gap 16a is formed between the top of the mold member 2 and the inner ceiling of the suspending member 12, while the lower mold member 3 is fixedly secured to the base 5. It is a point that is held. The mold operating member 7 such as a ram applies a pressing force to the mold member via the suspension member 12.

【0014】このような構成では、図2(a)に示す状
態から、型操作部材7を降下させて、型部材2をガラス
素材1の上に載せ、更に空隙16aがなくなるまで降下
を続け、その後の降下でプレス成形圧をガラス素材1に
かけるのである。そして、図2(b)に示すように、吊
持部材12の下部が間隔調整部材4の上端に当ったとこ
ろで、ガラス素材の肉厚が決まる。上記型部材2、3お
よび間隔調整部材4、ならびにガラス素材1の温度が、
ガラスの転移点以下の所定の温度まで降下する過程で
は、熱膨張率の差で、上の型部材2が図2(c)のよう
にガラス素材1の収縮に追従するように降下する。この
間、ガラス成形品(ガラス素材)はその型部材の成形面
2a,3aに密着しており、形成された光学機能面が温
度分布のバラツキによる変形を受けることがない。その
後、上の型部材2の凸部2bと間隔調整部材4の上端と
の間隙16bを縮小するが、上記所定温度で、上記空隙
16bがほぼ無くなり(図2(d)参照)、上記間隔制
御部材4で上記型部材2、3の相対間隔を拘束する。更
に、温度が歪み点に向けて降下するとき、熱膨張率の差
で、型部材2は上方に逃げる形となる(図2(e)参
照)。そして、ガラスに粘弾性の性質が失われる前に、
即ち、ガラス歪み点以上の所望の温度において、吊持部
材12で上の型部材2が持上げられる(図2(f)参
照)。これによって、ガラス成形品の光学機能面は熱応
力歪みを受けることがなく、クラックが避けられる。
In such a configuration, from the state shown in FIG. 2A, the mold operating member 7 is lowered, the mold member 2 is placed on the glass material 1, and further lowered until the void 16a disappears. The press forming pressure is applied to the glass material 1 by the subsequent descent. Then, as shown in FIG. 2B, the thickness of the glass material is determined when the lower portion of the suspending member 12 hits the upper end of the gap adjusting member 4. The temperature of the mold members 2 and 3 and the gap adjusting member 4 and the temperature of the glass material 1 are:
In the process of dropping to a predetermined temperature below the glass transition point, the upper mold member 2 drops so as to follow the shrinkage of the glass material 1 as shown in FIG. During this time, the glass molded product (glass material) is in close contact with the molding surfaces 2a and 3a of the mold member, and the formed optical functional surface is not deformed due to a variation in temperature distribution. Thereafter, the gap 16b between the convex portion 2b of the upper mold member 2 and the upper end of the gap adjusting member 4 is reduced, but at the predetermined temperature, the gap 16b almost disappears (see FIG. 2D), and the gap control is performed. The relative spacing between the mold members 2 and 3 is restricted by the member 4. Further, when the temperature decreases toward the strain point, the mold member 2 is caused to escape upward due to the difference in the coefficient of thermal expansion (see FIG. 2E). And before the glass loses its viscoelastic properties,
That is, at a desired temperature equal to or higher than the glass distortion point, the upper mold member 2 is lifted by the hanging member 12 (see FIG. 2F). As a result, the optically functional surface of the glass molded product is not subjected to thermal stress distortion, and cracks are avoided.

【0015】図3には本発明の第3の実施例が示されて
いる。ここでは、第1の実施例と同様な構成に加えて、
補助間隔調整部材として適当な熱膨張係数のシ−ト片9
がベ−ス部材5と下の型部材3との間に配置してあっ
て、空隙26aの調整役をはたしている。即ち、上記空
隙26aはプレス温度から転移点温度までの上下の型部
材2、3、成形されるガラス素材1の収縮量の和から胴
型4の収縮量を引いた値に調節されるのである。
FIG. 3 shows a third embodiment of the present invention. Here, in addition to the same configuration as the first embodiment,
Sheet piece 9 having a suitable coefficient of thermal expansion as an auxiliary spacing adjusting member
Are arranged between the base member 5 and the lower mold member 3, and serve to adjust the gap 26a. That is, the gap 26a is adjusted to a value obtained by subtracting the shrinkage of the body mold 4 from the sum of the shrinkage of the upper and lower mold members 2 and 3 and the glass material 1 to be formed from the pressing temperature to the transition point temperature. .

【0016】図4には本発明の第4の実施例が示されて
いる。ここでは、第2の実施例と同様な構成に加えて、
補助間隔調整部材として適当な熱膨張係数のシ−ト片9
が吊持部材12と上の型部材2との間に配置してあっ
て、空隙36aの調整役をはたしている。即ち、上記空
隙36aはプレス温度から転移点温度までの上下の型部
材2、3、成形されるガラス素材1の収縮量の和から胴
型4の収縮量を引いた値に調節されるのである。
FIG. 4 shows a fourth embodiment of the present invention. Here, in addition to the same configuration as the second embodiment,
Sheet piece 9 having a suitable coefficient of thermal expansion as an auxiliary spacing adjusting member
Are arranged between the suspension member 12 and the upper mold member 2, and serve to adjust the gap 36a. That is, the gap 36a is adjusted to a value obtained by subtracting the shrinkage amount of the body mold 4 from the sum of the shrinkage amounts of the upper and lower mold members 2 and 3 and the glass material 1 to be formed from the pressing temperature to the transition point temperature. .

【0017】図5には本発明の第5の実施例が示されて
いる。ここでは、吊持部材12と上の型部材2との間に
空隙46を備えるとともに、間隔調整部材4と下の型部
材3との間に空隙46aを備えたもので、全体として
は、第1および第2の実施例の組合わせ構造になってい
る。そして、上記空隙46および46aの総和が、転移
点以下における上下の型部材2、3の相対移動の拘束時
を規制している。
FIG. 5 shows a fifth embodiment of the present invention. Here, a gap 46 is provided between the suspending member 12 and the upper mold member 2 and a gap 46a is provided between the gap adjusting member 4 and the lower mold member 3. The structure is a combination of the first and second embodiments. The sum of the gaps 46 and 46a regulates when the relative movement of the upper and lower mold members 2 and 3 below the transition point is restricted.

【0018】図6には本発明の第6の実施例が示されて
いる。ここでは、第4の実施例において、それぞれの空
隙46および46aに対応して、補助間隔調整部材1
9、29を装備し、この厚さの選択で、上記空隙46、
46aを調節している。そして、上記空隙46および4
6aの総和が、転移点以下における上下の型部材2、3
の相対移動の拘束時を規制している。
FIG. 6 shows a sixth embodiment of the present invention. Here, in the fourth embodiment, the auxiliary interval adjusting member 1 is provided corresponding to the respective gaps 46 and 46a.
Equipped with the above-mentioned gaps 46,
46a is adjusted. Then, the gaps 46 and 4
6a are the upper and lower mold members 2, 3 below the transition point.
When the relative movement is restricted.

【0019】[0019]

【発明の効果】本発明は以上詳述したようになり、加圧
成形後の冷却過程で、上記ガラス素材の転移点の温度以
下迄は冷却にともなう上記ガラス素材の体積収縮に連動
して上下の型部材が相対的にその間隔を縮小する方向に
相対移動するように、また、上記転移点以下の温度では
上記ガラス素材の体積収縮に追従しないように相対移動
を制限する間隔調整部材を、上記型部材に関連して配置
しているので、ガラス素材がガラス転移点以下の温度に
なるまで、成形表面の形状転写性を維持しながら、しか
も、その後の冷却過程で型部材内で起こるクラックを防
止できる。これによって、成形型面の形状転写性を向上
し、しかも、製品の表面に輪帯状などのクラックを生じ
させないことで、歩留りを良くすることが可能である。
The present invention has been described in detail above. In the cooling process after pressure molding, the temperature of the glass material rises and falls in conjunction with the volume shrinkage of the glass material accompanying cooling until the temperature falls below the transition point of the glass material. As the mold member moves relatively in a direction to relatively reduce the gap, and at a temperature equal to or lower than the transition point, an interval adjusting member that limits the relative movement so as not to follow the volume contraction of the glass material, Since it is arranged in relation to the above-mentioned mold member, cracks that occur in the mold member during the subsequent cooling process while maintaining the shape transferability of the molding surface until the glass material reaches a temperature below the glass transition point. Can be prevented. As a result, it is possible to improve the shape transferability of the surface of the molding die, and to improve the yield by preventing the occurrence of cracks such as annular shapes on the surface of the product.

【図面の簡単な説明】[Brief description of the drawings]

【図1(a)】本発明の第1の実施例を説明するための
動作説明図である。
FIG. 1 (a) is an operation explanatory diagram for explaining a first embodiment of the present invention.

【図1(b)】本発明の第1の実施例を説明するための
動作説明図である。
FIG. 1 (b) is an operation explanatory diagram for describing a first embodiment of the present invention.

【図1(c)】本発明の第1の実施例を説明するための
動作説明図である。
FIG. 1 (c) is an operation explanatory diagram for explaining a first embodiment of the present invention.

【図1(d)】本発明の第1の実施例を説明するための
動作説明図である。
FIG. 1 (d) is an operation explanatory diagram for describing a first embodiment of the present invention.

【図1(e)】本発明の第1の実施例を説明するための
動作説明図である。
FIG. 1 (e) is an operation explanatory diagram for explaining a first embodiment of the present invention.

【図1(f)】本発明の第1の実施例を説明するための
動作説明図である。
FIG. 1 (f) is an operation explanatory diagram for describing a first embodiment of the present invention.

【図2(a)】本発明の第2の実施例を説明するための
動作説明図である。
FIG. 2 (a) is an operation explanatory diagram for explaining a second embodiment of the present invention.

【図2(b)】本発明の第2の実施例を説明するための
動作説明図である。
FIG. 2B is an operation explanatory diagram for explaining a second embodiment of the present invention.

【図2(c)】本発明の第2の実施例を説明するための
動作説明図である。
FIG. 2 (c) is an operation explanatory diagram for explaining a second embodiment of the present invention.

【図2(d)】本発明の第2の実施例を説明するための
動作説明図である。
FIG. 2 (d) is an operation explanatory diagram for describing a second embodiment of the present invention.

【図2(e)】本発明の第2の実施例を説明するための
動作説明図である。
FIG. 2 (e) is an operation explanatory diagram for explaining a second embodiment of the present invention.

【図2(f)】本発明の第2の実施例を説明するための
動作説明図である。
FIG. 2 (f) is an operation explanatory diagram for explaining a second embodiment of the present invention.

【図3】本発明の第3の実施例を説明するための動作説
明図である。
FIG. 3 is an operation explanatory diagram for explaining a third embodiment of the present invention.

【図4】本発明の第4の実施例を説明するための動作説
明図である。
FIG. 4 is an operation explanatory diagram for explaining a fourth embodiment of the present invention.

【図5】本発明の第5の実施例を説明するための動作説
明図である。
FIG. 5 is an operation explanatory diagram for explaining a fifth embodiment of the present invention.

【図6】本発明の第6の実施例を説明するための動作説
明図である。
FIG. 6 is an operation explanatory diagram for explaining a sixth embodiment of the present invention.

【図7(a)】従来例を説明するための動作説明図であ
る。
FIG. 7A is an operation explanatory diagram for explaining a conventional example.

【図7(b)】従来例を説明するための動作説明図であ
る。
FIG. 7 (b) is an operation explanatory diagram for explaining a conventional example.

【図7(c)】従来例を説明するための動作説明図であ
る。
FIG. 7C is an operation explanatory diagram for explaining a conventional example.

【図7(d)】従来例を説明するための動作説明図であ
る。
FIG. 7D is an operation explanatory diagram for describing a conventional example.

【図8】ガラス(a)と成形型(b)との熱膨張量を示
したグラフである。
FIG. 8 is a graph showing the amounts of thermal expansion of glass (a) and mold (b).

【図9(a)】ガラス素材のプレス状態および成形品の
クラックの状態を示す説明図である。
FIG. 9A is an explanatory view showing a pressed state of a glass material and a state of cracks of a molded product.

【図9(b)】ガラス素材のプレス状態および成形品の
クラックの状態を示す説明図である。
FIG. 9 (b) is an explanatory view showing a pressed state of a glass material and a cracked state of a molded product.

【符号の説明】 1 ガラス素材 2、3 型部材 4 間隔調整部材(胴型) 5 ベ−ス部材 6a、6b 空隙[Explanation of Signs] 1 Glass material 2, 3 Mold member 4 Interval adjusting member (body shape) 5 Base member 6a, 6b Air gap

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 軟化状態にあるガラス素材を成形用型部
材を用いてプレスし、上記型部材の成形面に対応した光
学機能面を上記ガラス素材に形成するようにした光学素
子のプレス成形装置において、加圧成形後の冷却過程
で、上記ガラス素材の転移点の温度迄は冷却にともなう
上記ガラス素材の体積収縮に連動して上下の型部材が相
対的にその間隔を縮小する方向に相対移動するように、
また、上記転移点以下の温度では上記ガラス素材の体積
収縮に追従しないように相対移動を制限する間隔調整部
材を、上記型部材に関連して配置していることを特徴と
する光学素子のプレス成形装置。
1. A press forming apparatus for an optical element, wherein a glass material in a softened state is pressed using a molding die member, and an optical functional surface corresponding to a molding surface of the die member is formed on the glass raw material. In the cooling process after the pressure molding, the upper and lower mold members are relatively moved in a direction in which the distance between the upper and lower mold members is relatively reduced in conjunction with the volume shrinkage of the glass material accompanying the cooling up to the temperature of the transition point of the glass material. Like moving
An optical element press, characterized in that an interval adjusting member for limiting relative movement so as not to follow the volume shrinkage of the glass material at a temperature below the transition point is arranged in relation to the mold member. Molding equipment.
【請求項2】 光学素子形状に加工するガラス材料を所
定の軟化温度に加熱し、一対の型部材と該型部材の間隔
を調整する調整部材を設け、前記ガラス材料を前記型部
材の中に入れて加圧して、前記型部材の加圧面形状を前
記ガラス材料に転写して光学素子形状のガラス光学素子
に変形させ、前記形状変形過程の後に前記ガラス光学素
子を冷却工程に移行し、前記冷却工程においてガラス材
料の体積収縮に伴って一方の型部材を前記ガラス材料と
共に追従移動させ、前記ガラス材料の温度がガラス転移
点相当温度以下の温度で前記一方の型部材の移動を禁止
させるようにして成形することを特徴としたガラス材料
の成形方法。
2. A glass material to be processed into an optical element shape is heated to a predetermined softening temperature, and a pair of mold members and an adjusting member for adjusting a distance between the mold members are provided, and the glass material is placed in the mold members. Put and pressurized, the pressed surface shape of the mold member is transferred to the glass material and deformed into a glass optical element having an optical element shape, and after the shape deformation process, the glass optical element is shifted to a cooling step, In the cooling step, one of the mold members is moved together with the glass material in accordance with the volume contraction of the glass material, and the movement of the one mold member is prohibited at a temperature of the glass material equal to or lower than the glass transition temperature. A method for forming a glass material, comprising: forming a glass material.
JP2411316A 1990-12-18 1990-12-18 Press forming apparatus and forming method for optical element Expired - Fee Related JP2593243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2411316A JP2593243B2 (en) 1990-12-18 1990-12-18 Press forming apparatus and forming method for optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2411316A JP2593243B2 (en) 1990-12-18 1990-12-18 Press forming apparatus and forming method for optical element

Publications (2)

Publication Number Publication Date
JPH04219329A JPH04219329A (en) 1992-08-10
JP2593243B2 true JP2593243B2 (en) 1997-03-26

Family

ID=18520334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2411316A Expired - Fee Related JP2593243B2 (en) 1990-12-18 1990-12-18 Press forming apparatus and forming method for optical element

Country Status (1)

Country Link
JP (1) JP2593243B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6079228A (en) * 1997-07-25 2000-06-27 Minolta Co., Ltd. Forming method of glass element

Also Published As

Publication number Publication date
JPH04219329A (en) 1992-08-10

Similar Documents

Publication Publication Date Title
JPH0432008B2 (en)
JPS60145919A (en) Press-molding of high-precision formed glass article
KR101468756B1 (en) Method of producing glass molding product and mold press molding device
JP2593243B2 (en) Press forming apparatus and forming method for optical element
US5601627A (en) Method for molding optical element
JP4559784B2 (en) Optical element manufacturing method
JP2000095532A (en) Press-formed optical element, its production, die for press-forming optical element and device for press- forming optical element
JPH1149523A (en) Production of glass formed body and apparatus therefor
JP4156887B2 (en) Method for producing glass molded body
JP4426910B2 (en) Mold press mold, optical element manufacturing method, and mold press lens
JP2504817B2 (en) Optical element molding method
JP2924311B2 (en) Glass optical element molding method
JP3155395B2 (en) Method and apparatus for molding optical glass element
JPS6296328A (en) Method of molding optical glass element
JP2004307330A (en) Method of manufacturing lens
JPH11157853A (en) Method for forming optical element and forming mold therefor
JP4473692B2 (en) Manufacturing method of molded products
JP2002249328A (en) Method for forming optical element
JPH0585749A (en) Method for molding optical element and optical element
JP3134173B2 (en) Optical glass mold and optical glass molding method
JPH0476932B2 (en)
JPH05221664A (en) Method for forming optical element
JPH02208228A (en) Forming of optical element
JP2825681B2 (en) Press forming method for optical elements
JPH0741327A (en) Optical element forming method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees