JP2587863B2 - Novel glycoprotein - Google Patents
Novel glycoproteinInfo
- Publication number
- JP2587863B2 JP2587863B2 JP63172187A JP17218788A JP2587863B2 JP 2587863 B2 JP2587863 B2 JP 2587863B2 JP 63172187 A JP63172187 A JP 63172187A JP 17218788 A JP17218788 A JP 17218788A JP 2587863 B2 JP2587863 B2 JP 2587863B2
- Authority
- JP
- Japan
- Prior art keywords
- glycoprotein
- added
- cys
- minutes
- ala
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、補体による細胞膜障害を抑制する作用を有
する新規な糖蛋白質に関する。Description: TECHNICAL FIELD The present invention relates to a novel glycoprotein having an action of suppressing complement-induced cell membrane damage.
補体は、血液及び体液中に存在する一群のプロテアー
ゼを含む反応系である。生体への異物侵入に際して補体
系が活性化され、異物に反応沈着した補体成分の一部
は、貧食細胞による貧食を促したり、或いは異物の溶解
を引きおこし、異物排除に積極的に働く。また、補体の
活性化の過程で生ずる補体成分の種々のペプチド断片
は、リンパ球を活性化したり、好中球を遊走したり、肥
満細胞の脱顆粒を促す等種々の細胞に使用し、多彩な免
疫反応及び炎症反応に関与している。Complement is a reaction system that includes a group of proteases present in blood and body fluids. When the foreign body invades the living body, the complement system is activated, and some of the complement components deposited in response to the foreign body promote poor phagocytosis by the phagocytic cells or cause dissolution of the foreign body, and actively remove the foreign body. work. In addition, various peptide fragments of complement components generated in the process of complement activation are used for various cells such as activating lymphocytes, migrating neutrophils, and promoting degranulation of mast cells. Are involved in a variety of immune and inflammatory responses.
補体は異物には速やかに反応するが、自己の正常細胞
上では補体の活性化が進行しない。しかし、例えば慢性
関節リウマチ、全身性エリテマトーデス、糸球体腎炎等
の疾患の炎症部位では、補体があたかも自己の組織を異
物として認識し、該組織の細胞膜に反応して炎症反応を
誘起すると共に、貧食細胞による貧食を促したり、或い
は該細胞膜を溶解する等の細胞障害を及ぼし、炎症反応
を増悪させていると考えられている。Although complement responds rapidly to foreign bodies, complement activation does not proceed on its own normal cells. However, for example, in inflammation sites such as rheumatoid arthritis, systemic lupus erythematosus, and glomerulonephritis, complement recognizes its own tissue as a foreign body, and induces an inflammatory reaction in response to the cell membrane of the tissue, It is thought that they promote phagocytosis by poor phagocytes or cause cell damage such as dissolution of the cell membrane, thereby exacerbating the inflammatory response.
近年、自己細胞膜上に自己の補体の活性化を抑制する
蛋白質の存在が示され〔Mol.Immunol.,20,1233−1236
(1983)〕、その機能を持つ蛋白質として同定されたも
のもある。例えば、分子量68KdのDecay acceler−ating
factor(DAF)〔J.Exp.Med.,160,1558−1578(198
4)〕や分子量65KdのHomologous restriction factor
(HRF)〔PNAS,83,6975−6979(1986)〕がヒト細胞膜
上に存在する補体抑制因子として得られている。しか
し、これらDAF、HRFの生体における詳細の機能は未だ解
明されていない。In recent years, the presence of a protein that suppresses the activation of autologous complement on the autologous cell membrane has been shown [Mol. Immunol., 20 , 1233-1236.
(1983)], and some have been identified as proteins having that function. For example, Decay acceler-ating with a molecular weight of 68 Kd
factor (DAF) [J. Exp. Med., 160 , 1558-1578 (198
4)] and a homologous restriction factor with a molecular weight of 65Kd
(HRF) [PNAS, 83 , 6975-6979 (1986)] has been obtained as a complement inhibitory factor present on human cell membranes. However, the detailed functions of these DAFs and HRFs in living bodies have not yet been elucidated.
本発明者らは、これらの因子以外に自己細胞膜上で補
体の活性化を抑制する機能を担う膜蛋白質を得るべく検
討した。先に、本発明者らはヒトの赤血球をマウスに免
疫し、そのマウスの脾臓を取出し、その脾臓細胞をマウ
スミエローマ細胞(P3U1)とポリエチレングリコールを
用いて融合し多数の抗体産生ハイブリドーマを得、これ
らハイブリドーマの産生する抗体(培養上清)の中か
ら、あらかじめノイラミニダーゼ処理したヒト赤血球に
反応させるとヒト補体によっても溶血反応を引きおこす
ような抗体を産生する細胞を繰り返しスクリーニングし
て、単一の抗体を産生するハイブリドーマを得、単クロ
ーン抗体1F5抗体を取得した〔日本免疫学会総会記事,1
7,498(1987)、補体シンボジウム抄録集,24,180(198
7)〕。The present inventors have studied to obtain a membrane protein which has a function of suppressing complement activation on an autologous cell membrane in addition to these factors. First, the present inventors immunized a mouse with human erythrocytes, removed the spleen of the mouse, and fused the spleen cells with mouse myeloma cells (P3U1) using polyethylene glycol to obtain a large number of antibody-producing hybridomas. From among the antibodies (culture supernatants) produced by these hybridomas, cells that produce antibodies that react with human erythrocytes that have been treated with neuraminidase in advance and also cause hemolysis by human complement are repeatedly screened. to obtain a hybridoma producing the antibody, to obtain a single monoclonal antibody 1F5 antibody [the Japanese Society for Immunology meeting article, 1
7 , 498 (1987), Complement Symbolic Abstracts, 24 , 180 (198
7)].
今般、本発明者らは、この1F5抗体の抗原を得るべく
更に鋭意検討した結果、従来の補体抑制因子とは異な
る、分子量が20〜25Kdの新規な糖蛋白質を得るに至り本
発明を完成した。Recently, the present inventors have conducted intensive studies to obtain an antigen of the 1F5 antibody, and as a result, have obtained a novel glycoprotein having a molecular weight of 20 to 25 Kd, which is different from the conventional complement inhibitory factor, and completed the present invention. did.
即ち本発明の要旨は、ヒト細胞膜由来の糖蛋白質であ
って、SDS−ポリアクリルアミドゲル電気泳動(以下「S
DS−PAGE」と略す)による分子量が20〜25Kdで、N−グ
リコシド型糖鎖及びホスファチジルイノシトールを含有
し、補体による細胞膜障害を抑制する作用を有すること
を特徴とする糖蛋白質に存する。That is, the gist of the present invention is a glycoprotein derived from human cell membrane, which is obtained by SDS-polyacrylamide gel electrophoresis (hereinafter referred to as “S
(Abbreviated as "DS-PAGE") having a molecular weight of 20 to 25 Kd, containing an N-glycoside type sugar chain and phosphatidylinositol, and having an action of suppressing cell membrane damage caused by complement.
以下本発明を説明するに、本発明の糖蛋白質は、赤血
球、リンパ球、血管内皮細胞若しくはそれらを由来とす
る腫瘍細胞及び正常株化細胞等のヒト細胞膜を原料とす
る。例えばヒト赤血球等のヒト細胞を遠心(500×g、1
0分程度)によって集め、ダルベッコPBS(日水製薬社
製、以下「PBS」という。)等で洗浄後、低張液に移し
て浸透圧による破砕、或いは窒素ガス圧による破砕等に
より破砕する。得られる破砕液に低張液、例えば1mAフ
ェニルメチルスルホニルフロリド(PMSF)(シグマ社
製)、1mMEDTAを含む10mMトリス−塩酸緩衝液(pH7.5)
を加え、遠心(5000〜1000×g,30分程度)する。この操
作を繰り返し行って細胞膜画分を得る。In the following, the present invention will be described. The glycoprotein of the present invention is obtained from human cell membranes such as erythrocytes, lymphocytes, vascular endothelial cells or tumor cells and normal cell lines derived therefrom. For example, human cells such as human red blood cells are centrifuged (500 × g, 1
After washing with Dulbecco's PBS (manufactured by Nissui Pharmaceutical Co., Ltd., hereinafter referred to as “PBS”) or the like, the solution is transferred to a hypotonic solution and crushed by osmotic pressure or crushed by nitrogen gas pressure. A hypotonic solution such as 1 mA phenylmethylsulfonyl fluoride (PMSF) (manufactured by Sigma) and a 10 mM Tris-HCl buffer (pH 7.5) containing 1 mM EDTA are added to the obtained crushed solution.
And centrifuge (5000-1000 xg, about 30 minutes). This operation is repeated to obtain a cell membrane fraction.
次いで、この洗浄膜画分から界面活性剤、例えば1%
程度のβ−N−オクチルグルコシド(同仁社製)または
有機溶媒、例えば20%(v/v)程度のブタノールを含む
上記緩衝液を用いて糖蛋白質を抽出し、この糖蛋白質抽
出液に硫安を加え、硫安飽和濃度30〜60%の蛋白質の沈
澱を遠心によって得る。Then, a surfactant such as 1%
Glycoprotein is extracted using the above buffer containing about β-N-octylglucoside (manufactured by Dojinsha) or an organic solvent, for example, about 20% (v / v) butanol, and ammonium sulfate is added to the glycoprotein extract. In addition, a protein precipitate with a saturated concentration of ammonium sulfate of 30 to 60% is obtained by centrifugation.
上述の硫安沈澱画分を少量の上記緩衝液に溶解し、DE
AE−セファロースカラムクロマトグラフィー、MonoS−
カラムクロマトグラフィー、ヒドロキシアパタイトカラ
ムクロマトグラフィー、フェニルセファロースクロマト
グラフィー、TSK2000SW(トーソー社製)等のカラムク
ロマトグラフィーを適宜組み合せ、モルモット赤血球の
ヒト補体による溶血反応の抑制活性を指標として本発明
の糖蛋白質を精製することができる。The above ammonium sulfate precipitate fraction was dissolved in a small amount of the above buffer solution, and DE was dissolved.
AE-Sepharose column chromatography, MonoS-
A suitable combination of column chromatography, hydroxyapatite column chromatography, phenyl sepharose chromatography, and column chromatography such as TSK2000SW (manufactured by Tosoh Corporation), and the glycoprotein of the present invention is used as an index based on the activity of inhibiting the hemolysis of human guinea pig erythrocytes by human complement. Can be purified.
或いは、日本免疫学会総会記事17,498(1987)及び補
体シンポジウム抄録集24,180(1987)に記載の方法で得
られる1F5抗体を用いて常法により1F5抗体アフィニティ
ーセファロースを調製し、上述の糖蛋白質の硫安沈澱画
分を供し、0.15M塩化ナトリウム、0.1%CHAPS(シグマ
社製)を含む0.1Mグリシン−塩酸緩衝液(pH3.0)で溶
出することによって本発明の糖蛋白質を精製することが
できる。1F5抗体は福岡大学医学部微生物学教室から制
限なく自由に入手可能である。或いはまた、上記方法で
得られる糖蛋白質の下記のような部分のアミノ酸配列の
ペプチドを合成し、それを常法に従いウサギに免疫して
抗血清を得、これよりIgG画分を精製し、このIgGをセフ
ァロースに結合させ、抗体アフィニティーセフアロース
を調製して上述の硫安沈澱画分を供し、0.1Mグリシン−
塩酸緩衝液(pH2.8)で溶出することによって、本発明
の糖蛋白質を精製することができる。Alternatively, 1F5 antibody affinity sepharose is prepared by a conventional method using the 1F5 antibody obtained by the method described in the Japanese Society of Immunology Society general meeting article 17 , 498 (1987) and complement symposium abstract 24 , 180 (1987), and described above. The ammonium sulfate precipitate fraction of the glycoprotein is provided, and the glycoprotein of the present invention is purified by elution with a 0.1 M glycine-HCl buffer (pH 3.0) containing 0.15 M sodium chloride and 0.1% CHAPS (manufactured by Sigma). be able to. The 1F5 antibody can be freely obtained without limitation from the Department of Microbiology, School of Medicine, Fukuoka University. Alternatively, a peptide having the amino acid sequence of the following portion of the glycoprotein obtained by the above method is synthesized, and immunized to a rabbit according to a conventional method to obtain an antiserum, from which an IgG fraction is purified. IgG was bound to Sepharose, antibody affinity sepharose was prepared, and the above ammonium sulfate precipitated fraction was provided, and 0.1 M glycine-
The glycoprotein of the present invention can be purified by elution with a hydrochloric acid buffer (pH 2.8).
(a) Leu−Gln−Cys−Tyr−Asn−Cys−Pro−Asn−Pr
o (b) Thr−Ala−Asp−Cys−Lys−Thr−Ala−Val かくして得られる本発明の糖蛋白質は、下記に示すよ
うな性質を有する。(A) Leu-Gln-Cys-Tyr-Asn-Cys-Pro-Asn-Pr
o (b) Thr-Ala-Asp-Cys-Lys-Thr-Ala-Val The glycoprotein of the present invention thus obtained has the following properties.
(1) 電気泳動(12.5%SDS−PAGE)による分子量が2
0〜25Kd (2) 糖鎖がN−グリコシド型糖鎖を含む (3) ホスファチジルイノシトールを含む (4) 補体による細胞障害を抑制する作用を有する。
これは、例えば、モルモット赤血球に容易に取り込まれ
てモルモット赤血球のヒト補体による溶血反応が抑制さ
れることによって確認される。(1) The molecular weight by electrophoresis (12.5% SDS-PAGE) is 2
0 to 25 Kd (2) The sugar chain contains an N-glycoside type sugar chain (3) It contains phosphatidylinositol (4) It has an action of suppressing cell damage caused by complement.
This is confirmed, for example, by the fact that guinea pig erythrocytes are readily taken up by guinea pig erythrocytes and suppress the hemolysis of guinea pig erythrocytes by human complement.
(5) 等電点は、1次元目にアンホライン(ファルマ
シア社製)pI3.5〜10を用いた等電点電気泳動を行な
い、2次元目に非還元下、SDS−PAGE(12.5%)を用い
て解析した結果、pI約5.0(主バンド)とpI約6.5にバン
ドを得た。(5) The isoelectric point was determined by isoelectric focusing using Ampholine (manufactured by Pharmacia) pI 3.5-10 in the first dimension, and performing SDS-PAGE (12.5%) under non-reducing in the second dimension. As a result of the analysis, bands were obtained at a pI of about 5.0 (main band) and a pI of about 6.5.
(6) 下記のアミノ酸組成を有する Asp;20.2%,Thr;8.9%,Ser;3.1%,Glu;10.6%,Gly;2.
2%,Ala;6.2%,Cys;0.6%,Val;4.5%,Ile;1.4%,Leu;1
0.1%,Tyr;8.1%,Phe;6.4%,Lys;9.1%,His;2.1%,Arg;
3.0%,Pro;3.5% (7) 下記の部分アミノ酸配列を有する Leu−Gln−Cys−Tyr−Asn−Cys−Pro−Asn−Pro−Thr
−Ala−Asp−Cys−Lys−Thr−Ala−Val−X−X−Ser−
Ser−Asp−Phe−Asp−Ala−X−Leu−X−Thr−Lys−Al
a−Gly−X−Gln−Val−Tyr−Asn− XはCys又は他のアミノ酸残基を示す。(6) Asp having the following amino acid composition: 20.2%, Thr: 8.9%, Ser; 3.1%, Glu; 10.6%, Gly;
2%, Ala; 6.2%, Cys; 0.6%, Val; 4.5%, Ile; 1.4%, Leu; 1
0.1%, Tyr; 8.1%, Phe; 6.4%, Lys; 9.1%, His; 2.1%, Arg;
3.0%, Pro; 3.5% (7) Leu-Gln-Cys-Tyr-Asn-Cys-Pro-Asn-Pro-Thr having the following partial amino acid sequence
-Ala-Asp-Cys-Lys-Thr-Ala-Val-XX-Ser-
Ser-Asp-Phe-Asp-Ala-X-Leu-X-Thr-Lys-Al
a-Gly-X-Gln-Val-Tyr-Asn-X represents Cys or another amino acid residue.
以下に実施例を挙げて本発明を更に具体的に説明す
る。Hereinafter, the present invention will be described more specifically with reference to examples.
実施例1 (1) 1F5抗体アフィニティーセファロースの調製 CNBr−activated Sepharose 4B(ファルマシア社製)
を1mM塩酸中で15〜30分間膨潤させた。このゲル溶液を
グラスフィルター上で吸引し、1mM塩酸を乾燥ゲル1gあ
たり200ml加え、吸引洗浄を繰り返した。Example 1 (1) Preparation of 1F5 antibody affinity sepharose CNBr-activated Sepharose 4B (Pharmacia)
Was swelled in 1 mM hydrochloric acid for 15-30 minutes. This gel solution was suctioned on a glass filter, 200 mM of 1 mM hydrochloric acid was added per 1 g of the dried gel, and the suction washing was repeated.
次いで、ゲルをカップリング緩衝液(0.5M塩化ナトリ
ウムを含む0.2M炭酸水素ナトリウム、pH8.5〜8.7)を乾
燥ゲルあたり10mlで洗浄した。直ちにカップリング緩衝
液に溶解してある1F5抗体溶液にこの洗浄ゲルを移し、
カップリング反応を開始した。このとき1F5抗体量は1ml
膨潤ゲルに対し5〜10mgであった。The gel was then washed with coupling buffer (0.2 M sodium bicarbonate containing 0.5 M sodium chloride, pH 8.5-8.7) at 10 ml per dry gel. Immediately transfer the washed gel to the 1F5 antibody solution dissolved in the coupling buffer,
The coupling reaction was started. At this time, the amount of 1F5 antibody is 1 ml
The amount was 5 to 10 mg for the swollen gel.
カップリング反応は4℃で1晩ゆるやかに撹拌しなが
ら行った。反応後、ゲル溶液をガラスロート上に移し、
未反応の抗体溶液を回収した。次いで、ゲルを1Mエタノ
ールアミン溶液に移し、4℃で16時間放置した。The coupling reaction was performed at 4 ° C. overnight with gentle stirring. After the reaction, transfer the gel solution onto a glass funnel,
Unreacted antibody solution was recovered. The gel was then transferred to a 1 M ethanolamine solution and left at 4 ° C. for 16 hours.
反応を終了したゲルをガラスロート上に移し吸引し
た。次いで、カップリング緩衝液で洗浄吸引を10回繰り
返し、更に0.5M塩化ナトリウムを含む0.1M酢酸緩衝液
(pH4.0)で10回洗浄吸引を繰り返した。最後にゲルをP
BSで3回洗浄吸引し、1F5抗体アフィニティーセファロ
ースを調製した。The gel after the reaction was transferred to a glass funnel and aspirated. Next, washing and suction were repeated 10 times with a coupling buffer, and further, washing and suction were repeated 10 times with a 0.1 M acetate buffer (pH 4.0) containing 0.5 M sodium chloride. Lastly, gel P
After washing and suctioning three times with BS, 1F5 antibody affinity sepharose was prepared.
(2) ヒト赤血球膜の調製 (a) ヒト赤血球の洗浄 300〜400mlのヒト血液を400〜500×gで15分間遠心
し、上清を除いて赤血球画分を沈澱として得た。この沈
澱に10mMEDTA、1mMPMSFを含むPBSを加え、400〜500×g
で15分間遠心した。次いで、この沈澱に1mMEDTA、1mMPM
SFを含むPBSを加え、400〜500×gで15分間遠心した。
再び上清を除いて沈澱を得た。この操作を上清が透明に
なるまで繰り返し行った。(2) Preparation of human erythrocyte membrane (a) Washing of human erythrocytes 300 to 400 ml of human blood was centrifuged at 400 to 500 × g for 15 minutes, and the supernatant was removed to obtain a red blood cell fraction as a precipitate. PBS containing 10 mM EDTA and 1 mM PMSF was added to the precipitate, and 400 to 500 × g
For 15 minutes. Next, 1 mM EDTA, 1 mM PMM
PBS containing SF was added and centrifuged at 400-500 × g for 15 minutes.
The supernatant was removed again to obtain a precipitate. This operation was repeated until the supernatant became transparent.
(b) 赤血球の溶血及び赤血球膜の調製 上記(a)で得られた洗浄赤血球を1mMEDTA、1mMPMSF
を含む10mMトリス−塩酸緩衝液(pH7.5)(以下「緩衝
液A」と略す)3〜4に移し、4℃で1晩撹拌しなが
ら溶血させた。(B) Hemolysis of erythrocytes and preparation of erythrocyte membrane The washed erythrocytes obtained in (a) above were subjected to 1 mM EDTA and 1 mM PMSF.
Was transferred to 3 to 4 of a 10 mM Tris-HCl buffer (pH 7.5) (hereinafter, abbreviated as "buffer A") containing, and hemolyzed while stirring at 4 ° C overnight.
次いで、25,000×g、30分間遠心して赤血球膜画分を
沈澱として回収した。この沈澱を緩衝液Aに懸濁して更
に25,000×g、30分間遠心した。この操作を沈澱として
得られる赤血球膜の色が淡いピンク色になるまでおこな
った。Then, the mixture was centrifuged at 25,000 × g for 30 minutes, and the erythrocyte membrane fraction was collected as a precipitate. This precipitate was suspended in buffer A and centrifuged at 25,000 × g for 30 minutes. This operation was performed until the color of the erythrocyte membrane obtained as a precipitate became pale pink.
(c) 赤血球膜蛋白の可溶化 上記(b)で得られた赤血球膜画分を1%n−オクチ
ル−β−D−グルコピラノシド(シグマ社製、以下「NO
G」と略す)を含む緩衝液A500mlに懸濁し、4℃で1晩
撹拌した。(C) Solubilization of erythrocyte membrane protein The erythrocyte membrane fraction obtained in the above (b) was treated with 1% n-octyl-β-D-glucopyranoside (Sigma, hereinafter referred to as “NO
G ") and stirred at 500C overnight.
次いで、この溶液を105,000×gで30分間遠心して、
上清を得た。この溶液を4℃で撹拌しながら30%飽和に
なるように固形硫安を少量ずつ加えた。撹拌を2〜3時
間続けた後、10,000×gで15分間遠心して上清を得た。
この上清に固形硫安を60%飽和となるように加え、4℃
で2〜3時間撹拌後10,000×gで15分間遠心して沈澱を
得た。この沈澱を少量の緩衝液Aに溶解し、終濃度0.1
%となるようにNOGを添加した。この溶液を0.1%NOG及
び0.15M塩化ナトリウムを含む緩衝液Aに対して、4℃
にて1晩排出分子量3500の透析膜(スペクトラム社製)
を用いて透析した。The solution was then centrifuged at 105,000 xg for 30 minutes,
The supernatant was obtained. While stirring the solution at 4 ° C., solid ammonium sulfate was added little by little so as to become 30% saturated. After stirring was continued for 2 to 3 hours, the mixture was centrifuged at 10,000 × g for 15 minutes to obtain a supernatant.
Solid ammonium sulfate was added to this supernatant so as to be 60% saturated, and 4 ° C.
After stirring for 2 to 3 hours, the mixture was centrifuged at 10,000 × g for 15 minutes to obtain a precipitate. This precipitate was dissolved in a small amount of buffer A and the final concentration was 0.1
% NOG was added. This solution was added to buffer A containing 0.1% NOG and 0.15 M sodium chloride at 4 ° C.
3500 dialysis membrane (Made by Spectrum) overnight
Was dialyzed against
(d) アフィニティーカラムクロマトグラフィー 上記(1)で調製した1F5抗体アフィニティーセファ
ロースゲル(5ml容量)のカラムを調製し、0.15M塩化ナ
トリウム及び0.1%NOGを含む緩衝液Aで平衡化した。こ
のカラムに上記(c)で得た糖蛋白質の可溶化液を吸着
させた。吸着後、0.5M塩化ナトリウム及び0.1%NOGを含
む緩衝液Aを1硫して洗浄した。洗浄後、0.15M塩化
ナトリウム及び0.1%CHAPSを含む緩衝液A100mlを流し
た。次いで、0.1%CHAPS及び0.15M塩化ナトリウムを含
む0.1Mグリシン−塩酸緩衝液(pH3.0)で溶出した。溶
出液は1mlずつ分画し、1Mグリシン−水酸化ナトリウム
緩衝液(pH9.5)を加えてすばやく中和した。A280でモ
ニターして蛋白質が溶出された溶出画分を集め限外ろ過
(排出分子量1万以下)で濃縮し、0.1%CHAPSを含むPB
Sに対して前述の透析膜を用いて透析して100〜150μg
の精製された本発明の糖蛋白質を得た。(D) Affinity column chromatography A column of the 1F5 antibody affinity sepharose gel (5 ml capacity) prepared in the above (1) was prepared and equilibrated with buffer A containing 0.15 M sodium chloride and 0.1% NOG. The solubilized solution of the glycoprotein obtained in the above (c) was adsorbed on this column. After the adsorption, buffer A containing 0.5 M sodium chloride and 0.1% NOG was washed with one sulfuric acid. After washing, 100 ml of buffer A containing 0.15 M sodium chloride and 0.1% CHAPS was flowed. Next, elution was performed with a 0.1 M glycine-HCl buffer (pH 3.0) containing 0.1% CHAPS and 0.15 M sodium chloride. The eluate was fractionated in 1 ml portions, and quickly neutralized by adding 1 M glycine-sodium hydroxide buffer (pH 9.5). Concentrated by ultrafiltration collected elution fractions protein was eluted as monitored by A 280 (emission molecular weight of 10,000 or less), PB containing 0.1% CHAPS
Dialyze against S using the above dialysis membrane and 100 ~ 150μg
Of the present invention was obtained.
(e) 本発明の糖蛋白質の性質 (1) 分子量:20〜25Kd(12.5%還元、非還元下SDS−
PAGE) (2) 糖鎖がN−グリコシド型糖鎖を含む 本発明の糖蛋白質(mg/ml)50μに2%SDS溶液を50
μ加え1分間煮沸した。次いでこの溶液にエンドグリ
コシダーゼF(ベーリンガー社製)1ユニット、1M酢酸
緩衝液(pH6.0)100μ、0.25MEDTA(pH7.5)溶液100
μ、10%トリトンX−100(シグマ社製)50μ、2
−メルカプトエタノール10μ及び蒸留水619μを加
え、37℃で16時間撹拌しながら反応させた。反応終了
後、50%トリクロロ酢酸溶液200μを加え、氷上で10
分間静置して遠心(10000×g10分間)し、上清をすて
た。この沈澱に冷アセトン1mlを加え撹拌し、氷上で10
分間静置後遠心(10000×g、10分間)して上清をす
て、この操作をもう一度くり返した。この沈澱をSDS−P
AGE試料溶液で溶解して、3分間煮沸した後SDS−PAGE1
2.5%に供した。対照としてエンドグリコシダーゼFの
みを含まない反応溶液を本発明の糖蛋白質に加え、同時
間同様の処理を行った。エンドグリコシダーゼF処理を
行ったものは、対照に比してSDS−PAGE上でバンドが約
0.5Kd低分子側にシフトしていた(図1)。(E) Properties of the glycoprotein of the present invention (1) Molecular weight: 20 to 25 Kd (12.5% reduced, non-reduced SDS-
(PAGE) (2) The sugar chain contains an N-glycoside type sugar chain. 50% of the 2% SDS solution is added to 50 μm of the glycoprotein of the present invention (mg / ml).
Add μ and boil for 1 minute. Next, 1 unit of endoglycosidase F (manufactured by Boehringer), 100 µM of 1 M acetate buffer (pH 6.0), and 100 µ of 0.25 MEDTA (pH 7.5) were added to this solution.
μ, 10% Triton X-100 (manufactured by Sigma) 50μ, 2
-10 µ of mercaptoethanol and 619 µ of distilled water were added, and reacted while stirring at 37 ° C for 16 hours. After the reaction is completed, add 200 μl of a 50% trichloroacetic acid solution, and place on ice for 10 minutes.
The mixture was left standing for 10 minutes, centrifuged (10,000 × g for 10 minutes), and the supernatant was discarded. 1 ml of cold acetone was added to the precipitate, and the mixture was stirred.
After standing for 1 minute, the mixture was centrifuged (10,000 × g, 10 minutes), the supernatant was discarded, and this operation was repeated once. This precipitate was subjected to SDS-P
After dissolving in AGE sample solution and boiling for 3 minutes, SDS-PAGE1
2.5%. As a control, a reaction solution not containing only endoglycosidase F was added to the glycoprotein of the present invention, and the same treatment was carried out for the same time. Those treated with endoglycosidase F showed about a band on SDS-PAGE as compared to the control.
It shifted to the low molecular side of 0.5 Kd (FIG. 1).
以上の結果より、本発明の糖蛋白質がN−グリコシド
型糖鎖を含むことが示された。From the above results, it was shown that the glycoprotein of the present invention contains an N-glycoside type sugar chain.
(3) ホスファチジルイノシトールを含む 本発明の糖蛋白を細胞表面上に有するMT2(ヒトT細
胞白血病ウイルス−1(HTLV−1)感染ヒトT細胞株)
を用いた。MT21×106細胞を含む培養液を遠心(100〜40
0×g、5分間)して細胞を集めた。ここにPBSを加えて
おだやかに撹拌後、同様に遠心し上清をすて、この操作
を2度くり返した。このMT2細胞1×106コ(細胞)にホ
スファチジルイノシトール特異的ホスホリパーゼC15ユ
ニット(以下「PI−PLC」と略す。J.Biochem.,93,1717
(1983)の方法によって、B.thruringeinsis IAM 12077
より精製)、0.25Mショ糖、10mMEDTA及び0.1%ウシ血清
アルブミンを含む10mMトリス−塩酸(pH7.5)緩衝液150
μを加え、おだやかに撹拌しながら37℃下で90分間放
置した。反応後、PBS2mlを加えて遠心(100〜400×g10
分間)し、上清をすてた。この操作をさらに2回くり返
した。沈澱している細胞にヒツジIgG(カペル社製)(1
0mg/ml)10μ加え、撹拌後室温で10分間静置し、上述
したようにPBSを加えて遠心による洗浄を3回くり返し
た。この沈澱に1F5抗体(A2800.1濃度)を20μ加え、
撹拌後室温で20分間静置した。再びPBSを加えて遠心に
よる洗浄を3回くり返し、沈澱にFITC標識抗マウスIgG
(カペル社製)20μ加え、撹拌後室温で20分間静置
し、PBSを加えて遠心による洗浄を3回行った。この沈
澱にシース液(藤沢薬品社製)200μを加えて細胞浮
遊液とし、ナイロンメッシュでろ過したろ液にさらに50
0μシース液を加え、FACSアナライザー(フローサイ
トメトリー)に供した。対照にPI−PLCを含まない反応
液で上述の如くMT2細胞を処理したものを用いた。(3) MT2 containing phosphatidylinositol (Human T-cell leukemia virus-1 (HTLV-1) infected human T cell line) having the glycoprotein of the present invention on the cell surface
Was used. Centrifuge the culture solution containing MT21 × 10 6 cells (100 to 40
0 × g for 5 minutes) to collect the cells. After PBS was added thereto and the mixture was gently stirred, the mixture was centrifuged in the same manner, and the supernatant was discarded. This operation was repeated twice. 1 × 10 6 MT2 cells (cells) were phosphatidylinositol-specific phospholipase C15 unit (hereinafter abbreviated as “PI-PLC”; J. Biochem., 93 , 1717).
(1983), B. thruringeinsis IAM 12077
Purified), 10 mM Tris-HCl (pH 7.5) buffer containing 0.25 M sucrose, 10 mM EDTA and 0.1% bovine serum albumin.
μ was added, and the mixture was left at 37 ° C. for 90 minutes with gentle stirring. After the reaction, 2 ml of PBS was added and centrifuged (100-400 × g10
Minutes) and the supernatant was discarded. This operation was repeated twice more. Sheep IgG (Capel) (1
(0 mg / ml), and the mixture was stirred and allowed to stand at room temperature for 10 minutes, and PBS was added as described above, and washing by centrifugation was repeated three times. 20 μl of 1F5 antibody (A 280 0.1 concentration) was added to this precipitate,
After stirring, the mixture was allowed to stand at room temperature for 20 minutes. The PBS was added again, and washing by centrifugation was repeated three times, and the precipitate was subjected to FITC-labeled anti-mouse IgG.
After adding 20 μl (manufactured by Capel), stirring, the mixture was allowed to stand at room temperature for 20 minutes, and PBS was added thereto, followed by washing by centrifugation three times. The precipitate was added with 200 μl of sheath solution (manufactured by Fujisawa Pharmaceutical Co., Ltd.) to obtain a cell suspension, and the filtrate filtered through a nylon mesh was further added to the filtrate.
0 μ sheath solution was added, and subjected to a FACS analyzer (flow cytometry). As a control, MT2 cells treated with a reaction solution containing no PI-PLC as described above were used.
その結果、PI−PLC処理を行ったMT2細胞は、対照に比
べ95%本発明の糖蛋白質陰性細胞となった(図2)。As a result, MT2 cells treated with PI-PLC were 95% glycoprotein-negative cells of the present invention as compared to the control (FIG. 2).
以上の結果より本発明の糖蛋白質は、ホスファチジル
イノシトールを有し、これを介して膜に結合しているも
のと推定された。From the above results, it was presumed that the glycoprotein of the present invention had phosphatidylinositol and was bound to the membrane via this.
(4) ヒト補体による細胞障害を抑制する作用を有す
る。(4) It has the effect of suppressing cell damage caused by human complement.
例えばPBSで十分洗浄した2%モルモット赤血球25μ
に本発明の糖蛋白質(任意の蛋白質濃度)を12.5μ
加え、さらにPBS462.5μを加え、37℃で1時間おだや
かに撹拌しながら放置した。反応終了後5mMマグネシウ
ム、10mMEGTA及び0.1%ゼラチンを含むベロナール緩衝
液(和光純薬社製)(「Mg−EGTA−GVB」と略す)を2ml
加え、遠心(100〜400×g、10分間)し上清をすてた。
再びMg−EGTA−GVB、2ml加え、上述同様の遠心を行ない
上清をすてた。沈澱にMg−EGTA−GVB100μ及び正常ヒ
ト血清50μを加え、37℃で60分間ゆっくり撹拌した。
次いで40mMEDTA及び0.1%ゼラチンを含むベロナール緩
衝液1.0mlを加え、遠心(100〜400×g、10分間)を行
った。その上清をA414で測定し、ヒト補体によるモルモ
ット赤血球の溶血率を測定した。対照として本発明の糖
蛋白質の代わりに同濃度のウシ血清アルブミンを用い
た。For example, 25μ of 2% guinea pig erythrocytes thoroughly washed with PBS
12.5 μg of the glycoprotein of the present invention (arbitrary protein concentration)
In addition, 462.5 µ of PBS was further added, and the mixture was allowed to stand with gentle stirring at 37 ° C for 1 hour. After completion of the reaction, 2 ml of veronal buffer (manufactured by Wako Pure Chemical Industries, Ltd.) containing 5 mM magnesium, 10 mM ETA and 0.1% gelatin (abbreviated as “Mg-EGTA-GVB”) was used.
In addition, the mixture was centrifuged (100-400 × g, 10 minutes), and the supernatant was discarded.
Again, 2 ml of Mg-EGTA-GVB was added, centrifuged in the same manner as above, and the supernatant was discarded. 100 μg of Mg-EGTA-GVB and 50 μm of normal human serum were added to the precipitate, and the mixture was slowly stirred at 37 ° C. for 60 minutes.
Next, 1.0 ml of veronal buffer containing 40 mM EDTA and 0.1% gelatin was added, and centrifugation was performed (100 to 400 × g, 10 minutes). The supernatant was measured by A 414, to measure the hemolysis of guinea pig erythrocytes by human complement. As a control, the same concentration of bovine serum albumin was used instead of the glycoprotein of the present invention.
その結果、本発明の糖蛋白質を、終濃度が1μg/mlに
なるように加えたとき、モルモット赤血球の溶血率は90
%抑制された。よって本発明の糖蛋白質は、赤血球膜に
吸着し、ヒト補体による細胞障害を抑制する作用を有す
ることが示された(図3)。As a result, when the glycoprotein of the present invention was added to a final concentration of 1 μg / ml, the hemolysis rate of guinea pig erythrocytes was 90%.
% Was suppressed. Therefore, it was shown that the glycoprotein of the present invention was adsorbed to the erythrocyte membrane and had an effect of suppressing cell damage caused by human complement (FIG. 3).
(5) 等電点:1次元目にアンホライン(ファルマシア
社製)pI3.5〜10を用いた等電点電気泳動を行ない、2
次元目に非還元下、SDS−PAGE(12.5%)を用いて解析
した結果、pI約5.0(主バンド)とpI約6.5にバンドを得
た。(5) Isoelectric point: Isoelectric point electrophoresis using Ampholine (manufactured by Pharmacia) pI 3.5 to 10 in the first dimension was performed.
As a result of analysis using SDS-PAGE (12.5%) under the non-reducing condition, bands having a pI of about 5.0 (main band) and a pI of about 6.5 were obtained.
(6) アミノ酸組成(アミノ酸自動分析装置) Asp;20.2%,Thr;8.9%,Ser;3.1%,Glu:10.6%,Gly;2.2
%,Ala;6.2%,Cys;0.6%,,Val;4.5%,Ile;1.4%,Leu;1
0.1%,Tyr;8.1%,Phe;6.4%,Lys;9.1%,His;2.1%,Arg;
3.0%,Pro;3.5% (7) 部分アミノ酸配列 上記(d)で得た糖蛋白質約20μgをJ.T.Baker社製
“Bakerbond Butyl"(0.46×25cm)カラムを用いた逆相
系高速液体クロマトグラフィーにより分離した。溶出条
件は、0.1%トリフルオロ酢酸水溶液から80%アセトニ
トリル/イソプロピルアルコール(3/7:v/v)混液を含
む0.1%トリフルオロ酢酸水溶液への40分間の直線濃度
勾配で、流速1ml/分で行った。蛋白質の検出は215nmの
吸光度により行ったところ、図4に示すように約13個の
画分を得た。(6) Amino acid composition (automatic amino acid analyzer) Asp; 20.2%, Thr; 8.9%, Ser; 3.1%, Glu: 10.6%, Gly; 2.2
%, Ala; 6.2%, Cys; 0.6%, Val; 4.5%, Ile; 1.4%, Leu; 1
0.1%, Tyr; 8.1%, Phe; 6.4%, Lys; 9.1%, His; 2.1%, Arg;
3.0%, Pro; 3.5% (7) Partial amino acid sequence Approximately 20 μg of the glycoprotein obtained in the above (d) was separated by reversed-phase high-performance liquid chromatography using a “Bakerbond Butyl” (0.46 × 25 cm) column manufactured by JTBaker. did. The elution condition was a linear gradient of 40% from 0.1% trifluoroacetic acid aqueous solution to 0.1% trifluoroacetic acid aqueous solution containing 80% acetonitrile / isopropyl alcohol (3/7: v / v) mixture at a flow rate of 1 ml / min. went. When the protein was detected by the absorbance at 215 nm, about 13 fractions were obtained as shown in FIG.
そのうち、約36分に溶出した画分を真空状態で乾燥
後、トリス緩衝液(1Mトリス−塩酸緩衝液(pH8.5)、
含5M塩酸グアニジン)100μに溶解し、2−メルカプ
トエタノール0.5μを加え、窒素ガス下40℃で2時間
還元した後、モノヨード酢酸1mgを加え窒素ガス下、室
温、庶光下で1時間反応させ、蛋白質の還元カルボキシ
メチル化物を得た。Among them, the fraction eluted in about 36 minutes was dried under vacuum, and then dried in Tris buffer (1M Tris-HCl buffer (pH 8.5),
After dissolving in 100 μm of 5M guanidine hydrochloride), adding 0.5 μl of 2-mercaptoethanol and reducing at 40 ° C. for 2 hours under nitrogen gas, adding 1 mg of monoiodoacetic acid and reacting under nitrogen gas at room temperature under common light for 1 hour. Thus, a reduced carboxymethylated product of the protein was obtained.
還元カルボキシメチル化蛋白質は上記逆相系高速液体
クロマトグラフィー条件で、30%から90%への30分間の
直線濃度勾配で行った。上記と同様の検出を行ったとこ
ろ、約3個の画分を得た(図5)。The reduced carboxymethylated protein was subjected to the above-mentioned reversed-phase high performance liquid chromatography under a linear concentration gradient of 30% to 90% for 30 minutes. When the same detection was performed as described above, about three fractions were obtained (FIG. 5).
そのうち、約21分に溶出した画分を真空状態で乾燥
後、50%トリフルオロ酢酸60μに溶解し、ポリブレン
処理したグラスフィルターに添加し、Applied Biosyste
ms社製470A型シークエンサーでエドマン分解した。Among them, the fraction eluted in about 21 minutes was dried under vacuum, dissolved in 60% 50% trifluoroacetic acid, added to a polybrene-treated glass filter, and applied to an Applied Biosyste.
The product was digested by Edman using an MS type 470A sequencer.
PTH−アミノ酸の同定は三菱化成社製“MCI gel ODS I
HU"(0.46×15cm)カラムを用い、酢酸緩衝液(10mM酢
酸緩衝液(pH4.7)、0.01%SDS及び38%アセトニトリル
を含む)による単一溶媒溶出法を流速1.2ml/分、温度43
℃で行い、PTH−アミノ酸の検出は269nmの吸光度で行っ
た。The identity of PTH-amino acid was determined by Mitsubishi Kasei's “MCI gel ODS I
Using a HU "(0.46 x 15 cm) column, a single solvent elution method using an acetate buffer (containing 10 mM acetate buffer (pH 4.7), 0.01% SDS and 38% acetonitrile) was performed at a flow rate of 1.2 ml / min and a temperature of 43.
C., and the detection of PTH-amino acid was performed at an absorbance of 269 nm.
その結果、この蛋白質のアミノ末端配列は下記の通り
であることが明らかとなった。As a result, it was revealed that the amino terminal sequence of this protein is as follows.
Leu−Gln−Cys−Tyr−Asn−Cys−Pro−Asn−Pro−Thr
−Ala−Asp−Cys−Lys−Thr−Ala−Val−X−X−Ser−
Ser−Asp−Phe−Asp−Ala−X−Leu−X−Thr−Lys−Al
a−Gly−X−Gln−Val−Tyr−Asn− XはCys又は他のアミノ酸残基を示す。Leu-Gln-Cys-Tyr-Asn-Cys-Pro-Asn-Pro-Thr
-Ala-Asp-Cys-Lys-Thr-Ala-Val-XX-Ser-
Ser-Asp-Phe-Asp-Ala-X-Leu-X-Thr-Lys-Al
a-Gly-X-Gln-Val-Tyr-Asn-X represents Cys or another amino acid residue.
実施例2 (1) 合成ペプチドに対するポリクロナール抗体の作
成 (a) 抗原の調製 キーホールリンペットヘモシアン(以下「KLH」と略
す)(カルビオケム社製)約30mgをPBSに対して4℃で
1晩透析した。透析後、50mMホウ酸ナトリウム−塩酸緩
衝液(pH9.0)で希釈し、蛋白質濃度を30mg/mlとした。Example 2 (1) Preparation of polyclonal antibody against synthetic peptide (a) Preparation of antigen Approximately 30 mg of keyhole limpet hemocyan (hereinafter abbreviated as “KLH”) (manufactured by Calbiochem) against PBS at 4 ° C. overnight. Dialyzed. After dialysis, the protein was diluted with 50 mM sodium borate-hydrochloric acid buffer (pH 9.0) to adjust the protein concentration to 30 mg / ml.
次いで、下記の合成ペプチド各々7.5mgを0.1Mリン酸
ナトリウム緩衝液(pH8.0)375μに溶解し、上記KLH
溶液を各々に125μ加えた。Next, 7.5 mg of each of the following synthetic peptides was dissolved in 375 μ of 0.1 M sodium phosphate buffer (pH 8.0),
125 μl of the solution was added to each.
(a) Leu−Gln−Cys−Tyr−Asn−Cys−Pro−Asn−Pr
o (b) Thr−Ala−Asp−Cys−Lys−Thr−Ala−Val この溶液に25%グルタールアルデヒド(シグマ社製)
溶液を各々に5μ加え、室温で15分間放置した。再度
25%グルタールアルデヒド溶液を各々に5μ加え、室
温で15分間放置した。(A) Leu-Gln-Cys-Tyr-Asn-Cys-Pro-Asn-Pr
o (b) Thr-Ala-Asp-Cys-Lys-Thr-Ala-Val 25% glutaraldehyde (manufactured by Sigma) is added to this solution.
5 μl of the solution was added to each and left at room temperature for 15 minutes. again
5 μ of a 25% glutaraldehyde solution was added to each, and the mixture was allowed to stand at room temperature for 15 minutes.
次いで、1Mグリシン−塩酸(pH6.0)緩衝液100μを
加え、室温で10分間放置した。この溶液を各々PBSに対
し、4℃、1昼夜透析した。透析終了後、高速遠心し、
滅菌し、小分けして4℃で保存した。Next, 100 μM of a 1 M glycine-hydrochloric acid (pH 6.0) buffer was added, and the mixture was allowed to stand at room temperature for 10 minutes. This solution was dialyzed against PBS at 4 ° C. for 24 hours. After dialysis, centrifuge at high speed.
It was sterilized, aliquoted and stored at 4 ° C.
(b) 抗体の取得 上記(a)で得たKLH−ペプチド結合物2種類を等量
混合し、PBSを加え、総蛋白量が約2mg/mlとなるように
調整し、これにFreund完全型アジュバンド(ディフコ社
製)を等量加えて混合し、エマルジョンとした。これを
ウサギの背部皮下4個所に0.1mlずつと、各足蹠に0.1ml
ずつ免疫した。4週間後に背部皮下4個所に追加免疫し
た。その後、2週間後に1mlの同様のKLH−ペプチド結合
物(1mg/ml)のエマルジョンを背部皮下6個所に追加免
疫した。注射後2〜3週間目に全採血し、抗血清を得
た。得られた抗血清に40%飽和となるように固形硫安を
撹拌しながら加え、2〜3時間、4℃で更に撹拌し続け
た。撹拌後、10,000×gで15分間遠心して沈澱を得、そ
れを少量のPBSで溶解した。この溶液をあらかじめPBSで
平衡化しておいたプロテインAセルロファイン(生化学
工業社製)に供し、PBSで十分洗浄後0.1Mグリシン−塩
酸(pB2.8)で溶出した。蛋白質の溶出された画分を集
め、直ちに1Mトリス溶液を加え中和し、限外ろ過装置
(排出分子量3万)を用いて濃縮した。この抗体濃縮液
を4℃で1晩PBSに対して透析し、精製ポリクロナール
抗体を得た。(B) Acquisition of Antibody Two equal amounts of the KLH-peptide conjugate obtained in (a) above were mixed, and PBS was added to adjust the total protein amount to about 2 mg / ml. An equal amount of adjuvant (manufactured by Difco) was added and mixed to obtain an emulsion. 0.1 ml each at four subcutaneous sites on the back of the rabbit and 0.1 ml on each footpad
Immunized one by one. Four weeks later, a booster immunization was performed at four subcutaneous sites on the back. Two weeks later, 1 ml of an emulsion of the same KLH-peptide conjugate (1 mg / ml) was boosted subcutaneously at 6 sites on the back. Two to three weeks after injection, whole blood was collected to obtain antiserum. Solid ammonium sulfate was added to the obtained antiserum while stirring so as to be 40% saturated, and stirring was further continued at 4 ° C for 2 to 3 hours. After stirring, the mixture was centrifuged at 10,000 × g for 15 minutes to obtain a precipitate, which was dissolved in a small amount of PBS. This solution was applied to Protein A Cellulofine (manufactured by Seikagaku Corporation) which had been equilibrated with PBS in advance, washed thoroughly with PBS, and eluted with 0.1 M glycine-hydrochloric acid (pB2.8). The fractions from which the protein was eluted were collected, immediately neutralized by adding a 1 M Tris solution, and concentrated using an ultrafiltration device (discharge molecular weight: 30,000). The antibody concentrate was dialyzed against PBS overnight at 4 ° C. to obtain a purified polyclonal antibody.
(2) 糖蛋白質の精製 実施例1の(2)の(d)において、1F5抗体の代わ
りに上記(2)で得たポリクローナル抗体を使用する外
は同様にして、アフィニティーセファロースゲルを作製
した。このポリクローナル抗体セファロースカラムを使
用し、実施例1の(2)の(a)〜(c)で得た糖蛋白
質の可溶化液を供し同様にして精製をおこなった結果、
実施例1と同様の性質を有する本発明の糖蛋白質を得
た。(2) Purification of Glycoprotein An affinity sepharose gel was prepared in the same manner as in Example 1 (2) (d) except that the polyclonal antibody obtained in (2) above was used instead of the 1F5 antibody. Using this polyclonal antibody Sepharose column, the lysate of the glycoprotein obtained in (2) of Example 1 (a) to (c) was used, and purification was performed in the same manner.
A glycoprotein of the present invention having the same properties as in Example 1 was obtained.
上記の様にして得られる本発明の糖蛋白質は、例えば
次の様な目的に利用することができる。The glycoprotein of the present invention obtained as described above can be used, for example, for the following purposes.
(1) 本発明の糖蛋白質をウサギ、マウス等に免疫す
ることにより、補体の活性調節に係る重要な機能を担う
膜蛋白質に対する安定なポリクローナル抗体或いはモノ
クローナル抗体を得ることができる。(1) By immunizing a rabbit, a mouse, or the like with the glycoprotein of the present invention, a stable polyclonal antibody or monoclonal antibody against a membrane protein that plays an important role in regulating complement activity can be obtained.
(2) 本発明の糖蛋白質に対する抗体を利用して赤血
球、リンパ球等の細胞上の該糖蛋白質を定量することに
より、例えば悪性貧血、慢性関節リュウマチ、全身性エ
リテマトーデス、糸球体腎炎等の種々の疾患の診断が可
能となる。(2) By quantifying the glycoprotein on cells such as erythrocytes and lymphocytes using the antibody against the glycoprotein of the present invention, various types of diseases such as pernicious anemia, rheumatoid arthritis, systemic lupus erythematosus, glomerulonephritis and the like can be obtained. Can be diagnosed.
(3) 本発明の糖蛋白質は、補体の活性化が関与する
種々の疾患の治療薬として使用し得る。(3) The glycoprotein of the present invention can be used as a therapeutic agent for various diseases involving activation of complement.
(4) 同抗体を利用してガン細胞の溶解や悪性細胞の
除去等の治療に応用できる。(4) The antibody can be used for treatment such as lysis of cancer cells and removal of malignant cells.
図1は、エンドグリコシダーゼF処理(図中1)及び無
処理(図中2)を施した本発明糖蛋白質の12.5%SDS−P
AGEの電気泳動パターンを写真で表わした図面である。 図2は、PI−PLC処理 及び無処理 を施した本発明糖蛋白質の細胞表面上からの遊離状態を
示す図面である。 図中、 は陰性対照(FITC標識抗マウスIgGのMT2に対する非特異
的吸着)を示す。 図3は、本発明糖蛋白質 及び対照としてウシ血清アルブミン を加えた場合のモルモット赤血球のヒト補体による溶血
抑制効果を示す図面である。 図4及び図5は、逆相系高速液体クロマトグラフィーの
溶出パターンを示す図であり、横軸は溶出時間(分)を
示す。FIG. 1 shows 12.5% SDS-P of the glycoprotein of the present invention treated with endoglycosidase F (1 in the figure) and untreated (2 in the figure).
It is a drawing showing the electrophoresis pattern of AGE in a photograph. Figure 2 shows PI-PLC processing And no processing 1 is a drawing showing the released state of the glycoprotein of the present invention from the cell surface subjected to the above. In the figure, Indicates a negative control (non-specific adsorption of FITC-labeled anti-mouse IgG to MT2). FIG. 3 shows the glycoprotein of the present invention. And bovine serum albumin as a control 3 is a drawing showing the effect of human complement on the lysis of guinea pig erythrocytes by addition of guinea pig erythrocytes. 4 and 5 are diagrams showing elution patterns of reversed-phase high performance liquid chromatography, in which the horizontal axis shows elution time (minutes).
Claims (1)
−ポリアクリルアミドゲル電気泳動による分子量が20〜
25Kdで、Leu−Gln−Cys−Tyr−Asn−Cys−Pro−Asn−Pr
o−Thr−Ala−Asp−Cys−Lys−Thr−Ala−Val−X−X
−Ser−Ser−Asp−Phe−Asp−Ala−X−Leu−X−Thr−
Lys−Ala−Gly−X−Gln−Val−Tyr−Asn−(配列中X
はCys又は他のアミノ酸残基を示す)で表されるアミノ
末端配列を有し、N−グリコシド型糖鎖及びホスファチ
ジルイノシトールを含有し、補体による細胞膜障害を抑
制する作用を有することを特徴とする糖蛋白質。1. A glycoprotein derived from human cell membrane, comprising SDS
-Molecular weight of 20 to 20 by polyacrylamide gel electrophoresis
At 25 Kd, Leu-Gln-Cys-Tyr-Asn-Cys-Pro-Asn-Pr
o-Thr-Ala-Asp-Cys-Lys-Thr-Ala-Val-XX
-Ser-Ser-Asp-Phe-Asp-Ala-X-Leu-X-Thr-
Lys-Ala-Gly-X-Gln-Val-Tyr-Asn- (X in the sequence
Has an amino-terminal sequence represented by Cys or another amino acid residue), contains an N-glycoside type sugar chain and phosphatidylinositol, and has an action of suppressing cell membrane damage caused by complement. Glycoprotein to do.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63172187A JP2587863B2 (en) | 1988-07-11 | 1988-07-11 | Novel glycoprotein |
US07/376,828 US5179198A (en) | 1988-07-11 | 1989-07-07 | Glycoprotein and gene coding therefor |
HU893452A HUT55412A (en) | 1988-07-11 | 1989-07-10 | Process for producing new glycoprotein and the gen coding them |
EP19890401996 EP0351313A3 (en) | 1988-07-11 | 1989-07-11 | Novel glycoprotein and gene coding therefor |
US07/739,211 US5521296A (en) | 1988-07-11 | 1991-08-01 | Glycoprotein and gene coding therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63172187A JP2587863B2 (en) | 1988-07-11 | 1988-07-11 | Novel glycoprotein |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0222297A JPH0222297A (en) | 1990-01-25 |
JP2587863B2 true JP2587863B2 (en) | 1997-03-05 |
Family
ID=15937190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63172187A Expired - Lifetime JP2587863B2 (en) | 1988-07-11 | 1988-07-11 | Novel glycoprotein |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2587863B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015079977A1 (en) * | 2013-11-26 | 2015-06-04 | シャープ株式会社 | Antibody separation method, antibody evaluation method, medicine evaluation method, and 2-d antibody electrophoresis kit |
-
1988
- 1988-07-11 JP JP63172187A patent/JP2587863B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0222297A (en) | 1990-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200048331A1 (en) | Immunoregulatory structures from normally occuring proteins | |
WO1993010749A1 (en) | Hair modifier and hair care product, both containing antikeratinous antibody, and production of antikeratinous antibody | |
Wick et al. | Purified antibodies to collagen: an immunofluorescence study of their reaction with tissue collagen | |
US5179198A (en) | Glycoprotein and gene coding therefor | |
JP4125784B2 (en) | Compositions and methods for enhancing immune responses mediated by antigen presenting cells | |
Wilson et al. | Clusterin enhances the formation of insoluble immune complexes | |
Tizard | Macrophage-cytophilic antibodies and the functions of macrophage-bound immunoglobulins | |
JPH09505811A (en) | Chaperonin 10 antagonist | |
Carne et al. | Amino acid sequences of transport peptides associated with canine exocrine pancreatic proteins. | |
JP2587863B2 (en) | Novel glycoprotein | |
JPH0723398B2 (en) | Colostrum-derived polypeptide factor | |
US5580561A (en) | Methods and pharmaceutical compositions for blocking suppression of immune defense mechanisms using an antibody, a factor, or an antisense peptide | |
EP0955366A1 (en) | Antigenic protein originating in malassezia | |
US5723582A (en) | Antigen-specific human glycosylation inhibiting factor | |
Yang et al. | Isolation and characterization of the soluble and membrane-bound porcine CD44 molecules. | |
NO841496L (en) | PROCEDURE FOR PREPARING A PROTEIN A-IGG PREPARATION FOR USE IN TREATMENT OF CANCER | |
Groves et al. | β2-Microglobulin and its relationship to the immune system | |
Yu et al. | Human testis vitamin D binding protein involved in infertility | |
Lerch et al. | Isolation and purification of the human thymocyte antigens T6 and M241 | |
JP3734855B2 (en) | Peptides and their uses | |
EP0085693A1 (en) | Subjects relating to human inteferon-alpha subtype proteins and corresponding antibodies | |
McClure et al. | Identification of L-cell growth stimulating antibody as anti-actin | |
Griswold et al. | Glomerular localization of antigen and antibody in rabbits following intravenous administration of serum cryoproteins from homologous animals with acute serum sickness | |
Ferrone et al. | The major histocompatibility complex in man: biological and molecular approaches | |
Terhorst | Cell surface structures involved in human T lymphocyte specific functions: analysis with monoclonal antibodies |