WO2015079977A1 - Antibody separation method, antibody evaluation method, medicine evaluation method, and 2-d antibody electrophoresis kit - Google Patents

Antibody separation method, antibody evaluation method, medicine evaluation method, and 2-d antibody electrophoresis kit Download PDF

Info

Publication number
WO2015079977A1
WO2015079977A1 PCT/JP2014/080490 JP2014080490W WO2015079977A1 WO 2015079977 A1 WO2015079977 A1 WO 2015079977A1 JP 2014080490 W JP2014080490 W JP 2014080490W WO 2015079977 A1 WO2015079977 A1 WO 2015079977A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
electrophoresis
separation method
buffer
dimensional electrophoresis
Prior art date
Application number
PCT/JP2014/080490
Other languages
French (fr)
Japanese (ja)
Inventor
公彦 矢部
英樹 木下
祥之 石田
圭介 福田
博史 山木
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2015550664A priority Critical patent/JPWO2015079977A1/en
Publication of WO2015079977A1 publication Critical patent/WO2015079977A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44773Multi-stage electrophoresis, e.g. two-dimensional electrophoresis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/24Extraction; Separation; Purification by electrochemical means
    • C07K1/26Electrophoresis
    • C07K1/28Isoelectric focusing
    • C07K1/285Isoelectric focusing multi dimensional electrophoresis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44747Composition of gel or of carrier mixture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44795Isoelectric focusing

Definitions

  • the present invention relates to an antibody separation method, an antibody evaluation method, a pharmaceutical evaluation method, and an antibody two-dimensional electrophoresis kit.
  • proteome As a central role in the post-genomic era, proteome research is actively conducted.
  • proteome is intended the entire protein that is translationally produced in a particular cell, organ and organ.
  • proteome research large-scale analysis of proteins, especially for structure and function, is performed.
  • Protein electrophoresis is one of the most frequently used methods for large-scale analysis of proteins. Since all proteins have unique charges and molecular weights, they can be separated into various proteins by separating the protein mixture present in the living body according to the charge or molecular weight.
  • Two-dimensional electrophoresis is composed of two electrophoresis steps: isoelectric focusing that separates proteins according to charge, and slab gel electrophoresis that separates proteins according to molecular weight (especially SDS-PAGE).
  • isoelectric focusing that separates proteins according to charge
  • slab gel electrophoresis that separates proteins according to molecular weight (especially SDS-PAGE).
  • SDS-PAGE molecular weight
  • Patent Document 1 describes that antibodies with different sialic acid modifications are detected using two-dimensional electrophoresis in the presence of a denaturing agent. It was impossible to detect such an antibody only by electrophoresis according to the molecular weight. Further, cited document 1 describes that two-dimensional electrophoresis is used to detect different antibodies such as nitration and phosphorylation.
  • electrophoresis conditions for two-dimensional electrophoresis first, in the first-dimension isoelectric focusing, a denaturing agent such as Urea and Thiourea, a surfactant such as CHAPS, and a reducing agent such as DTT are added. Electrophoresis is performed under reduced conditions. In the second dimension, for example, SDS-PAGE, electrophoresis is performed under reducing conditions to which a reducing agent such as sodium dodecyl sulfate (SDS) and DTT is added.
  • a reducing agent such as sodium dodecyl sulfate (SDS) and DTT is added.
  • the in vivo antibody is a tetramer in which two heavy chains (H chains) and two light chains (L chains) are covalently bonded by disulfide bonds. Therefore, the molecular weight of the antibody is about 160 kDa and a high molecular weight in the tetramer state.
  • IgG has a specific basic isoelectric point. As described above, since an antibody has a high molecular weight, has a specific isoelectric point, and its structure is easily changed by electrophoresis, it is difficult to suitably separate the antibody. Therefore, it would be beneficial to have a two-dimensional electrophoresis method that can favorably separate antibodies.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide an antibody separation method and an antibody separation method that can more suitably separate antibodies using two-dimensional electrophoresis.
  • An object of the present invention is to provide an antibody evaluation method, a pharmaceutical evaluation method, and a two-dimensional electrophoresis kit for antibodies used in the antibody separation method.
  • an antibody separation method is the first-dimensional electrophoresis of an antibody protein dissolved in a preparation buffer not containing a reducing agent, using an electrophoresis buffer that does not contain a reducing agent.
  • -Dimensional electrophoresis step for separating by the first-dimensional electrophoresis
  • the second-dimensional electrophoresis for separating the antibody protein electrophoresed in the first-dimensional electrophoresis step by a second-dimensional electrophoresis using a migration buffer that does not contain a reducing agent.
  • the antibody protein is two-dimensionally electrophoresed under non-reducing conditions, so that the antibody can be separated more suitably.
  • the antibody separation method according to the present invention is a method for separating antibody proteins by two-dimensional electrophoresis, and includes a first-dimensional electrophoresis step and a second-dimensional electrophoresis step.
  • a gel preparation step for preparing a gel for electrophoresis is performed before the first-dimensional electrophoresis step.
  • an equilibration step of equilibrating the antibody sample separated in the first dimension electrophoresis step is performed between the first dimension electrophoresis step and the second dimension electrophoresis step.
  • a detection step of detecting the separated antibody protein is performed after the second-dimensional electrophoresis step.
  • IPG immobilized pH gradient
  • Gel preparation process In the gel preparation process, an IPG gel that performs electrophoresis in a first-dimensional electrophoresis process described later and a slab gel that performs electrophoresis in a second-dimensional electrophoresis process are prepared.
  • the IPG gel is produced using, for example, the IPG gel production tool shown in FIG.
  • FIG. 1 is a schematic diagram illustrating an IPG gel preparation tool used in the antibody separation method according to an embodiment of the present invention.
  • the IPG gel preparation device 100 includes a gel preparation jig 10, gradient mixers 20 and 30, a peristaltic pump 40, and a silicon tube 50.
  • an acidic acrylamide buffer mixed solution is added to the gradient mixer 20 as a low specific gravity solution, and a basic acrylamide buffer mixed solution is added to the gradient mixer 30 as a high specific gravity solution.
  • a gel solution which mixed the low specific gravity solution and the high specific gravity solution so that it may have a desired pH gradient is produced.
  • the prepared gel solution is slowly filled into the gel preparation jig 10 via the silicon tube 50 by the peristaltic pump 40 so as not to disturb the gradient.
  • the low specific gravity solution and the high specific gravity solution may be prepared by a conventionally known composition, and an acidic acrylamide buffer mixed solution can be used as the low specific gravity solution, and a basic acrylamide buffer mixed solution can be used as the high specific gravity solution.
  • Examples of the acidic acrylamide buffer mixed solution include 941 ⁇ l of 0.2K immobiline pK3.6, 273 ⁇ l of pK6.2, 243 ⁇ l of pK7.0, 260 ⁇ l of pK8.5 and 282 ⁇ l of pK9.3, 30% acrylamide stock Mix 2.5 ml of aqueous solution (29.1% acrylamide, 0.9% bisacrylamide), 4.2 ml of 87% glycerol solution, 108 ⁇ l of 10% APS, and 7.6 ⁇ l of 100% TEMED with distilled water. What was measured up to 15 ml can be used.
  • acrylamide buffer mixture As the basic acrylamide buffer mixture, 0.2 M immobiline pK3.6 100 ⁇ l, pK6.2 333 ⁇ l, pK7.0 361 ⁇ l, pK8.5 239 ⁇ l and pK9.3 326 ⁇ l, 30% acrylamide stock solution (2.5% of 29.1% acrylamide, 0.9% bisacrylamide), 108 ⁇ l of 10% APS, and 7.6 ⁇ l of 100% TEMED are mixed and made up to 15 ml with distilled water. it can.
  • a gel solution prepared by mixing a low specific gravity solution and a high specific gravity solution may contain a polymerization initiator, a polymerization accelerator, a specific gravity adjusting agent, a denaturing agent, a buffer buffer, an acrylamide derivative, and the like together with a gel material such as acrylamide. it can.
  • polymerization initiator conventionally known polymerization initiators can be used, and examples thereof include ammonium persulfate (APS) and methylene blue.
  • APS ammonium persulfate
  • methylene blue examples thereof include ammonium persulfate (APS) and methylene blue.
  • polymerization accelerator conventionally known ones can be used, and examples thereof include tetramethylethylenediamine (TEMED). Moreover, you may comprise so that superposition
  • TEMED tetramethylethylenediamine
  • specific gravity adjuster conventionally known ones can be used, and examples thereof include glycerol and sucrose.
  • a conventionally known buffer can be used, and examples thereof include a Bis-Tris buffer, a Tris buffer, a MOPS buffer, and a MES buffer.
  • the roughness of the network structure of the gel to be prepared is determined by the concentration of acrylamide (% T) in the gel solution and the concentration of bisacrylamide (% C) in the acrylamide. Therefore,% T and% C may be optimized in order to separate antibody molecules having a high molecular structure and a high-order structure having an average molecular weight of 160 kD or more.
  • Optimum% T and% C are not particularly limited. For example,% T is 3.0 or more and 4.0 or less, and% C is more preferably 2.0 or more and 3.0 or less. Is particularly preferably 3.2 or more and 3.7 or less, and% C is 2.5 or more and 3.0 or less.
  • the concentration of the polymerization initiator, polymerization accelerator, specific gravity adjuster, modifier, buffer buffer, etc. in the gel solution is not particularly limited, and may be a conventionally known concentration.
  • the range of the pH gradient provided in the IPG gel may be in a range including the isoelectric point (pI) of the antibody protein to be separated.
  • the pH gradient is from 6 to 10 and includes the isoelectric point of many antibody proteins. do it.
  • the gel preparation jig 10 a gel plate on which a gel bond film is attached is installed, the gel solution is filled in the gel preparation container 10, and the gel solution is gelled on the gel plate. Then, the generated gel is washed to remove unreacted acrylamide and then dried.
  • the temperature at the time of gelatinizing a gel solution is not specifically limited, For example, what is necessary is just 40 degreeC or more and 50 degrees C or less.
  • the dried IPG gel is cut into strips to produce an IPG dry strip gel, which is subjected to isoelectric focusing in the first dimensional electrophoresis step.
  • slab gel that performs SDS-PAGE in the second-dimensional electrophoresis step
  • a conventionally known slab gel can be used.
  • polyacrylamide gel, starch gel, agar gel and the like can be suitably used.
  • Such a slab gel can be produced by a conventionally known method.
  • First dimension electrophoresis process In the first dimension electrophoresis step, antibody proteins dissolved in a preparation buffer not containing a reducing agent are separated by first dimension electrophoresis using a buffer not containing a reducing agent.
  • antibody proteins are separated by the first dimension electrophoresis.
  • the antibody sample is obtained by dissolving an antibody protein to be separated in a preparation buffer.
  • the antibody sample is preferably stored avoiding denaturation of the antibody protein by heat until separation by electrophoresis.
  • the antibody protein that can be separated in the antibody separation method according to the present embodiment is not particularly limited, and a conventionally known antibody can be suitably used.
  • a conventionally known antibody can be suitably used.
  • examples of such antibodies include Infliximab, Trastuzumab, Cetuximab, Bevaczumab, Rituximab and the like.
  • the antibody is desalted using, for example, 2D clean-up kit (GE Healthcare) and then dissolved in the preparation buffer. Further, the antibody may be fluorescently labeled with a fluorescent dye such as IC5-OSu special packaging (Doujin Chemical Laboratory) for detection after separation.
  • a fluorescent dye such as IC5-OSu special packaging (Doujin Chemical Laboratory) for detection after separation.
  • any of a non-reducing preparation buffer that does not contain a reducing agent and a non-denaturing adjustment buffer that does not contain a reducing agent and a protein denaturing agent is used as the preparation buffer.
  • the preparation buffer in the conventional antibody electrophoresis method contains a reducing agent such as 2-mercaptoethanol, and the antibody is separated in a state where the disulfide bond is dissociated by the reducing action of the reducing agent. Therefore, in the conventional electrophoresis method, H chain and L chain are detected by electrophoresis as two separate bands or a ladder of two spots. That is, the antibody cannot be separated while maintaining the tetramer state.
  • a reducing agent such as 2-mercaptoethanol
  • Antibodies are produced from antibody-producing cells and used in biochemical experiments and the like, but heterogeneous antibodies also exist due to differences in protein post-translational modifications and the like. Therefore, it would be beneficial if there is a method for subjecting an antibody produced from antibody-producing cells to two-dimensional electrophoresis as it is and examining whether the produced antibody is uniform. However, until now, it has been considered impossible to perform two-dimensional electrophoresis of antibodies while maintaining disulfide bonds, and no attempt has been made.
  • an antibody as a pharmaceutical is required to be a glycoform that is optimal for a certain disease.
  • antibodies cannot be separated while maintaining such a sugar chain modification, and the glycoform cannot be analyzed appropriately.
  • the non-reducing preparation buffer and the non-denaturing preparation buffer used in the antibody separation method according to the present embodiment are buffers that do not contain a reducing agent that cleaves a disulfide bond of a protein.
  • the antibody separation method according to the present embodiment since the reducing buffer is not included in the preparation buffer, the antibody can be more preferably separated while maintaining the disulfide bond.
  • antibodies can be separated in a more nearly complete state, they are also suitable for analysis of glycoforms.
  • the non-reducing preparation buffer contains a nonionic surfactant or an amphoteric surfactant.
  • the antibody has a specific basic isoelectric point and has a high molecular weight of about 160 kDa in the tetramer state, so it is difficult to separate by electrophoresis while maintaining the disulfide bond. In addition, it is necessary to suppress structural changes caused by electrophoresis. Therefore, until now, it was considered impossible to separate antibodies while maintaining disulfide bonds, and no attempt was made.
  • the non-reducing preparation buffer contains a nonionic surfactant or an amphoteric surfactant, so that the antibody can be preferably separated while maintaining the disulfide bond. .
  • the nonionic surfactant contained in the non-reducing preparation buffer is not particularly limited, but 3-[(4-heptyl) phenyl-3-hydroxypropyl] dimethylammoniopropanesulfonate (C7BzO) or Triton X is used. It can be suitably used.
  • the amphoteric surfactant contained in the non-reducing preparation buffer is not particularly limited, but 3- (3-colamidopropyl) dimethylammonio-1-propanesulfonate (CHAPS), 3-[(3-colamidopropyl) Dimethylammonio] -2-hydroxy-1-propanesulfonate (CHAPSO) or 3- [N, N-dimethyl (3-myristoylaminopropyl) ammonio] propanesulfonate, amidosulfobetaine-14 (ASB-14) Can be suitably used.
  • CHPS 3- (3-colamidopropyl) dimethylammonio-1-propanesulfonate
  • CHPSO 3-[(3-colamidopropyl) Dimethylammonio] -2-hydroxy-1-propanesulfonate
  • ASB-14 amidosulfobetaine-14
  • the concentration of the nonionic surfactant or amphoteric surfactant in the non-reducing preparation buffer is not particularly limited, but is preferably 0.1 w / v% or more and 4 w / v% or less, more preferably 2 w. / V% or more and 4 w / v% or less are particularly preferable.
  • the non-reducing preparation buffer may further contain a denaturing agent such as urea or thiourea, an amphoteric carrier such as amphorite, glycerol (thickening agent), and the like.
  • concentration of these substances in the non-reducing preparation buffer is not particularly limited, and can be a conventionally known concentration.
  • Specific examples of the non-reducing preparation buffer include those containing 8M urea, 2M thiourea, 4 w / v% CHAPS, and 0.5% ampholite (pH 6 to 11).
  • Non-denaturing preparation buffer does not contain a reducing agent and further does not contain a protein denaturing agent.
  • a non-denaturing preparation buffer is a buffer that does not contain a protein denaturant that cleaves intermolecular bonds such as protein hydrogen bonds.
  • a preparation buffer in a conventional antibody electrophoresis method contains a protein denaturing agent such as urea, and the antibody is separated in a state where intermolecular bonds such as hydrogen bonds are dissociated by the action of the protein denaturing agent.
  • the preparation buffer does not contain a reducing agent and a protein denaturant, intermolecular bonds such as disulfide bonds and hydrogen bonds are maintained, and higher-order structures are more maintained.
  • the antibody can be separated in the state.
  • the non-denaturing preparation buffer contains an additive selected from the group consisting of non-surfactant sulfobetaines, polysorbates, polyoxyethylene alkyl ethers, and sugar alcohols. Since the antibody has a specific basic isoelectric point and has a high molecular weight of about 160 kDa in the tetramer state, electrophoresis is performed with a higher-order structure maintaining disulfide bonds and hydrogen bonds. In addition to being difficult to separate, it is also necessary to suppress structural changes due to electrophoresis. Therefore, until now, it was considered impossible to separate an antibody maintaining a higher-order structure, and no attempt was made.
  • an additive selected from the group consisting of non-surfactant sulfobetaines, polysorbates, polyoxyethylene alkyl ethers, and sugar alcohols.
  • an additive selected from the group consisting of non-surfactant sulfobetaines, polysorbates, polyoxyethylene alkyl ethers, and sugar alcohols in the non-denaturing preparation buffer Therefore, the antibody can be preferably separated while maintaining the higher order structure.
  • Non-detergent sulfobetaines (NDSBs) contained in non-denaturing preparation buffers are non-surfactants and are added to protein preservation solutions and protein preparations as protein stabilizers. Techniques have been reported (Reference 1: JP 2006-189358 A and Reference 2: JP 2007-516281 A).
  • the non-surfactant sulfobetaines function as solubilizing and stabilizing agents, and the antibodies are dissolved and stabilized.
  • non-surfactant sulfobetaines examples include glycine betaine (Glycine). and dimethylethylammonium propane sulfonate (NDSB-195), 3- (1-pyridino) -1-propane sulfonate (NDSB-201), dimethyl (2-hydroxyethyl) ammonium propane sulfonate (NDSB) manufactured by Calbiochem -211), 3- (1-methylpiperidinium) -1-propanesulfonate (NDSB-221), dimethylbenzylammonium propanesulfonate (NDSB-256), and 3- (4-tert-butyl-1-pyridino ) -1-propanesulfonate (NDSB-256-4T) can be suitably used.
  • glycine betaine is more preferable because it is neutral in charge.
  • the polysorbate contained in the non-denaturing preparation buffer is a surfactant, and for example, Tween 80 (registered trademark) (Poly (Oxyethylene) sorbitan monomolecular 80) can be suitably used because it is electrically neutral.
  • Polyoxyethylene alkyl ethers contained in the non-modified preparation buffer are nonionic surfactants, and for example, polyethylene glycol (PEG) can be suitably used.
  • PEG polyethylene glycol
  • the sugar alcohols contained in the non-denatured preparation buffer are not particularly limited, but, for example, sorbitol can be suitably used.
  • the concentration of these additives in the non-denaturing preparation buffer is not particularly limited, but is preferably 0.1 w / v% or more and 10 w / v% or less, more preferably 1 w / v% or more and 6 w / v. % Or less is particularly preferable.
  • concentration of an additive such as NDSB in the non-denaturing preparation buffer is 1 w / v% or more and 6 w / v% or less, the antibody can be separated in a more complete state.
  • the non-denaturing preparation buffer can further contain a specific gravity adjusting agent such as glycerol, an amphoteric carrier such as an ampholite, a surfactant having a low denaturing action, a dye, and the like.
  • concentration of these substances in the non-denaturing preparation buffer is not particularly limited, and can be a conventionally known concentration.
  • Specific examples of the non-denaturing preparation buffer include those containing 4 w / v% NDSB, 15 v / v% glycerol, and 0.5% ampholite (pH 6 to 11).
  • an antibody sample is prepared with a non-denaturing preparation buffer
  • the antibody is not reduced or denatured, so that the antibody that maintains the intact state can be separated.
  • an antibody sample is prepared with a non-reducing preparation buffer
  • the antibody is not reduced, but may be denatured. Therefore, even if the antibody is apparently intact, a part of the three-dimensional structure is maintained. It may not have been. Therefore, by comparing the results obtained by separating the antibody samples prepared with the non-reducing preparation buffer and the non-denaturing adjustment buffer, the impurities in the antibody sample, the antibody multimer, the antibody in a state other than the complete body, etc. The presence or absence can be confirmed.
  • antibody samples prepared with a non-reducing preparation buffer and a non-denaturing adjustment buffer are separated by the antibody separation method according to the present invention, the patterns are compared, impurities in the antibody sample, antibody multimers, complete
  • An antibody evaluation method including a step of determining the presence or absence of an antibody in a state other than the body is also included in the category of the present invention.
  • the isoelectric focusing in the first dimensional electrophoresis process and the SDS-PAGE in the second dimensional electrophoresis process to be described later may be automatically performed using, for example, Auto2D manufactured by Sharp Manufacturing System.
  • Auto2D manufactured by Sharp Manufacturing System.
  • a case where the first-dimensional electrophoresis step and the second-dimensional electrophoresis step are performed using the Auto2D will be described as an example.
  • an isoelectric focusing chip having a pH of 6 to 10 can be used, and a PAGE chip having an acrylamide concentration of 7.5% or 6.5% can be used.
  • the processing time for isoelectric focusing alone may be several minutes or more and 16 minutes or less, for example, 45 minutes.
  • the total processing time may be 30 minutes or more and 20 hours or less, for example, 130 minutes.
  • the antibody sample prepared as described above is introduced into the IPG dry strip gel prepared in the gel preparation step, and isoelectric focusing is performed.
  • the introduction time of the antibody sample to the IPG dry strip gel may be 1 minute or more and 60 minutes or less, for example, 30 minutes.
  • the swelling liquid is also used as an electrophoresis buffer for isoelectric focusing.
  • a conventionally known swelling liquid can be suitably used, but it does not contain a reducing agent.
  • antibody samples can be separated by isoelectric focusing under non-reducing conditions that do not contain a reducing agent.
  • a swelling liquid does not contain a protein denaturant.
  • Specific examples of the swelling liquid include those containing 4% NDSB-195, 15% Glycerol, and 0.2% Amphorite. That is, a non-denatured preparation buffer can be used as the swelling liquid.
  • the amount of the swelling liquid used is, for example, 100 ⁇ L, and the swelling time is, for example, 5 minutes or more and 10 minutes or less, but is not limited thereto.
  • the antibody is separated based on the difference in isoelectric point by applying a voltage to the swollen IPG gel.
  • the voltage applied to the IPG gel is, for example, control 1 (Step 1: 200 V, constant for 5 minutes, Step 2: 1000 V, linear gradient for 5 minutes, Step 3: 1000 V, constant for 5 minutes, Step 4: 7000 V, linear gradient for 15 minutes, Step 5: 7000 V , 15 minutes constant), Control 2 (Step 1: 200 V, 5 minutes constant, Step 2: 1000 V, 5 minutes linear gradient, Step 3: 1000 V, 5 minutes constant, Step 4: 4000 V, 10 minutes linear gradient, Step 5: 4000 V, 10 minutes constant Step 6: 7000V, linear gradient for 10 minutes, Step 7: 7000V, constant for 20 minutes, or control 3 (Step 1: 200V, constant for 5 minutes, Step 2: 1000V, linear gradient for 10 minutes, tep3: 1000V, 10 min constant, Step4: 8000 V, 15 minutes linear gradient, Step5: 8000 V, may be controlled to 15
  • the predetermined current value may be appropriately set to a predetermined value close to 0 according to the separation state of the sample by electrophoresis or the like. That is, while the voltage is controlled to be constant, the current shows a negative gradient, and when the gradient approaches 0, the voltage gradient is controlled while the voltage is boosted (linear gradient) control. When the voltage begins to decrease, the voltage is kept constant. Further, since it is preferable to boost the voltage so that the current value is as low as possible, the upper limit of the current value may be 100 ⁇ A.
  • electrophoresis conditions such as temperature may be conventionally known electrophoresis conditions.
  • the antibody sample separated in the first-dimensional electrophoresis step is equilibrated.
  • the equilibration of the antibody sample can be performed by immersing the IPG gel after the first-dimensional electrophoresis step in an equilibration solution and shaking. Thereby, SDS processing can be performed on the antibody sample separated by the first-dimensional electrophoresis.
  • the equilibration time of the IPG gel is, for example, 10 minutes, but is not limited thereto.
  • a conventionally known equilibration liquid can be used, and for example, Tris-HCl, SDS, EDTA, glycerol, BPB and the like can be included.
  • Specific examples of the equilibration liquid include those containing 0.5 mM Tris-HCl (pH 8.8), 4.75% SDS, 0.5 mM EDTA, 20 v / v% glycerol, and 0.005% BPB. .
  • the antibody protein separated in the first-dimensional electrophoresis step is separated by second-dimensional electrophoresis using a buffer that does not contain a reducing agent.
  • antibody samples separated by isoelectric focusing in the first dimensional electrophoresis step are separated based on the difference in molecular weight by SDS-PAGE.
  • the IPG gel that has been subjected to isoelectric focusing in the first-dimensional electrophoresis step is brought into contact with the slab gel for SDS-PAGE used in the second-dimensional electrophoresis step, and a current is passed through these gels.
  • the antibody sample separated in the IPG gel moves to the slab gel and is separated based on the difference in molecular weight.
  • the current flowing through the gel may be controlled, for example, such that it flows for 10 minutes at a constant current of 10 mA and then flows for 30 minutes at a constant current of 20 mA.
  • a conventionally known electrophoresis buffer can be suitably used as the electrophoresis buffer used in SDS-PAGE in the second-dimensional electrophoresis step, but does not contain a reducing agent.
  • antibody samples can be separated by SDS-PAGE under non-reducing conditions that do not contain a reducing agent.
  • Specific examples of the electrophoresis buffer include those containing 25 mM Tris, 192 mM Glycin, and 0.5% SDS.
  • electrophoresis conditions such as pH of the electrophoresis buffer may be conventionally known electrophoresis conditions.
  • the antibody sample separated in the second-dimensional electrophoresis step is detected. If the antibody sample is fluorescently labeled, each spot of the separated antibody sample can be detected by tracking the fluorescence. These spots may be detected by staining each spot of the separated antibody sample with CBB staining, silver staining, or the like. Fluorescence detection of a fluorescently labeled antibody sample can be performed at a detection wavelength of 660 nm and a PMT of 400 V using, for example, an imager typhoon manufactured by GE Healthcare.
  • the antibody protein is two-dimensionally electrophoresed under non-reducing conditions, so that the antibody can be separated while maintaining the disulfide bond. Particularly suitable for analysis.
  • the antibody evaluation method according to the present invention includes an evaluation step for evaluating whether or not the antibody separated by the above-described antibody separation method according to the present invention is the same as the antibody contained in the reference medicine.
  • the pattern in which the antibody to be evaluated is separated by the antibody separation method according to the present invention is the same as the pattern in which the antibody contained in the reference medicine is separated by the antibody separation method according to the present invention.
  • the antibody is evaluated by judging whether or not it exists.
  • the pattern in which the antibody to be evaluated is separated is also detected at a position different from the pattern in which the antibody contained in the reference medicine is separated, the antibody to be evaluated is included in the reference medicine. It can be determined that impurities that are not included, incomplete antibodies, and the like are included.
  • the antibody evaluation method when the antibody to be evaluated is separated, the antibody is separated by the antibody separation method according to the present invention, so that a pattern in which the antibody is suitably separated while maintaining the disulfide bond can be obtained. . Therefore, the antibody can be detected as it is while maintaining the tetramer, and thus can be evaluated more appropriately.
  • the method for evaluating a medicament according to the present invention includes an evaluation step for evaluating whether or not the antibody contained in the medicament separated by the antibody separation method according to the present invention described above is uniform.
  • the pharmaceutical evaluation method according to the present invention can be used, for example, for antibody drug evaluation, biopharmaceutical evaluation, and the like.
  • the evaluation step for example, whether or not a single spot (including a ladder-like spot detected in a single region) is detected when the drug to be evaluated is separated by the antibody separation method according to the present invention. By judging whether or not, the drug is evaluated.
  • the evaluation step when the spot from which the medicine is separated is detected as a single spot, it is determined that the antibody contained in the medicine is uniform, and when a plurality of spots from which the medicine is separated is detected, the medicine is It can be determined that the antibody contained in the antibody is heterogeneous or contaminated with impurities.
  • the drug to be evaluated is separated by the antibody separation method according to the present invention, a pattern in which antibodies are suitably separated while maintaining disulfide bonds can be obtained. Therefore, the antibody can be detected as it is while maintaining the tetramer, and thus can be evaluated more appropriately.
  • the antibody two-dimensional electrophoresis kit according to the present invention includes an additive selected from the group consisting of non-surfactant sulfobetaines, polysorbates, polyoxyethylene alkyl ethers, and sugar alcohols, and is reduced.
  • a preparation buffer containing no agent, or a preparation buffer containing a nonionic surfactant or an amphoteric surfactant and no reducing agent is provided. That is, the antibody two-dimensional electrophoresis kit according to the present invention includes either a non-denaturing preparation buffer or a non-reducing preparation buffer.
  • the non-denaturing preparation buffer and the non-reducing preparation buffer included in the antibody two-dimensional electrophoresis kit according to the present invention are as described above in the section of “Antibody separation method” in the present specification. Description is omitted.
  • the kit for two-dimensional electrophoresis of antibodies according to the present invention can be used for preparing an antibody sample when separating antibodies by two-dimensional electrophoresis using a conventionally known electrophoresis apparatus.
  • the antibody two-dimensional electrophoresis kit according to the present invention comprises a non-denaturing preparation buffer and a non-reducing preparation buffer together with a first-dimensional electrophoresis gel material and a migration buffer, a two-dimensional electrophoresis gel material and a migration buffer, A fluorescent dye for detection, an instruction manual, and the like may be provided.
  • the antibody two-dimensional electrophoresis kit according to the present invention may be provided together with an electrophoresis apparatus such as Auto2D manufactured by Sharp Manufacturing System.
  • the first-dimensional electrophoresis is performed by separating the antibody protein (antibody sample) dissolved in the preparation buffer not containing the reducing agent by the first-dimensional electrophoresis using the buffer not containing the reducing agent.
  • a preparation buffer that does not contain a reducing agent is used as an antibody preparation buffer, and the first-dimensional electrophoresis step and the second-dimensional electrophoresis step are performed using a buffer that does not contain a reducing agent. That is, antibodies can be separated using a preparation buffer that does not contain a reducing agent that cleaves the disulfide bond of the protein, and a buffer that does not contain a reducing agent.
  • the preparation buffer in the conventional antibody electrophoresis method contains a reducing agent such as 2-mercaptoethanol, and the migration buffer also contains a reducing agent, so that disulfide is reduced by the reducing action of the reducing agent.
  • the antibody is separated with the bond dissociated. That is, in the conventional method, the H chain and the L chain are detected by electrophoresis as two separate bands or a ladder of two spots.
  • electrophoresis is performed using a buffer that does not contain a reducing agent and does not contain a reducing agent in the preparation buffer, so that the antibody can be separated while maintaining a disulfide bond. .
  • the antibody separation method according to aspect 2 of the present invention is the antibody separation method according to aspect 1, wherein the preparation buffer is composed of a group consisting of non-surfactant sulfobetaines, polysorbates, polyoxyethylene alkyl ethers, and sugar alcohols. It may contain selected additives.
  • the antibody has a specific basic isoelectric point and has a high molecular weight of about 160 kDa in the tetramer state, so it is difficult to separate by electrophoresis while maintaining the disulfide bond. In addition, it is necessary to suppress structural changes caused by electrophoresis. Therefore, until now, it was considered impossible to separate antibodies while maintaining disulfide bonds, and no attempt was made.
  • an additive selected from the group consisting of non-surfactant sulfobetaines, polysorbates, polyoxyethylene alkyl ethers, and sugar alcohols is used as a preparation buffer. Since the non-denaturing preparation buffer is used, the antibody can be suitably separated while maintaining the disulfide bond.
  • the antibody separation method according to aspect 3 of the present invention is the antibody separation method according to aspect 2, wherein the non-surfactant sulfobetaines are glycine betaine, dimethylethylammonium propane sulfonate (NDSB-195), 3- (1-pyridino)- 1-propanesulfonate (NDSB-201), dimethyl (2-hydroxyethyl) ammonium propanesulfonate (NDSB-211), 3- (1-methylpiperidinium) -1-propanesulfonate (NDSB-221), dimethylbenzylammonium
  • the polysorbate is selected from the group consisting of propanesulfonate (NDSB-256) and 3- (4-tert-butyl-1-pyridino) -1-propanesulfonate (NDSB-256-4T), and the polysorbate is Tween 80 ( Registered trademark)
  • the polyoxyethylene alkyl ethers, polyethylene glycol, the sugar alcohols may be sorbi
  • the antibody can be separated in a more complete state.
  • the concentration of the additive in the preparation buffer may be 1 w / v% or more and 6 w / v% or less.
  • the antibody can be separated in a more complete state.
  • the preparation buffer may not contain a protein denaturant.
  • the preparation buffer includes an additive selected from the group consisting of non-surfactant sulfobetaines, polysorbates, polyoxyethylene alkyl ethers, and sugar alcohols, and a reducing agent and Since it is a non-denaturing preparation buffer that does not contain a protein denaturant, it is possible to suitably separate antibodies while maintaining a higher-order structure that maintains disulfide bonds, hydrogen bonds, and the like.
  • the preparation buffer may contain a nonionic surfactant or an amphoteric surfactant.
  • the antibody can be preferably separated while maintaining the disulfide bond.
  • the antibody separation method according to aspect 7 of the present invention is the antibody separation method according to aspect 6, wherein the nonionic surfactant is 3-[(4-heptyl) phenyl-3-hydroxypropyl] dimethylammoniopropanesulfonate, or Triton.
  • X and the amphoteric surfactant is 3- (3-colamidopropyl) dimethylammonio-1-propanesulfonate, 3-[(3-colamidopropyl) dimethylammonio] -2-hydroxy-1- It may be propane sulfonate, or 3- [N, N-dimethyl (3-myristoylaminopropyl) ammonio] propane sulfonate, amide sulfobetaine-14.
  • the antibody can be more preferably separated while maintaining the disulfide bond.
  • the antibody separation method according to Aspect 8 of the present invention is the antibody separation method according to any one of Aspects 1 to 7, wherein the voltage is kept constant and the current is reduced to a predetermined current value greater than 0 in the first-dimensional electrophoresis.
  • the voltage may be controlled such that the voltage is sometimes increased to increase the current, the voltage is maintained constant when the current starts to decrease during the voltage increase, and the current value is greater than 0 and equal to or less than 100 ⁇ A.
  • the current while the voltage is controlled to be constant, the current exhibits a negative gradient, and when the gradient approaches 0, the voltage is boosted (linear gradient) and the voltage is boosted. At the same time, the voltage is kept constant when the current gradient begins to decrease. Then, the voltage is controlled so that the current value changes as low as possible and the upper limit of the current value is 100 ⁇ A.
  • suitable first-dimensional electrophoresis is possible by appropriately controlling the voltage.
  • the antibody evaluation method according to aspect 9 of the present invention is an evaluation step for evaluating whether or not the antibody separated by the antibody separation method according to any one of the above aspects 1 to 8 is the same as the antibody contained in the reference drug. Is included.
  • the antibody when the antibody to be evaluated is separated, the antibody is separated by the antibody separation method of any one of the above aspects 1 to 8, so that a pattern in which the antibody is suitably separated while maintaining the disulfide bond is obtained. It is done. Therefore, the antibody can be detected as it is while maintaining the tetramer, and thus can be evaluated more appropriately.
  • the pharmaceutical evaluation method according to the tenth aspect of the present invention includes an evaluation step for evaluating whether or not the antibody contained in the pharmaceutical separated by the antibody separation method according to any of the first to eighth aspects is uniform.
  • the drug when separating the drug to be evaluated, the drug is separated by the antibody separation method according to any one of the above aspects 1 to 8, and thus a pattern in which the antibody is suitably separated while maintaining the disulfide bond is obtained. It is done. Therefore, the antibody can be detected as it is while maintaining the tetramer, and thus can be evaluated more appropriately.
  • the antibody two-dimensional electrophoresis kit according to aspect 11 of the present invention is an additive selected from the group consisting of non-surfactant sulfobetaines, polysorbates, polyoxyethylene alkyl ethers, and sugar alcohols And a preparation buffer that does not contain a reducing agent (non-denaturing preparation buffer).
  • a non-denaturing agent that does not contain a reducing agent and contains an additive selected from the group consisting of non-surfactant sulfobetaines, polysorbates, polyoxyethylene alkyl ethers, and sugar alcohols Since the preparation buffer is provided, it can be used to suitably separate antibodies while maintaining disulfide bonds.
  • the kit for two-dimensional electrophoresis of antibodies according to aspect 12 of the present invention includes a preparation buffer (non-reduction preparation buffer) containing a nonionic surfactant or an amphoteric surfactant and not containing a reducing agent.
  • the antibody is preferably separated while maintaining a disulfide bond.
  • Example 1 Non-reducing two-dimensional electrophoresis of antibody (Infliximab)] Two-dimensional electrophoresis (isoelectric focusing and SDS-PAGE) was performed under non-reducing conditions in order to detect glycoforms and aggregates of the whole antibody molecule.
  • Antibody dissolved in PBS (Infliximab, manufactured by Mitsubishi Tanabe) is labeled with a fluorescent IC5 labeling kit (IC5-OSu special packaging, manufactured by Dojindo Laboratories) without desalting, and adjusted to 2 ⁇ g / ⁇ L. This was subjected to two-dimensional electrophoresis. Two-dimensional electrophoresis was automatically performed using Auto2D manufactured by Sharp Manufacturing System. An IEF chip having a pH of 6 to 10 was used, and a PAGE chip having an acrylamide concentration of 7.5% was used. The isoelectric focusing time was 45 minutes and the total processing time was 130 minutes.
  • an IPG dry strip gel a gel prepared by mixing an acidic acrylamide buffer mixed solution and a basic acrylamide buffer mixed solution having the above-described composition and using the IPG gel preparation instrument 100 shown in FIG. 1 was used.
  • the prepared antibody sample was introduced into an IPG dry strip gel.
  • the sample introduction time was 30 minutes.
  • voltage was applied to the IPG gel and isoelectric focusing was performed under non-reducing conditions.
  • the non-reducing buffer was used as the swelling liquid.
  • Step 1 200 V, constant for 5 minutes
  • Step 2 1000 V, linear gradient for 5 minutes
  • Step 3 1000 V, constant for 5 minutes
  • Step 4 7000 V, linear gradient for 15 minutes
  • Step 5 7000 V, constant for 15 minutes did.
  • the current flowing through the gel was controlled as follows: a constant current of 10 mA for 10 minutes and a constant current of 20 mA for 30 minutes.
  • a buffer containing Tris, Glysin and SDS was used as the electrophoresis buffer.
  • a main antibody spot group was detected around 160 kD, and an isoform group considered to be a dimer was detected around 300 kD.
  • a protein spot derived from an antibody (LC desorption, sugar chain desorption, etc.) having a slightly lower molecular weight than the main antibody spot was detected. It was shown that a large number of glycoforms and multimers contained in a pharmaceutical can be clearly separated by using a non-reducing preparation buffer containing Urea and CHAPS and no reducing agent.
  • Example 2 Non-denaturing two-dimensional electrophoresis of antibody (Infliximab)] A method of separating the antibodies by two-dimensional electrophoresis without completely denaturing the antibodies was examined.
  • a spot group regularly arranged in the isoelectric point and molecular weight direction was detected.
  • the difference in the spot position in the vertical direction represents the difference in molecular weight due to the number of added sugar chains
  • the difference in the spot position in the horizontal direction represents the difference in isoelectric point due to the number of sialic acid additions. ing. That is, it is considered that glycoforms having different numbers of sugar chains for modifying antibody molecules and different types of terminal modifications were detected.
  • a non-denaturing preparation buffer that contains NDSB and Glycerol but does not contain reducing agents and protein denaturing agents, it prevents artifacts due to protein denaturation and allows antibody isoforms to remain intact without degradation or subunit elimination. It was shown that it can be clearly separated.
  • FIG. 4 shows the results of two-dimensional electrophoresis of antibody samples separated in each of non-reducing two-dimensional electrophoresis (a) of Example 1 and non-denaturing two-dimensional electrophoresis (b) of Example 2.
  • FIG. 4C is a graph showing the fluorescence intensity between b and b ′ in FIG. 4B.
  • spots presumed to be multimers of a plurality of antibodies are detected in the region A, and impurities (not derived from the target component) are detected in the region B.
  • a spot presumed to be (protein) was detected.
  • the complete antibody (target component) was detected in the X region near 160 kDa, but part of the three-dimensional structure was dissociated into the Y region near 110 to 140 kDa and the Z region near 60 to 80 kDa.
  • a spot presumed to be derived from an antibody having a slightly small molecular weight was detected.
  • non-denaturing two-dimensional electrophoresis as shown in FIG.
  • spots were detected in the X region near 160 kDa. Further, although it is difficult to visually recognize in FIG. 4B, as shown in FIG. 4C, an increase in fluorescence intensity is seen in the A region separately from the X region. It can be seen that spots are also detected in the region.
  • Example 3 Non-reducing two-dimensional electrophoresis of other antibodies
  • two-dimensional electricity was used except that Trastuzumab (manufactured by Chugai Pharmaceutical), Cetuximab (manufactured by BMS), Bevacizumab (manufactured by Roche), and Rituximab (manufactured by Chugai Pharmaceutical) were used as antibodies.
  • Electrophoresis was performed in Auto2D and spots were detected. The results are shown in FIG. 5A shows the pH range 7 to 10, and FIGS. 5B to 5C show the pH range 6 to 9.
  • trastuzumab As shown in FIG. 5, for trastuzumab (a), cetuximab (b), bevacumab (c), and Rituximab (d), as well as the main antibody spot group shown in FIG. An isoform group was detected.
  • Example 4 Non-denaturing two-dimensional electrophoresis of other antibodies
  • Trastuzumab manufactured by Chugai Pharmaceutical Co., Ltd.
  • Cetuximab manufactured by BMS
  • Trastuzumab manufactured by Chugai Pharmaceutical Co., Ltd.
  • 0.1% Amphorite pH 6-11
  • trastuzumab (a) and Cetuximab (b) dissolved in a non-denaturing preparation buffer containing NDSB are spots regularly arranged in the direction of isoelectric point and molecular weight as in Infliximab shown in FIG. A group was detected.
  • trastuzumab (c) dissolved in a preparation buffer that does not contain NDSB spots presumed to be antibody multimers have been detected, and the detection of trastuzumab (c) dissolved in a preparation buffer that contains NDSB is more stable. was shown to be possible.
  • Electrophoresis conditions 1 (Step 1: 200 V, constant for 5 minutes, Step 2: 1000 V, linear gradient for 5 minutes, Step 3: 1000 V, constant for 5 minutes, Step 4: 7000 V, linear gradient for 15 minutes, Step 5: 7000 V, constant for 15 minutes)
  • electrophoresis Condition 2 (Step 1: 200V, constant for 5 minutes, Step 2: 1000V, linear gradient for 5 minutes, Step 3: 1000V, constant for 5 minutes, Step 4: 4000V, linear gradient for 10 minutes, Step 5: 4000V, constant for 10 minutes, Step 6: 7000V, 10
  • the change in the current value when the voltage during isoelectric focusing is controlled by each of the linear gradient of the minute, Step 7: 7000 V, constant for 20 minutes) is shown in FIG.
  • FIG. 7A is a graph showing changes in voltage value and current value when isoelectric focusing is performed under electrophoresis condition 1
  • FIG. 7B is an isoelectric point under electrophoresis condition 2. It is a graph which shows the change of the voltage value and electric current value when performing electrophoresis.
  • the numerical value on the right side of the vertical axis represents the current value
  • the numerical value on the left side of the vertical axis represents the voltage value
  • the horizontal axis represents time (seconds).
  • the current shows a negative gradient, and it is shown that it is ideal to perform step-up (linear gradient) control when the gradient approaches zero. It was. Further, it was shown that in the step of controlling the voltage to be boosted, it is ideal to keep the voltage constant after the current gradient starts to decrease (negative). Furthermore, it has been shown that the voltage is preferably boosted so that the current value is as low as possible, and the upper limit of the current value may be 100 ⁇ A.
  • mice liver soluble protein was labeled with IC5 (IC5-OSu special packaging, manufactured by Dojindo Laboratories), and two-dimensional electrophoresis was performed using Auto2D (manufactured by Sharp Manufacturing System).
  • mouse liver soluble protein mouse liver tissue was ground under a solubilization buffer (50 mM Tris-HCl (pH 7.6), 20% Glycerol, 0.3 M NaCl), and the supernatant was used.
  • FIG. 8 shows the results of using 4.0% T and 3.0% C gel (a) and 3.6% T and 2.7% C gel (b), respectively.
  • FIG. 9A shows the result of the reduction condition 1
  • FIG. 9B shows the result of the reduction condition 2.
  • FIG. 9 (a) an H chain was detected at about 60 kD
  • an L chain was detected at about 20 kD.
  • FIG. 9 (b) even when the first-dimensional electrophoresis is performed under non-reducing conditions and the second-dimensional electrophoresis is performed under reducing conditions, and antibody molecules are separated under reducing conditions 2, The H chain was detected at about 60 kD and the L chain was detected at about 20 kD, but showed a more complicated separation pattern than in the case of reducing condition 1.
  • the present invention can be used in the fields of medicine, agricultural chemicals, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The antibody separation method for separating antibodies while maintaining disulfide bonds includes: a first dimension electrophoresis step for separating antibody protein solubilized in a prepared buffer, which does not contain reducing agent, by a first dimension electrophoresis using a buffer that does not contain reducing agent; and a second dimension electrophoresis step for separating the antibody protein electrophoresed in said first dimension electrophoresis step by a second dimension electrophoresis using a buffer that does not contain reducing agent.

Description

抗体分離方法、抗体評価方法、医薬の評価方法、及び、抗体の2次元電気泳動用キットAntibody separation method, antibody evaluation method, pharmaceutical evaluation method, and antibody two-dimensional electrophoresis kit
 本発明は、抗体分離方法、抗体評価方法、医薬の評価方法、及び、抗体の2次元電気泳動用キットに関する。 The present invention relates to an antibody separation method, an antibody evaluation method, a pharmaceutical evaluation method, and an antibody two-dimensional electrophoresis kit.
 ポストゲノム時代の中心的な役割として、プロテオーム研究が盛んに行われている。「プロテオーム」とは、特定の細胞、器官及び臓器の中で翻訳生産されているタンパク質全体が意図される。プロテオーム研究においては、特に構造と機能とを対象としたタンパク質の大規模な解析が行われる。 As a central role in the post-genomic era, proteome research is actively conducted. By “proteome” is intended the entire protein that is translationally produced in a particular cell, organ and organ. In proteome research, large-scale analysis of proteins, especially for structure and function, is performed.
 タンパク質の大規模解析する手法の1つとして頻繁に用いられている方法として、タンパク質の電気泳動が挙げられる。全てのタンパク質は、各々が固有の電荷及び分子量を有しているため、生体中に存在するタンパク質混合液を電荷又は分子量に応じて分離することによって、各種タンパク質に分離することが可能である。 Protein electrophoresis is one of the most frequently used methods for large-scale analysis of proteins. Since all proteins have unique charges and molecular weights, they can be separated into various proteins by separating the protein mixture present in the living body according to the charge or molecular weight.
 同じ種類のタンパク質であっても、翻訳後修飾によって電荷が異なるタンパク質種が存在し、それらのタンパク質の分子量はほとんど同じであるため、タンパク質を電荷に応じて分離することは特に重要である。また、タンパク質を電荷に応じて分離する方法と、分子量に応じて分離する方法との両者を組み合わせて2次元に分離する方法(2次元電気泳動)を用いることで、より多くのタンパク質を高分解能にて分離することができる。 Even for the same type of protein, there are protein species with different charges due to post-translational modification, and the molecular weights of these proteins are almost the same, so it is particularly important to separate the proteins according to the charge. In addition, by using a method that separates proteins according to electric charge and a method that separates proteins according to molecular weight in a two-dimensional manner (two-dimensional electrophoresis), more proteins can be separated with high resolution. Can be separated.
 2次元電気泳動は、タンパク質を電荷に応じて分離する等電点電気泳動、及び、分子量に応じて分離するスラブゲル電気泳動(特に、SDS-PAGE)の2つの電気泳動ステップからなる。また、2次元電気泳動では、変性剤存在下において変性したタンパク質を分離する、又は、変性剤非存在下において非変性状態のタンパク質を分離することが可能であり、数百種類~数千種類のタンパク質を一度に分離可能であるため優れた手法である。 Two-dimensional electrophoresis is composed of two electrophoresis steps: isoelectric focusing that separates proteins according to charge, and slab gel electrophoresis that separates proteins according to molecular weight (especially SDS-PAGE). In two-dimensional electrophoresis, it is possible to separate a denatured protein in the presence of a denaturing agent, or to separate a protein in a non-denaturing state in the absence of a denaturing agent. It is an excellent technique because it can separate proteins at once.
 タンパク質サンプルのうち、特に抗体は高分子量であるため、変性剤存在下で2次元電気泳動を行うことが知られている。特許文献1には、変性剤存在下における2次元電気泳動を利用して、シアル酸修飾が異なる抗体を検出することが記載されている。このような抗体を検出することは、分子量に応じた電気泳動のみでは不可能であった。また、引用文献1には、ニトロ化、リン酸化等の異なる抗体を検出するために、2次元電気泳動を利用することが記載されている。 Among the protein samples, since antibodies in particular have a high molecular weight, it is known to perform two-dimensional electrophoresis in the presence of a denaturing agent. Patent Document 1 describes that antibodies with different sialic acid modifications are detected using two-dimensional electrophoresis in the presence of a denaturing agent. It was impossible to detect such an antibody only by electrophoresis according to the molecular weight. Further, cited document 1 describes that two-dimensional electrophoresis is used to detect different antibodies such as nitration and phosphorylation.
日本国公開特許公報「特開2009-244245号公報(2009年10月22日公開)」Japanese Patent Publication “Japanese Unexamined Patent Application Publication No. 2009-244245 (published on October 22, 2009)”
 2次元電気泳動の一般的な泳動条件として、まず、1次元目の等電点電気泳動においては、Urea、Thiourea等の変性剤、CHAPS等の界面活性剤、及び、DTT等の還元剤が添加された還元条件下で電気泳動を行う。そして、2次元目の、例えばSDS-PAGEにおいては、ドデシル硫酸ナトリウム(SDS)、及び、DTT等の還元剤が添加された還元条件下で電気泳動を行う。 As general electrophoresis conditions for two-dimensional electrophoresis, first, in the first-dimension isoelectric focusing, a denaturing agent such as Urea and Thiourea, a surfactant such as CHAPS, and a reducing agent such as DTT are added. Electrophoresis is performed under reduced conditions. In the second dimension, for example, SDS-PAGE, electrophoresis is performed under reducing conditions to which a reducing agent such as sodium dodecyl sulfate (SDS) and DTT is added.
 生体内の抗体は、2本のHeavy Chain(H鎖)と2本のLight Chain(L鎖)とが、ジスルフィド結合により共有結合した4量体である。そのため、抗体の分子量は、4量体の状態では約160kDaと高分子量である。また、抗体のうちIgGは、特異的な塩基性の等電点を有する。このように、抗体は高分子量であり、特異的な等電点を有する上に、電気泳動により構造が変化しやすいため、好適に分離することは困難である。したがって、抗体を好適に分離することが可能な2次元電気泳動方法があれば有益である。 The in vivo antibody is a tetramer in which two heavy chains (H chains) and two light chains (L chains) are covalently bonded by disulfide bonds. Therefore, the molecular weight of the antibody is about 160 kDa and a high molecular weight in the tetramer state. Of antibodies, IgG has a specific basic isoelectric point. As described above, since an antibody has a high molecular weight, has a specific isoelectric point, and its structure is easily changed by electrophoresis, it is difficult to suitably separate the antibody. Therefore, it would be beneficial to have a two-dimensional electrophoresis method that can favorably separate antibodies.
 本発明は、上述した問題点に鑑みてなされたものであり、その目的は、2次元電気泳動を利用して、より好適に抗体を分離することが可能な抗体分離方法、当該抗体分離方法を利用した抗体評価方法及び医薬の評価方法、並びに、当該抗体分離方法に使用する抗体の2次元電気泳動用キットを提供することにある。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an antibody separation method and an antibody separation method that can more suitably separate antibodies using two-dimensional electrophoresis. An object of the present invention is to provide an antibody evaluation method, a pharmaceutical evaluation method, and a two-dimensional electrophoresis kit for antibodies used in the antibody separation method.
 上記の課題を解決するために、本発明の一態様に係る抗体分離方法は、還元剤を含まない調製バッファに溶解した抗体タンパク質を、還元剤を含まない泳動バッファを用いて1次元目電気泳動により分離する1次元目電気泳動工程と、上記1次元目電気泳動工程において電気泳動した上記抗体タンパク質を、還元剤を含まない泳動バッファを用いて2次元目電気泳動により分離する2次元目電気泳動工程とを包含することを特徴としている。 In order to solve the above-described problem, an antibody separation method according to one embodiment of the present invention is the first-dimensional electrophoresis of an antibody protein dissolved in a preparation buffer not containing a reducing agent, using an electrophoresis buffer that does not contain a reducing agent. -Dimensional electrophoresis step for separating by the first-dimensional electrophoresis, and the second-dimensional electrophoresis for separating the antibody protein electrophoresed in the first-dimensional electrophoresis step by a second-dimensional electrophoresis using a migration buffer that does not contain a reducing agent. And a process.
 本発明の一態様によれば、非還元条件下で抗体タンパク質を2次元電気泳動するので、抗体をより好適に分離できるという効果を奏する。 According to one aspect of the present invention, the antibody protein is two-dimensionally electrophoresed under non-reducing conditions, so that the antibody can be separated more suitably.
本発明の一実施形態に係る抗体分離方法において使用するIPGゲルの作製器具を説明する模式図である。It is a schematic diagram explaining the preparation instrument of the IPG gel used in the antibody separation method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る抗体分離方法において、非還元条件で分離した抗体サンプルの2次元電気泳動パターンを示す図である。It is a figure which shows the two-dimensional electrophoresis pattern of the antibody sample isolate | separated on non-reducing conditions in the antibody separation method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る抗体分離方法において、非変性条件で分離した抗体サンプルの2次元電気泳動パターンを示す図である。In the antibody separation method which concerns on one Embodiment of this invention, it is a figure which shows the two-dimensional electrophoresis pattern of the antibody sample isolate | separated on non-denaturing conditions. 本発明の一実施形態に係る抗体分離方法において、非還元条件及び非変性条件のそれぞれで分離した抗体サンプルの2次元電気泳動パターンを比較する図である。In the antibody separation method which concerns on one Embodiment of this invention, it is a figure which compares the two-dimensional electrophoresis pattern of the antibody sample isolate | separated on each of non-reducing conditions and non-denaturing conditions. 本発明の一実施形態に係る抗体分離方法において、非還元条件で分離した他の抗体サンプルの2次元電気泳動パターンを示す図である。It is a figure which shows the two-dimensional electrophoresis pattern of the other antibody sample isolate | separated on non-reducing conditions in the antibody separation method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る抗体分離方法において、非変性条件で分離した他の抗体サンプルの2次元電気泳動パターンを示す図である。In the antibody separation method which concerns on one Embodiment of this invention, it is a figure which shows the two-dimensional electrophoresis pattern of the other antibody sample isolate | separated on non-denaturing conditions. 本発明の一実施形態に係る抗体分離方法における、泳動条件を比較する図である。It is a figure which compares the electrophoresis conditions in the antibody separation method which concerns on one Embodiment of this invention. IPGゲルのアクリルアミド濃度を比較する図である。It is a figure which compares the acrylamide density | concentration of an IPG gel. 従来の2次元電気泳動による分離パターンを比較する図である。It is a figure which compares the separation pattern by the conventional two-dimensional electrophoresis.
 〔抗体分離方法〕
 以下、本発明の実施の形態について、詳細に説明する。本発明に係る抗体分離方法は、抗体タンパク質を2次元電気泳動により分離する方法であって、1次元目電気泳動工程と2次元目電気泳動工程とを包含する。抗体分離方法の一実施形態においては、1次元目電気泳動工程の前に、電気泳動用のゲルを作成するゲル作製工程を行う。また、抗体分離方法の一実施形態においては、1次元目電気泳動工程と2次元目電気泳動工程との間に、1次元目電気泳動工程において分離した抗体サンプルを平衡化する平衡化工程を行う。さらに、抗体分離方法の一実施形態においては、2次元目電気泳動工程の後に、分離した抗体タンパク質を検出する検出工程を行う。本実施形態においては、固定化pH勾配(IPG:Immobilized pH gradient)ゲルを用いて、1次元目電気泳動工程において等電点電気泳動を行い、2次元目電気泳動工程においてSDS-PAGEを行う場合を例として説明する。
[Antibody Separation Method]
Hereinafter, embodiments of the present invention will be described in detail. The antibody separation method according to the present invention is a method for separating antibody proteins by two-dimensional electrophoresis, and includes a first-dimensional electrophoresis step and a second-dimensional electrophoresis step. In one embodiment of the antibody separation method, a gel preparation step for preparing a gel for electrophoresis is performed before the first-dimensional electrophoresis step. In one embodiment of the antibody separation method, an equilibration step of equilibrating the antibody sample separated in the first dimension electrophoresis step is performed between the first dimension electrophoresis step and the second dimension electrophoresis step. . Furthermore, in one embodiment of the antibody separation method, a detection step of detecting the separated antibody protein is performed after the second-dimensional electrophoresis step. In this embodiment, when an immobilized pH gradient (IPG) gel is used, isoelectric focusing is performed in the first dimensional electrophoresis step, and SDS-PAGE is performed in the second dimensional electrophoresis step. Will be described as an example.
 (ゲル作製工程)
 ゲル作製工程においては、後述する1次元目電気泳動工程において電気泳動を行うIPGゲル、及び、2次元目電気泳動工程において電気泳動を行うスラブゲルを作製する。
(Gel preparation process)
In the gel preparation process, an IPG gel that performs electrophoresis in a first-dimensional electrophoresis process described later and a slab gel that performs electrophoresis in a second-dimensional electrophoresis process are prepared.
 IPGゲルは、例えば、図1に示すIPGゲル作製器具を用いて作製する。図1は、本発明の一実施形態に係る抗体分離方法において使用するIPGゲルの作製器具を説明する模式図である。図1に示すように、IPGゲル作製器具100は、ゲル作製治具10、グラジエントミキサ20及び30、ペリスタポンプ40、並びに、シリコンチューブ50を備えている。 The IPG gel is produced using, for example, the IPG gel production tool shown in FIG. FIG. 1 is a schematic diagram illustrating an IPG gel preparation tool used in the antibody separation method according to an embodiment of the present invention. As shown in FIG. 1, the IPG gel preparation device 100 includes a gel preparation jig 10, gradient mixers 20 and 30, a peristaltic pump 40, and a silicon tube 50.
 まず、低比重溶液として、酸性アクリルアミドバッファ混合液をグラジエントミキサ20に添加し、高比重溶液として、塩基性アクリルアミドバッファ混合液をグラジエントミキサ30に添加する。そして、所望のpH勾配を有するように低比重溶液と高比重溶液とを混合したゲル溶液を作製する。作製したゲル溶液を、ペリスタポンプ40により、シリコンチューブ50を介してゲル作製治具10に、グラジエントを乱さないようにゆっくりと充填する。 First, an acidic acrylamide buffer mixed solution is added to the gradient mixer 20 as a low specific gravity solution, and a basic acrylamide buffer mixed solution is added to the gradient mixer 30 as a high specific gravity solution. And the gel solution which mixed the low specific gravity solution and the high specific gravity solution so that it may have a desired pH gradient is produced. The prepared gel solution is slowly filled into the gel preparation jig 10 via the silicon tube 50 by the peristaltic pump 40 so as not to disturb the gradient.
 低比重溶液及び高比重溶液は、従来公知の組成で調整すればよく、低比重溶液として酸性アクリルアミドバッファ混合液を、高比重溶液として塩基性アクリルアミドバッファ混合液を使用することができる。 The low specific gravity solution and the high specific gravity solution may be prepared by a conventionally known composition, and an acidic acrylamide buffer mixed solution can be used as the low specific gravity solution, and a basic acrylamide buffer mixed solution can be used as the high specific gravity solution.
 酸性アクリルアミドバッファ混合液としては、例えば、0.2MイモビラインのpK3.6を941μl、pK6.2を273μl、pK7.0を243μl、pK8.5を260μl及びpK9.3を282μl、30%アクリルアミドストック水溶液(29.1%アクリルアミド、0.9% ビスアクリルアミド)を2.5ml、87% グリセロール溶液を4.2ml、10% APSを108μl、並びに、100% TEMEDを7.6μlそれぞれ混合し蒸留水で15mlにメスアップしたものを使用することができる。 Examples of the acidic acrylamide buffer mixed solution include 941 μl of 0.2K immobiline pK3.6, 273 μl of pK6.2, 243 μl of pK7.0, 260 μl of pK8.5 and 282 μl of pK9.3, 30% acrylamide stock Mix 2.5 ml of aqueous solution (29.1% acrylamide, 0.9% bisacrylamide), 4.2 ml of 87% glycerol solution, 108 μl of 10% APS, and 7.6 μl of 100% TEMED with distilled water. What was measured up to 15 ml can be used.
 塩基性アクリルアミドバッファ混合液としては、0.2MイモビラインのpK3.6を100μl、pK6.2を333μl、pK7.0を361μl、pK8.5を239μl及びpK9.3を326μl、30%アクリルアミドストック溶液(29.1%アクリルアミド、0.9% ビスアクリルアミド)を2.5ml、10% APSを108μl、並びに、100% TEMEDを7.6μlそれぞれ混合し蒸留水で15mlにメスアップしたものを用いることができる。 As the basic acrylamide buffer mixture, 0.2 M immobiline pK3.6 100 μl, pK6.2 333 μl, pK7.0 361 μl, pK8.5 239 μl and pK9.3 326 μl, 30% acrylamide stock solution (2.5% of 29.1% acrylamide, 0.9% bisacrylamide), 108 μl of 10% APS, and 7.6 μl of 100% TEMED are mixed and made up to 15 ml with distilled water. it can.
 低比重溶液及び高比重溶液を混合して作製されるゲル溶液は、アクリルアミド等のゲル材料と共に、重合開始剤、重合促進剤、比重調整剤、変性剤、緩衝バッファ、アクリルアミド誘導体等を含むことができる。 A gel solution prepared by mixing a low specific gravity solution and a high specific gravity solution may contain a polymerization initiator, a polymerization accelerator, a specific gravity adjusting agent, a denaturing agent, a buffer buffer, an acrylamide derivative, and the like together with a gel material such as acrylamide. it can.
 重合開始剤としては、従来公知のものを使用可能であり、例えば、過硫酸アンモニウム(APS)、メチレンブルー等が挙げられる。 As the polymerization initiator, conventionally known polymerization initiators can be used, and examples thereof include ammonium persulfate (APS) and methylene blue.
 重合促進剤としては、従来公知のものを使用可能であり、例えば、テトラメチルエチレンジアミン(TEMED)等が挙げられる。また、UV光照射により重合を促進するように構成してもよい。 As the polymerization accelerator, conventionally known ones can be used, and examples thereof include tetramethylethylenediamine (TEMED). Moreover, you may comprise so that superposition | polymerization may be accelerated | stimulated by UV light irradiation.
 比重調整剤としては、従来公知のものを使用可能であり、例えば、グリセロール、シュクロース等が挙げられる。 As the specific gravity adjuster, conventionally known ones can be used, and examples thereof include glycerol and sucrose.
 変性剤としては、従来公知のものを使用可能であり、例えば、尿素等が挙げられる。 As the modifier, conventionally known ones can be used, and examples thereof include urea.
 緩衝バッファとしては、従来公知のものを使用可能であり、例えば、Bis-Trisバッファ、Trisバッファ、MOPSバッファ、MESバッファ等が挙げられる。 As the buffer buffer, a conventionally known buffer can be used, and examples thereof include a Bis-Tris buffer, a Tris buffer, a MOPS buffer, and a MES buffer.
 作製するゲルの網目構造の粗さは、ゲル溶液におけるアクリルアミドの濃度(%T)、及び、当該アクリルアミド中のビスアクリルアミドの濃度(%C)により決定される。したがって、%T及び%Cを、平均分子量が160kD以上である、高分子で複雑な高次構造をとる抗体分子を分離するために最適化すればよい。最適な%T及び%Cは、特に限定されないが、例えば、%Tが3.0以上、4.0以下、%Cが2.0以上、3.0以下であることがより好ましく、%Tが3.2以上、3.7以下、%Cが2.5以上、3.0以下であることが特に好ましい。 The roughness of the network structure of the gel to be prepared is determined by the concentration of acrylamide (% T) in the gel solution and the concentration of bisacrylamide (% C) in the acrylamide. Therefore,% T and% C may be optimized in order to separate antibody molecules having a high molecular structure and a high-order structure having an average molecular weight of 160 kD or more. Optimum% T and% C are not particularly limited. For example,% T is 3.0 or more and 4.0 or less, and% C is more preferably 2.0 or more and 3.0 or less. Is particularly preferably 3.2 or more and 3.7 or less, and% C is 2.5 or more and 3.0 or less.
 また、ゲル溶液中の重合開始剤、重合促進剤、比重調整剤、変性剤、緩衝バッファ等の濃度については、特に限定されず、従来公知の濃度であってもよい。さらに、IPGゲルに設けるpH勾配の範囲は、分離する抗体タンパク質の等電点(pI)を含む範囲であればよく、例えば、多くの抗体タンパク質の等電点が含まれるpH6以上、10以下にすればよい。 Further, the concentration of the polymerization initiator, polymerization accelerator, specific gravity adjuster, modifier, buffer buffer, etc. in the gel solution is not particularly limited, and may be a conventionally known concentration. Furthermore, the range of the pH gradient provided in the IPG gel may be in a range including the isoelectric point (pI) of the antibody protein to be separated. For example, the pH gradient is from 6 to 10 and includes the isoelectric point of many antibody proteins. do it.
 ゲル作製治具10内には、ゲルボンドフィルムを張り付けたゲル板を設置しており、ゲル溶液をゲル作製容器10内に充填し、当該ゲル板上においてゲル溶液をゲル化させる。そして、生成したゲルを洗浄することで、未反応のアクリルアミドを除去した後に乾燥させる。ゲル溶液をゲル化する時の温度は特に限定されないが、例えば、40℃以上、50℃以下であればよい。 In the gel preparation jig 10, a gel plate on which a gel bond film is attached is installed, the gel solution is filled in the gel preparation container 10, and the gel solution is gelled on the gel plate. Then, the generated gel is washed to remove unreacted acrylamide and then dried. Although the temperature at the time of gelatinizing a gel solution is not specifically limited, For example, what is necessary is just 40 degreeC or more and 50 degrees C or less.
 乾燥したIPGゲルを短冊状にカットして、IPGドライストリップゲルを作製し、1次元目電気泳動工程において等電点電気泳動に供する。 The dried IPG gel is cut into strips to produce an IPG dry strip gel, which is subjected to isoelectric focusing in the first dimensional electrophoresis step.
 次に、2次元目電気泳動工程においてSDS-PAGEを行うスラブゲルの作製について説明する。スラブゲルとしては、従来公知のスラブゲルを用いることが可能であり、例えば、ポリアクリルアミドゲル、デンプンゲル、寒天ゲル等を好適に用いることができる。このようなスラブゲルは、従来公知の方法により作製することができる。 Next, production of a slab gel that performs SDS-PAGE in the second-dimensional electrophoresis step will be described. As the slab gel, a conventionally known slab gel can be used. For example, polyacrylamide gel, starch gel, agar gel and the like can be suitably used. Such a slab gel can be produced by a conventionally known method.
 (1次元目電気泳動工程)
 1次元目電気泳動工程において、還元剤を含まない調製バッファに溶解した抗体タンパク質を、還元剤を含まないバッファを用いて1次元目電気泳動により分離する。
(First dimension electrophoresis process)
In the first dimension electrophoresis step, antibody proteins dissolved in a preparation buffer not containing a reducing agent are separated by first dimension electrophoresis using a buffer not containing a reducing agent.
 <抗体サンプルの調製>
 1次元目電気泳動工程において、1次元目電気泳動により抗体タンパク質を分離する。抗体サンプルは、分離の対象となる抗体タンパク質を調製バッファ中に溶解したものである。抗体サンプルは、電気泳動による分離まで、熱による抗体タンパク質の変性を避けて保存することが好ましい。
<Preparation of antibody sample>
In the first dimension electrophoresis step, antibody proteins are separated by the first dimension electrophoresis. The antibody sample is obtained by dissolving an antibody protein to be separated in a preparation buffer. The antibody sample is preferably stored avoiding denaturation of the antibody protein by heat until separation by electrophoresis.
 本実施形態に係る抗体分離方法において分離可能な抗体タンパク質は、特に限定されず、従来公知の抗体を好適に用いることができる。このような抗体として、Infliximab、Trastuzumab、Cetuximab、Bevaczumab、Rituximab等が挙げられる。 The antibody protein that can be separated in the antibody separation method according to the present embodiment is not particularly limited, and a conventionally known antibody can be suitably used. Examples of such antibodies include Infliximab, Trastuzumab, Cetuximab, Bevaczumab, Rituximab and the like.
 抗体は、例えば、2D clean-up kit(GE Healthcare社製)を用いて脱塩処理した後、調製バッファ中に溶解する。また、抗体は、分離後の検出のために、IC5-OSu special packaging(同人化学研究所)等の蛍光色素で蛍光標識してもよい。本実施形態に係る抗体分離方法においては、調製バッファとして、還元剤を含まない非還元調製バッファ、及び、還元剤及びタンパク質変性剤を含まない非変性調整バッファのいずれかを使用する。 The antibody is desalted using, for example, 2D clean-up kit (GE Healthcare) and then dissolved in the preparation buffer. Further, the antibody may be fluorescently labeled with a fluorescent dye such as IC5-OSu special packaging (Doujin Chemical Laboratory) for detection after separation. In the antibody separation method according to the present embodiment, any of a non-reducing preparation buffer that does not contain a reducing agent and a non-denaturing adjustment buffer that does not contain a reducing agent and a protein denaturing agent is used as the preparation buffer.
 従来の抗体の電気泳動方法における調製バッファには、2-メルカプトエタノールのような還元剤が含まれており、還元剤による還元作用によりジスルフィド結合が解離した状態で抗体が分離されている。したがって、従来の電気泳動方法においては、電気泳動によりH鎖とL鎖とが別々の2本のバンド、又は、2つのスポットのラダーとして検出されてしまう。すなわち、抗体を4量体の状態を維持したまま分離することができない。 The preparation buffer in the conventional antibody electrophoresis method contains a reducing agent such as 2-mercaptoethanol, and the antibody is separated in a state where the disulfide bond is dissociated by the reducing action of the reducing agent. Therefore, in the conventional electrophoresis method, H chain and L chain are detected by electrophoresis as two separate bands or a ladder of two spots. That is, the antibody cannot be separated while maintaining the tetramer state.
 抗体は、抗体産生細胞から生成されて生化学実験等で使用されるが、タンパク質翻訳後修飾等が異なることにより不均一な抗体も存在する。したがって、抗体産生細胞から生成された抗体をそのまま2次元電気泳動に供し、生成された抗体が均一であるか否かを検討する方法があれば有益である。しかしながら、これまで、ジスルフィド結合を維持した状態で抗体を2次元電気泳動することは不可能であると考えられ、試みられていなかった。 Antibodies are produced from antibody-producing cells and used in biochemical experiments and the like, but heterogeneous antibodies also exist due to differences in protein post-translational modifications and the like. Therefore, it would be beneficial if there is a method for subjecting an antibody produced from antibody-producing cells to two-dimensional electrophoresis as it is and examining whether the produced antibody is uniform. However, until now, it has been considered impossible to perform two-dimensional electrophoresis of antibodies while maintaining disulfide bonds, and no attempt has been made.
 また、抗体分子には複数の糖鎖が結合し、それぞれが異なる修飾を受ける場合があるため、非常に複雑なグライコフォームを形成する。これらの糖鎖の構造は、抗体分子のコンフォメーションや安定性を決定し、それによりターゲットとの親和性や薬としての効力にも影響を及ぼし得るのと考えられている。そのため、医薬品としての抗体は、ある疾患に対して最適となるようなグライコフォームであることが求められている。従来の抗体の電気泳動方法においては、このような糖鎖修飾を維持した状態で抗体を分離することもできず、グライコフォームを適切に分析することができなかった。 In addition, since a plurality of sugar chains are bound to the antibody molecule and each may be subjected to different modifications, a very complex glycoform is formed. It is believed that the structure of these sugar chains determines the conformation and stability of the antibody molecule, thereby affecting the affinity with the target and the efficacy as a drug. Therefore, an antibody as a pharmaceutical is required to be a glycoform that is optimal for a certain disease. In conventional antibody electrophoresis methods, antibodies cannot be separated while maintaining such a sugar chain modification, and the glycoform cannot be analyzed appropriately.
 一方、本実施形態に係る抗体分離方法において使用する非還元調製バッファ及び非変性調製バッファは、タンパク質のジスルフィド結合を切断する還元剤を含まないバッファである。本実施形態に係る抗体分離方法によれば、調製バッファに還元剤を含まないため、ジスルフィド結合を維持した状態で抗体をより好適に分離することができる。また、抗体をより完全体に近い状態で分離することができるので、グライコフォームの分析にも適している。 On the other hand, the non-reducing preparation buffer and the non-denaturing preparation buffer used in the antibody separation method according to the present embodiment are buffers that do not contain a reducing agent that cleaves a disulfide bond of a protein. According to the antibody separation method according to the present embodiment, since the reducing buffer is not included in the preparation buffer, the antibody can be more preferably separated while maintaining the disulfide bond. In addition, since antibodies can be separated in a more nearly complete state, they are also suitable for analysis of glycoforms.
 ≪非還元調製バッファ≫
 非還元調製バッファは、非イオン性界面活性剤又は両性界面活性剤を含んでいる。抗体は、特異的な塩基性の等電点を有することや、4量体の状態では約160kDaと高分子量であることから、ジスルフィド結合を維持した状態で電気泳動して分離することは困難である上に、電気泳動による構造の変化を抑制する必要もある。したがって、これまで、ジスルフィド結合を維持した状態で抗体を分離することは不可能であると考えられ、試みられていなかった。本実施形態に係る抗体分離方法においては、非還元調製バッファに非イオン性界面活性剤又は両性界面活性剤が含まれているので、ジスルフィド結合を維持した状態で好適に抗体を分離することができる。
≪Non-reducing preparation buffer≫
The non-reducing preparation buffer contains a nonionic surfactant or an amphoteric surfactant. The antibody has a specific basic isoelectric point and has a high molecular weight of about 160 kDa in the tetramer state, so it is difficult to separate by electrophoresis while maintaining the disulfide bond. In addition, it is necessary to suppress structural changes caused by electrophoresis. Therefore, until now, it was considered impossible to separate antibodies while maintaining disulfide bonds, and no attempt was made. In the antibody separation method according to the present embodiment, the non-reducing preparation buffer contains a nonionic surfactant or an amphoteric surfactant, so that the antibody can be preferably separated while maintaining the disulfide bond. .
 非還元調製バッファに含まれる非イオン性界面活性剤としては、特に限定されないが、3-[(4-ヘプチル)フェニル-3-ヒドロキシプロピル]ジメチルアンモニオプロパンスルホネート(C7BzO)、又は、Triton Xを好適に使用可能である。 The nonionic surfactant contained in the non-reducing preparation buffer is not particularly limited, but 3-[(4-heptyl) phenyl-3-hydroxypropyl] dimethylammoniopropanesulfonate (C7BzO) or Triton X is used. It can be suitably used.
 非還元調製バッファに含まれる両性界面活性剤としては、特に限定されないが、3-(3-コラミドプロピル)ジメチルアンモニオ-1-プロパンスルホネート(CHAPS)、3-[(3-コラミドプロピル)ジメチルアンモニオ]-2-ヒドロキシ-1-プロパンスルホネート(CHAPSO)、又は、3-[N,N-ジメチル(3-ミリストイルアミノプロピル)アンモニオ]プロパンスルホナート,アミドスルホベタイン-14(ASB-14)を好適に使用可能である。 The amphoteric surfactant contained in the non-reducing preparation buffer is not particularly limited, but 3- (3-colamidopropyl) dimethylammonio-1-propanesulfonate (CHAPS), 3-[(3-colamidopropyl) Dimethylammonio] -2-hydroxy-1-propanesulfonate (CHAPSO) or 3- [N, N-dimethyl (3-myristoylaminopropyl) ammonio] propanesulfonate, amidosulfobetaine-14 (ASB-14) Can be suitably used.
 非還元調製バッファ中の非イオン性界面活性剤又は両性界面活性剤の濃度は、特に限定されないが、0.1 w/v%以上、4 w/v%以下であることがより好ましく、2 w/v%以上、4 w/v%以下であることが特に好ましい。 The concentration of the nonionic surfactant or amphoteric surfactant in the non-reducing preparation buffer is not particularly limited, but is preferably 0.1 w / v% or more and 4 w / v% or less, more preferably 2 w. / V% or more and 4 w / v% or less are particularly preferable.
 非還元調製バッファは、さらに、尿素、チオ尿素等の変性剤、アンフォライト(ampholyte)等の両性担体、グリセロール(増粘剤)等を含むことができる。非還元調製バッファ中のこれらの物質の濃度は、特に限定されず、従来公知の濃度であることができる。非還元調製バッファの具体例として、8M 尿素、2M チオ尿素、4w/v% CHAPS、及び、0.5% アンフォライト(pH6~11)を含むものが挙げられる。 The non-reducing preparation buffer may further contain a denaturing agent such as urea or thiourea, an amphoteric carrier such as amphorite, glycerol (thickening agent), and the like. The concentration of these substances in the non-reducing preparation buffer is not particularly limited, and can be a conventionally known concentration. Specific examples of the non-reducing preparation buffer include those containing 8M urea, 2M thiourea, 4 w / v% CHAPS, and 0.5% ampholite (pH 6 to 11).
 ≪非変性調製バッファ≫
 非変性調製バッファは、還元剤を含まない上に、さらにタンパク質変性剤も含まない。非変性調製バッファは、タンパク質の水素結合等の分子間結合を切断するタンパク質変性剤を含まないバッファである。従来の抗体の電気泳動方法における調製バッファには、尿素等のタンパク質変性剤が含まれており、タンパク質変性剤の作用により水素結合等の分子間結合が解離した状態で抗体が分離されている。一方、本実施形態に係る抗体分離方法によれば、調製バッファに還元剤及びタンパク質変性剤を含まないため、ジスルフィド結合、水素結合等の分子間結合が維持され、高次構造がより維持された状態で抗体を分離することができる。
≪Non-denaturing preparation buffer≫
The non-denaturing preparation buffer does not contain a reducing agent and further does not contain a protein denaturing agent. A non-denaturing preparation buffer is a buffer that does not contain a protein denaturant that cleaves intermolecular bonds such as protein hydrogen bonds. A preparation buffer in a conventional antibody electrophoresis method contains a protein denaturing agent such as urea, and the antibody is separated in a state where intermolecular bonds such as hydrogen bonds are dissociated by the action of the protein denaturing agent. On the other hand, according to the antibody separation method according to the present embodiment, since the preparation buffer does not contain a reducing agent and a protein denaturant, intermolecular bonds such as disulfide bonds and hydrogen bonds are maintained, and higher-order structures are more maintained. The antibody can be separated in the state.
 非変性調製バッファは、非界面活性剤型スルホベタイン類、ポリソルベート類、ポリオキシエチレンアルキルエーテル類、及び、糖アルコール類からなる群より選択される添加剤を含んでいる。抗体は、特異的な塩基性の等電点を有することや、4量体の状態では約160kDaと高分子量であることから、ジスルフィド結合、水素結合等を維持した高次構造のままでは電気泳動して分離することは困難である上に、電気泳動による構造の変化を抑制する必要もある。したがって、これまで、高次構造を維持した抗体を分離することは不可能であると考えられ、試みられていなかった。本実施形態に係る抗体分離方法においては、非変性調製バッファに、非界面活性剤型スルホベタイン類、ポリソルベート類、ポリオキシエチレンアルキルエーテル類、及び、糖アルコール類からなる群より選択される添加剤が含まれているので、高次構造を維持した状態で好適に抗体を分離することができる。 The non-denaturing preparation buffer contains an additive selected from the group consisting of non-surfactant sulfobetaines, polysorbates, polyoxyethylene alkyl ethers, and sugar alcohols. Since the antibody has a specific basic isoelectric point and has a high molecular weight of about 160 kDa in the tetramer state, electrophoresis is performed with a higher-order structure maintaining disulfide bonds and hydrogen bonds. In addition to being difficult to separate, it is also necessary to suppress structural changes due to electrophoresis. Therefore, until now, it was considered impossible to separate an antibody maintaining a higher-order structure, and no attempt was made. In the antibody separation method according to this embodiment, an additive selected from the group consisting of non-surfactant sulfobetaines, polysorbates, polyoxyethylene alkyl ethers, and sugar alcohols in the non-denaturing preparation buffer Therefore, the antibody can be preferably separated while maintaining the higher order structure.
 非変性調製バッファに含まれる非界面活性剤型スルホベタイン(non-detergent sulphobetaine(NDSB))類は、非界面活性剤であり、タンパク質の安定化剤としてタンパク質の保存液やタンパク質製剤等に添加する技術が報告されている(参考文献1:特開2006-189358号公報、及び、参考文献2:特開2007-516281号公報)。非変性調製バッファ中において、非界面活性剤型スルホベタイン類は可溶化及び安定化剤として機能し、抗体は溶解して安定化される。 Non-detergent sulfobetaines (NDSBs) contained in non-denaturing preparation buffers are non-surfactants and are added to protein preservation solutions and protein preparations as protein stabilizers. Techniques have been reported (Reference 1: JP 2006-189358 A and Reference 2: JP 2007-516281 A). In the non-denaturing preparation buffer, the non-surfactant sulfobetaines function as solubilizing and stabilizing agents, and the antibodies are dissolved and stabilized.
 非界面活性剤型スルホベタイン類として、例えば、グリシンベタイン(Glycine
 betain)、並びに、Calbiochem社製のジメチルエチルアンモニウムプロパンスルホネート(NDSB-195)、3-(1-ピリジノ)-1-プロパンスルホネート(NDSB-201)、ジメチル(2-ヒドロキシエチル)アンモニウムプロパンスルホネート(NDSB-211)、3-(1-メチルピペリジニウム)-1-プロパンスルホネート(NDSB-221)、ジメチルベンジルアンモニウムプロパンスルホネート(NDSB-256)、及び、3-(4-tert-ブチル-1-ピリジノ)-1-プロパンスルホネート(NDSB-256-4T)が好適に使用可能であるが、中でも、グリシンベタインは、電荷的に中性であるためより好ましい。
Examples of non-surfactant sulfobetaines include glycine betaine (Glycine).
and dimethylethylammonium propane sulfonate (NDSB-195), 3- (1-pyridino) -1-propane sulfonate (NDSB-201), dimethyl (2-hydroxyethyl) ammonium propane sulfonate (NDSB) manufactured by Calbiochem -211), 3- (1-methylpiperidinium) -1-propanesulfonate (NDSB-221), dimethylbenzylammonium propanesulfonate (NDSB-256), and 3- (4-tert-butyl-1-pyridino ) -1-propanesulfonate (NDSB-256-4T) can be suitably used. Among them, glycine betaine is more preferable because it is neutral in charge.
 非変性調製バッファに含まれるポリソルベート類は、界面活性剤であり、例えば、Tween 80(登録商標)(Poly(Oxyethylene)sorbitan monolaulate 80)は電荷的に中性であるため好適に使用可能である。 The polysorbate contained in the non-denaturing preparation buffer is a surfactant, and for example, Tween 80 (registered trademark) (Poly (Oxyethylene) sorbitan monomolecular 80) can be suitably used because it is electrically neutral.
 非変性調製バッファに含まれるポリオキシエチレンアルキルエーテル類は、非イオン性界面活性剤であり、例えば、ポリエチレングリコール(PEG)を好適に使用可能である。 Polyoxyethylene alkyl ethers contained in the non-modified preparation buffer are nonionic surfactants, and for example, polyethylene glycol (PEG) can be suitably used.
 非変性調製バッファに含まれる糖アルコール類としては、特に限定されないが、例えば、ソルビトールを好適に使用可能である。 The sugar alcohols contained in the non-denatured preparation buffer are not particularly limited, but, for example, sorbitol can be suitably used.
 非変性調製バッファ中のこれらの添加剤の濃度は、特に限定されないが、0.1 w/v%以上、10 w/v%以下であることがより好ましく、1w/v%以上、6w/v%以下であることが特に好ましい。非変性調製バッファ中のNDSB等の添加剤の濃度が、特に、1w/v%以上、6w/v%以下であることによって、抗体をより完全体の状態で分離することができる。 The concentration of these additives in the non-denaturing preparation buffer is not particularly limited, but is preferably 0.1 w / v% or more and 10 w / v% or less, more preferably 1 w / v% or more and 6 w / v. % Or less is particularly preferable. When the concentration of an additive such as NDSB in the non-denaturing preparation buffer is 1 w / v% or more and 6 w / v% or less, the antibody can be separated in a more complete state.
 非変性調製バッファは、さらに、グリセロール等の比重調整剤、アンフォライト等の両性担体、変性作用の少ない界面活性剤、色素等を含むことができる。非変性調製バッファ中のこれらの物質の濃度は、特に限定されず、従来公知の濃度であることができる。非変性調製バッファの具体例として、4w/v% NDSB、15v/v% グリセロール、及び、0.5% アンフォライト(pH6~11)を含むものが挙げられる。 The non-denaturing preparation buffer can further contain a specific gravity adjusting agent such as glycerol, an amphoteric carrier such as an ampholite, a surfactant having a low denaturing action, a dye, and the like. The concentration of these substances in the non-denaturing preparation buffer is not particularly limited, and can be a conventionally known concentration. Specific examples of the non-denaturing preparation buffer include those containing 4 w / v% NDSB, 15 v / v% glycerol, and 0.5% ampholite (pH 6 to 11).
 非変性調製バッファにより抗体サンプルを調製した場合、抗体が還元及び変性しないため、完全体の状態を維持した抗体を分離することができる。非還元調製バッファにより抗体サンプルを調製した場合は、抗体は、還元はされないが、変性する可能性はあるため、見かけ上は完全体の状態の抗体であっても、立体構造の一部が維持されていない可能性がある。したがって、抗体サンプルを非還元調製バッファ及び非変性調整バッファによりそれぞれ調製したものを分離した結果を比較することで、抗体サンプル中における、不純物、抗体の多量体、完全体以外の状態の抗体等の有無を確認することができる。 When an antibody sample is prepared with a non-denaturing preparation buffer, the antibody is not reduced or denatured, so that the antibody that maintains the intact state can be separated. When an antibody sample is prepared with a non-reducing preparation buffer, the antibody is not reduced, but may be denatured. Therefore, even if the antibody is apparently intact, a part of the three-dimensional structure is maintained. It may not have been. Therefore, by comparing the results obtained by separating the antibody samples prepared with the non-reducing preparation buffer and the non-denaturing adjustment buffer, the impurities in the antibody sample, the antibody multimer, the antibody in a state other than the complete body, etc. The presence or absence can be confirmed.
 すなわち、抗体サンプルを非還元調製バッファ及び非変性調整バッファによりそれぞれ調製したものを本発明に係る抗体分離方法により分離し、そのパターンを比較し、抗体サンプル中における、不純物、抗体の多量体、完全体以外の状態の抗体等の有無を判断する工程を含む抗体評価方法についても、本願発明の範疇に含まれる。 That is, antibody samples prepared with a non-reducing preparation buffer and a non-denaturing adjustment buffer are separated by the antibody separation method according to the present invention, the patterns are compared, impurities in the antibody sample, antibody multimers, complete An antibody evaluation method including a step of determining the presence or absence of an antibody in a state other than the body is also included in the category of the present invention.
 <等電点電気泳動>
 1次元目電気泳動工程における等電点電気泳動、及び、後述する2次元目電気泳動工程におけるSDS-PAGEは、例えば、シャープマニファクチュアリングシステム社製のAuto2Dを用いて自動で行ってもよい。本実施形態においては、上記Auto2Dを用いて、1次元目電気泳動工程及び2次元目電気泳動工程を行う場合を例として説明する。
<Isoelectric focusing>
The isoelectric focusing in the first dimensional electrophoresis process and the SDS-PAGE in the second dimensional electrophoresis process to be described later may be automatically performed using, for example, Auto2D manufactured by Sharp Manufacturing System. In the present embodiment, a case where the first-dimensional electrophoresis step and the second-dimensional electrophoresis step are performed using the Auto2D will be described as an example.
 Auto2Dを用いた場合、例えば、等電点電気泳動チップとして、pH6~10のもの、PAGEチップとして、アクリルアミド濃度7.5%又は6.5%のものを用いることができる。等電点電気泳動のみの処理時間は、数分間以上、16分間以下であってもよく、例えば、45分間である。総処理時間は、30分間以上、20時間以下であってもよく、例えば、130分間である。 When Auto2D is used, for example, an isoelectric focusing chip having a pH of 6 to 10 can be used, and a PAGE chip having an acrylamide concentration of 7.5% or 6.5% can be used. The processing time for isoelectric focusing alone may be several minutes or more and 16 minutes or less, for example, 45 minutes. The total processing time may be 30 minutes or more and 20 hours or less, for example, 130 minutes.
 上述したとおり調製した抗体サンプルを、ゲル作製工程において作製したIPGドライストリップゲルに導入し、等電点電気泳動を行う。抗体サンプルのIPGドライストリップゲルへの導入時間は、1分以上、60分以下であってもよく、例えば30分間である。 The antibody sample prepared as described above is introduced into the IPG dry strip gel prepared in the gel preparation step, and isoelectric focusing is performed. The introduction time of the antibody sample to the IPG dry strip gel may be 1 minute or more and 60 minutes or less, for example, 30 minutes.
 抗体サンプルの導入後、膨潤液を用いてIPGドライストリップゲルを膨潤させる。膨潤液は、等電点電気泳動の泳動バッファとしても使用する。使用する膨潤液としては、従来公知の膨潤液を好適に使用可能であるが、還元剤は含んでいない。したがって、抗体サンプルを、還元剤を含まない非還元条件で、等電点電気泳動により分離することができる。また、膨潤液は、タンパク質変性剤を含まないことが好ましい。膨潤液の具体例として、4%  NDSB-195、15% Glycerol、及び、0.2% Ampholyteを含むものが挙げられる。すなわち、非変性調製バッファを膨潤液として用いることができる。使用する膨潤液の量は、例えば100μLであり、膨潤時間は、例えば、5分以上、10分以下であるが、これらに限定されない。 After the antibody sample is introduced, the IPG dry strip gel is swollen using a swelling liquid. The swelling liquid is also used as an electrophoresis buffer for isoelectric focusing. As the swelling liquid to be used, a conventionally known swelling liquid can be suitably used, but it does not contain a reducing agent. Thus, antibody samples can be separated by isoelectric focusing under non-reducing conditions that do not contain a reducing agent. Moreover, it is preferable that a swelling liquid does not contain a protein denaturant. Specific examples of the swelling liquid include those containing 4% NDSB-195, 15% Glycerol, and 0.2% Amphorite. That is, a non-denatured preparation buffer can be used as the swelling liquid. The amount of the swelling liquid used is, for example, 100 μL, and the swelling time is, for example, 5 minutes or more and 10 minutes or less, but is not limited thereto.
 膨潤後のIPGゲルに電圧を印加することで、抗体を等電点の違いに基づき分離する。IPGゲルに印加する電圧は、例えば、制御1(Step1:200V,5分間一定、Step2:1000V,5分間リニアグラジエント、Step3:1000V,5分間一定、Step4:7000V,15分間リニアグラジエント、Step5:7000V,15分間一定)、制御2(Step1:200V,5分間一定、Step2:1000V,5分間リニアグラジエント、Step3:1000V,5分間一定、Step4:4000V,10分間リニアグラジエント、Step5:4000V,10分間一定、Step6:7000V,10分間リニアグラジエント、Step7:7000V,20分間一定)、又は、制御3(Step1:200v,5分間一定、Step2:1000V,10分間リニアグラジエント、Step3:1000V,10分間一定、Step4:8000V,15分間リニアグラジエント、Step5:8000V,15分間一定)のように制御してもよい。 The antibody is separated based on the difference in isoelectric point by applying a voltage to the swollen IPG gel. The voltage applied to the IPG gel is, for example, control 1 (Step 1: 200 V, constant for 5 minutes, Step 2: 1000 V, linear gradient for 5 minutes, Step 3: 1000 V, constant for 5 minutes, Step 4: 7000 V, linear gradient for 15 minutes, Step 5: 7000 V , 15 minutes constant), Control 2 (Step 1: 200 V, 5 minutes constant, Step 2: 1000 V, 5 minutes linear gradient, Step 3: 1000 V, 5 minutes constant, Step 4: 4000 V, 10 minutes linear gradient, Step 5: 4000 V, 10 minutes constant Step 6: 7000V, linear gradient for 10 minutes, Step 7: 7000V, constant for 20 minutes, or control 3 (Step 1: 200V, constant for 5 minutes, Step 2: 1000V, linear gradient for 10 minutes, tep3: 1000V, 10 min constant, Step4: 8000 V, 15 minutes linear gradient, Step5: 8000 V, may be controlled to 15 minutes a constant).
 すなわち、上記1次元目電気泳動において、電圧を一定に維持して電流が0より大きい所定の電流値にまで減少したときに昇圧して電流を増加させ、昇圧中に電流が減少し始めたときに電圧を一定に維持し、かつ、電流値が0より大きく、100μA以下となるように電圧制御することが好ましい。ここで、所定の電流値は、電気泳動によるサンプルの分離状態等に応じて、0に近い所定の値に適宜設定すればよい。つまり、電圧を一定に制御している間に、電流が負の勾配を示し、勾配が0に近づいたときに、昇圧(リニアグラジエント)制御し、電圧を昇圧している間に、電流の勾配が減少し始めたときに、電圧を一定に維持する。また、電流値が可能な限り低く推移するように電圧を昇圧することが好ましいため、電流値の上限は100μAとすればよい。 That is, in the first-dimensional electrophoresis, when the voltage is kept constant and the current is decreased to a predetermined current value larger than 0, the current is increased by increasing the current, and the current starts to decrease during the voltage increase. It is preferable to control the voltage so that the voltage is kept constant and the current value is larger than 0 and 100 μA or less. Here, the predetermined current value may be appropriately set to a predetermined value close to 0 according to the separation state of the sample by electrophoresis or the like. That is, while the voltage is controlled to be constant, the current shows a negative gradient, and when the gradient approaches 0, the voltage gradient is controlled while the voltage is boosted (linear gradient) control. When the voltage begins to decrease, the voltage is kept constant. Further, since it is preferable to boost the voltage so that the current value is as low as possible, the upper limit of the current value may be 100 μA.
 また、温度等のその他の泳動条件については、従来公知の泳動条件であればよい。 In addition, other electrophoresis conditions such as temperature may be conventionally known electrophoresis conditions.
 (平衡化工程)
 平衡化工程において、1次元目電気泳動工程において分離した抗体サンプルを平衡化する。抗体サンプルの平衡化は、1次元目電気泳動工程後のIPGゲルを平衡化液中に浸漬し、振とうすることで行うことができる。これにより、1次元目電気泳動により分離した抗体サンプルにSDS化処理を施すことができる。
(Equilibration process)
In the equilibration step, the antibody sample separated in the first-dimensional electrophoresis step is equilibrated. The equilibration of the antibody sample can be performed by immersing the IPG gel after the first-dimensional electrophoresis step in an equilibration solution and shaking. Thereby, SDS processing can be performed on the antibody sample separated by the first-dimensional electrophoresis.
 IPGゲルの平衡化時間は、例えば、10分であるが、これに限定されない。ゲルの平衡化に使用する平衡化液としては、従来公知の平衡化液を使用可能であり、例えば、Tris-HCl、SDS、EDTA、グリセロール、BPB等を含むことができる。平衡化液の具体例として、0.5mM Tris-HCl(pH8.8)、4.75% SDS、0.5mM EDTA、20v/v% グリセロール、及び、0.005% BPBを含むものが挙げられる。 The equilibration time of the IPG gel is, for example, 10 minutes, but is not limited thereto. As the equilibration liquid used for equilibration of the gel, a conventionally known equilibration liquid can be used, and for example, Tris-HCl, SDS, EDTA, glycerol, BPB and the like can be included. Specific examples of the equilibration liquid include those containing 0.5 mM Tris-HCl (pH 8.8), 4.75% SDS, 0.5 mM EDTA, 20 v / v% glycerol, and 0.005% BPB. .
 (2次元目電気泳動工程)
 2次元目電気泳動工程において、1次元目電気泳動工程において分離した抗体タンパク質を、還元剤を含まないバッファを用いて2次元目電気泳動により分離する。2次元目電気泳動工程においては、1次元目電気泳動工程の等電点電気泳動により分離した抗体サンプルを、SDS-PAGEによって分子量の違いに基づき分離する。
(Second dimension electrophoresis process)
In the second-dimensional electrophoresis step, the antibody protein separated in the first-dimensional electrophoresis step is separated by second-dimensional electrophoresis using a buffer that does not contain a reducing agent. In the second dimensional electrophoresis step, antibody samples separated by isoelectric focusing in the first dimensional electrophoresis step are separated based on the difference in molecular weight by SDS-PAGE.
 1次元目電気泳動工程により等電点電気泳動を行ったIPGゲルと、2次元目電気泳動工程で使用するSDS-PAGE用のスラブゲルとを接触させ、これらのゲルに電流を流す。これにより、IPGゲルにおいて分離された抗体サンプルが、スラブゲルに移動し、分子量の違いに基づき分離される。2次元目電気泳動工程において、ゲルに流す電流は、例えば、10mAの定電流で10分間流した後、20mAの定電流で30分間流す、の通りに制御してもよい。 The IPG gel that has been subjected to isoelectric focusing in the first-dimensional electrophoresis step is brought into contact with the slab gel for SDS-PAGE used in the second-dimensional electrophoresis step, and a current is passed through these gels. Thereby, the antibody sample separated in the IPG gel moves to the slab gel and is separated based on the difference in molecular weight. In the second-dimensional electrophoresis step, the current flowing through the gel may be controlled, for example, such that it flows for 10 minutes at a constant current of 10 mA and then flows for 30 minutes at a constant current of 20 mA.
 2次元目電気泳動工程のSDS-PAGEで使用する泳動バッファとしては、従来公知の泳動バッファを好適に使用可能であるが、還元剤は含んでいない。したがって、抗体サンプルを、還元剤を含まない非還元条件で、SDS-PAGEにより分離することができる。泳動バッファの具体例として、25mM Tris、192mM Glycin、及び、0.5% SDSを含むものが挙げられる。 A conventionally known electrophoresis buffer can be suitably used as the electrophoresis buffer used in SDS-PAGE in the second-dimensional electrophoresis step, but does not contain a reducing agent. Thus, antibody samples can be separated by SDS-PAGE under non-reducing conditions that do not contain a reducing agent. Specific examples of the electrophoresis buffer include those containing 25 mM Tris, 192 mM Glycin, and 0.5% SDS.
 また、泳動バッファのpH等の他の泳動条件については、従来公知の泳動条件であればよい。 In addition, other electrophoresis conditions such as pH of the electrophoresis buffer may be conventionally known electrophoresis conditions.
 (検出工程)
 検出工程において、2次元目電気泳動工程において分離した抗体サンプルを検出する。抗体サンプルが蛍光標識されていれば、その蛍光を追跡することで、分離した抗体サンプルの各スポットを検出することができる。また、分離した抗体サンプルの各スポットをCBB染色、銀染色等により染色することで、これらを検出してもよい。蛍光標識された抗体サンプルの蛍光検出は、例えば、GE Healthcare社製のイメージャーtyphoonを用いて、検出波長:660nm、PMT 400Vにおいて行うことができる。
(Detection process)
In the detection step, the antibody sample separated in the second-dimensional electrophoresis step is detected. If the antibody sample is fluorescently labeled, each spot of the separated antibody sample can be detected by tracking the fluorescence. These spots may be detected by staining each spot of the separated antibody sample with CBB staining, silver staining, or the like. Fluorescence detection of a fluorescently labeled antibody sample can be performed at a detection wavelength of 660 nm and a PMT of 400 V using, for example, an imager typhoon manufactured by GE Healthcare.
 このように、本発明に係る抗体分離方法によれば、非還元条件下で抗体タンパク質を2次元電気泳動するので、ジスルフィド結合を維持した状態で抗体を分離することができるので、抗体及び医薬の分析に特に適している。 As described above, according to the antibody separation method of the present invention, the antibody protein is two-dimensionally electrophoresed under non-reducing conditions, so that the antibody can be separated while maintaining the disulfide bond. Particularly suitable for analysis.
 〔抗体評価方法〕
 本発明に係る抗体評価方法は、上述した本発明に係る抗体分離方法により分離した抗体が、基準となる医薬に含まれる抗体と同一であるか否かを評価する評価工程を包含する。
[Antibody evaluation method]
The antibody evaluation method according to the present invention includes an evaluation step for evaluating whether or not the antibody separated by the above-described antibody separation method according to the present invention is the same as the antibody contained in the reference medicine.
 評価工程においては、例えば、評価対象となる抗体を本発明に係る抗体分離方法で分離したパターンと、基準となる医薬に含まれる抗体を本発明に係る抗体分離方法で分離したパターンとが同一であるか否かを判断することで、抗体を評価する。また、評価対象となる抗体を分離したパターンが、基準となる医薬に含まれる抗体を分離したパターンとは異なる位置にも検出された場合、評価対象となる抗体に、基準となる医薬中には含まれない不純物、不完全抗体等が含まれると判断できる。 In the evaluation step, for example, the pattern in which the antibody to be evaluated is separated by the antibody separation method according to the present invention is the same as the pattern in which the antibody contained in the reference medicine is separated by the antibody separation method according to the present invention. The antibody is evaluated by judging whether or not it exists. In addition, when the pattern in which the antibody to be evaluated is separated is also detected at a position different from the pattern in which the antibody contained in the reference medicine is separated, the antibody to be evaluated is included in the reference medicine. It can be determined that impurities that are not included, incomplete antibodies, and the like are included.
 本発明に係る抗体評価方法によれば、評価する抗体を分離する時に、本発明に係る抗体分離方法により抗体を分離するので、ジスルフィド結合を維持した状態で好適に抗体を分離したパターンが得られる。したがって、抗体を、4量体を維持した状態でそのまま検出することができるので、より適切に評価することができる。 According to the antibody evaluation method according to the present invention, when the antibody to be evaluated is separated, the antibody is separated by the antibody separation method according to the present invention, so that a pattern in which the antibody is suitably separated while maintaining the disulfide bond can be obtained. . Therefore, the antibody can be detected as it is while maintaining the tetramer, and thus can be evaluated more appropriately.
 〔医薬の評価方法〕
 本発明に係る医薬の評価方法は、上述した本発明に係る抗体分離方法により分離した医薬に含まれる抗体が均一であるか否かを評価する評価工程を包含する。本発明に係る医薬の評価方法は、例えば抗体医薬の評価、バイオ医薬の評価等に使用できる。
[Pharmaceutical evaluation method]
The method for evaluating a medicament according to the present invention includes an evaluation step for evaluating whether or not the antibody contained in the medicament separated by the antibody separation method according to the present invention described above is uniform. The pharmaceutical evaluation method according to the present invention can be used, for example, for antibody drug evaluation, biopharmaceutical evaluation, and the like.
 評価工程においては、例えば、評価対象となる医薬を本発明に係る抗体分離方法で分離したときに、単一のスポット(単一領域に検出されたラダー状のスポットも含む)が検出されたか否かを判断することで、医薬を評価する。評価工程において、医薬を分離したスポットが単一のスポットとして検出された場合には、医薬に含まれる抗体が均一であると判断し、医薬を分離したスポットが複数検出された場合には、医薬に含まれる抗体が不均一である又は不純物が混入していると判断できる。 In the evaluation step, for example, whether or not a single spot (including a ladder-like spot detected in a single region) is detected when the drug to be evaluated is separated by the antibody separation method according to the present invention. By judging whether or not, the drug is evaluated. In the evaluation step, when the spot from which the medicine is separated is detected as a single spot, it is determined that the antibody contained in the medicine is uniform, and when a plurality of spots from which the medicine is separated is detected, the medicine is It can be determined that the antibody contained in the antibody is heterogeneous or contaminated with impurities.
 本発明に係る医薬の評価方法によれば、評価する医薬を、本発明に係る抗体分離方法により分離するので、ジスルフィド結合を維持した状態で好適に抗体を分離したパターンが得られる。したがって、抗体を、4量体を維持した状態でそのまま検出することができるので、より適切に評価することができる。 According to the method for evaluating a drug according to the present invention, since the drug to be evaluated is separated by the antibody separation method according to the present invention, a pattern in which antibodies are suitably separated while maintaining disulfide bonds can be obtained. Therefore, the antibody can be detected as it is while maintaining the tetramer, and thus can be evaluated more appropriately.
 〔抗体の2次元電気泳動用キット〕
 本発明に係る抗体の2次元電気泳動用キットは、非界面活性剤型スルホベタイン類、ポリソルベート類、ポリオキシエチレンアルキルエーテル、及び、糖アルコール類からなる群より選択される添加剤を含み、還元剤を含まない調製バッファ、又は、非イオン性界面活性剤又は両性界面活性剤を含み、還元剤を含まない調製バッファを備えている。すなわち、本発明に係る抗体の2次元電気泳動用キットは、非変性調製バッファ及び非還元調製バッファのいずれかを備えている。
[Antibody two-dimensional electrophoresis kit]
The antibody two-dimensional electrophoresis kit according to the present invention includes an additive selected from the group consisting of non-surfactant sulfobetaines, polysorbates, polyoxyethylene alkyl ethers, and sugar alcohols, and is reduced. A preparation buffer containing no agent, or a preparation buffer containing a nonionic surfactant or an amphoteric surfactant and no reducing agent is provided. That is, the antibody two-dimensional electrophoresis kit according to the present invention includes either a non-denaturing preparation buffer or a non-reducing preparation buffer.
 本発明に係る抗体の2次元電気泳動用キットに含まれる非変性調製バッファ及び非還元調製バッファについては、本明細書における上記「抗体分離方法」の項においてそれぞれ説明した通りであるので、ここでは説明を省略する。 The non-denaturing preparation buffer and the non-reducing preparation buffer included in the antibody two-dimensional electrophoresis kit according to the present invention are as described above in the section of “Antibody separation method” in the present specification. Description is omitted.
 本発明に係る抗体の2次元電気泳動用キットは、従来公知の電気泳動装置を用いて2次元電気泳動により抗体を分離する時に、抗体サンプルを調製するために用いることができる。 The kit for two-dimensional electrophoresis of antibodies according to the present invention can be used for preparing an antibody sample when separating antibodies by two-dimensional electrophoresis using a conventionally known electrophoresis apparatus.
 本発明に係る抗体の2次元電気泳動用キットは、非変性調製バッファ及び非還元調製バッファのいずれかと共に、1次元目電気泳動ゲル材料及び泳動バッファ、2次元目電気泳動ゲル材料及び泳動バッファ、検出用蛍光色素、取り扱い説明書等を備えていてもよい。また、本発明に係る抗体の2次元電気泳動用キットは、シャープマニファクチュアリングシステム社製のAuto2Dのような泳動装置と共に提供されてもよい。 The antibody two-dimensional electrophoresis kit according to the present invention comprises a non-denaturing preparation buffer and a non-reducing preparation buffer together with a first-dimensional electrophoresis gel material and a migration buffer, a two-dimensional electrophoresis gel material and a migration buffer, A fluorescent dye for detection, an instruction manual, and the like may be provided. The antibody two-dimensional electrophoresis kit according to the present invention may be provided together with an electrophoresis apparatus such as Auto2D manufactured by Sharp Manufacturing System.
 〔まとめ〕
 本発明の態様1に係る抗体分離方法は、還元剤を含まない調製バッファに溶解した抗体タンパク質(抗体サンプル)を、還元剤を含まないバッファを用いて1次元目電気泳動により分離する1次元目電気泳動工程と、上記1次元目電気泳動工程において分離した上記抗体タンパク質を、還元剤を含まないバッファを用いて2次元目電気泳動により分離する2次元目電気泳動工程とを包含する。
[Summary]
In the antibody separation method according to aspect 1 of the present invention, the first-dimensional electrophoresis is performed by separating the antibody protein (antibody sample) dissolved in the preparation buffer not containing the reducing agent by the first-dimensional electrophoresis using the buffer not containing the reducing agent. An electrophoresis step and a second-dimensional electrophoresis step in which the antibody protein separated in the first-dimensional electrophoresis step is separated by second-dimensional electrophoresis using a buffer that does not contain a reducing agent.
 上記の構成によれば、抗体の調製バッファとして、還元剤を含まない調製バッファを用い、1次元目電気泳動工程及び2次元目電気泳動工程を、還元剤を含まないバッファを用いて行う。すなわち、タンパク質のジスルフィド結合を切断する還元剤を含まない調製バッファを用いて、還元剤を含まないバッファを用いて抗体を分離することができる。 According to the above configuration, a preparation buffer that does not contain a reducing agent is used as an antibody preparation buffer, and the first-dimensional electrophoresis step and the second-dimensional electrophoresis step are performed using a buffer that does not contain a reducing agent. That is, antibodies can be separated using a preparation buffer that does not contain a reducing agent that cleaves the disulfide bond of the protein, and a buffer that does not contain a reducing agent.
 従来の抗体の電気泳動方法における調製バッファには、2-メルカプトエタノールのような還元剤が含まれており、また、泳動バッファにも還元剤が含まれているので、還元剤による還元作用によりジスルフィド結合が解離した状態で抗体が分離されている。すなわち、従来の方法においては、電気泳動によりH鎖とL鎖とが別々の2本のバンド、又は、2つのスポットのラダーとして検出されてしまう。 The preparation buffer in the conventional antibody electrophoresis method contains a reducing agent such as 2-mercaptoethanol, and the migration buffer also contains a reducing agent, so that disulfide is reduced by the reducing action of the reducing agent. The antibody is separated with the bond dissociated. That is, in the conventional method, the H chain and the L chain are detected by electrophoresis as two separate bands or a ladder of two spots.
 一方、本態様に係る抗体分離方法によれば、調製バッファに還元剤を含まず、還元剤を含まないバッファを用いて電気泳動するため、ジスルフィド結合を維持した状態で抗体を分離することができる。 On the other hand, according to the antibody separation method according to this aspect, electrophoresis is performed using a buffer that does not contain a reducing agent and does not contain a reducing agent in the preparation buffer, so that the antibody can be separated while maintaining a disulfide bond. .
 本発明の態様2に係る抗体分離方法は、上記態様1において、上記調製バッファが、非界面活性剤型スルホベタイン類、ポリソルベート類、ポリオキシエチレンアルキルエーテル類、及び、糖アルコール類からなる群より選択される添加剤を含んでいてもよい。 The antibody separation method according to aspect 2 of the present invention is the antibody separation method according to aspect 1, wherein the preparation buffer is composed of a group consisting of non-surfactant sulfobetaines, polysorbates, polyoxyethylene alkyl ethers, and sugar alcohols. It may contain selected additives.
 抗体は、特異的な塩基性の等電点を有することや、4量体の状態では約160kDaと高分子量であることから、ジスルフィド結合を維持した状態で電気泳動して分離することは困難である上に、電気泳動による構造の変化を抑制する必要もある。したがって、これまで、ジスルフィド結合を維持した状態で抗体を分離することは不可能であると考えられ、試みられていなかった。 The antibody has a specific basic isoelectric point and has a high molecular weight of about 160 kDa in the tetramer state, so it is difficult to separate by electrophoresis while maintaining the disulfide bond. In addition, it is necessary to suppress structural changes caused by electrophoresis. Therefore, until now, it was considered impossible to separate antibodies while maintaining disulfide bonds, and no attempt was made.
 一方、本態様に係る抗体分離方法においては、調製バッファとして、非界面活性剤型スルホベタイン類、ポリソルベート類、ポリオキシエチレンアルキルエーテル類、及び、糖アルコール類からなる群より選択される添加剤を含む非変性調製バッファを用いるので、ジスルフィド結合を維持した状態で好適に抗体を分離することができる。 On the other hand, in the antibody separation method according to this embodiment, an additive selected from the group consisting of non-surfactant sulfobetaines, polysorbates, polyoxyethylene alkyl ethers, and sugar alcohols is used as a preparation buffer. Since the non-denaturing preparation buffer is used, the antibody can be suitably separated while maintaining the disulfide bond.
 本発明の態様3に係る抗体分離方法は、上記態様2において、上記非界面活性剤型スルホベタイン類は、グリシンベタイン、ジメチルエチルアンモニウムプロパンスルホネート(NDSB-195)、3-(1-ピリジノ)-1-プロパンスルホネート(NDSB-201)、ジメチル(2-ヒドロキシエチル)アンモニウムプロパンスルホネート(NDSB-211)、3-(1-メチルピペリジニウム)-1-プロパンスルホネート(NDSB-221)、ジメチルベンジルアンモニウムプロパンスルホネート(NDSB-256)、及び、3-(4-tert-ブチル-1-ピリジノ)-1-プロパンスルホネート(NDSB-256-4T)からなる群より選択され、上記ポリソルベート類は、Tween 80(登録商標)であり、上記ポリオキシエチレンアルキルエーテル類は、ポリエチレングリコールであり、上記糖アルコール類は、ソルビトールであってもよい。 The antibody separation method according to aspect 3 of the present invention is the antibody separation method according to aspect 2, wherein the non-surfactant sulfobetaines are glycine betaine, dimethylethylammonium propane sulfonate (NDSB-195), 3- (1-pyridino)- 1-propanesulfonate (NDSB-201), dimethyl (2-hydroxyethyl) ammonium propanesulfonate (NDSB-211), 3- (1-methylpiperidinium) -1-propanesulfonate (NDSB-221), dimethylbenzylammonium The polysorbate is selected from the group consisting of propanesulfonate (NDSB-256) and 3- (4-tert-butyl-1-pyridino) -1-propanesulfonate (NDSB-256-4T), and the polysorbate is Tween 80 ( Registered trademark) The polyoxyethylene alkyl ethers, polyethylene glycol, the sugar alcohols may be sorbitol.
 上記の構成によれば、抗体をより完全体の状態で分離することができる。 According to the above configuration, the antibody can be separated in a more complete state.
 本発明の態様4に係る抗体分離方法は、上記態様2又は3において、上記調製バッファ中の上記添加剤の濃度が、1w/v%以上、6w/v%以下であってもよい。 In the antibody separation method according to aspect 4 of the present invention, in the above aspect 2 or 3, the concentration of the additive in the preparation buffer may be 1 w / v% or more and 6 w / v% or less.
 上記の構成によれば、抗体をより完全体の状態で分離することができる。 According to the above configuration, the antibody can be separated in a more complete state.
 本発明の態様5に係る抗体分離方法は、上記態様2~4のいずれかにおいて、上記調製バッファが、タンパク質変性剤を含まなくてもよい。 In the antibody separation method according to aspect 5 of the present invention, in any of the above aspects 2 to 4, the preparation buffer may not contain a protein denaturant.
 上記の構成によれば、調製バッファが、非界面活性剤型スルホベタイン類、ポリソルベート類、ポリオキシエチレンアルキルエーテル類、及び、糖アルコール類からなる群より選択される添加剤を含み、還元剤及びタンパク質変性剤を含まない非変性調製バッファであるので、ジスルフィド結合、水素結合等を維持した高次構造のままで好適に抗体を分離することができる。 According to the above configuration, the preparation buffer includes an additive selected from the group consisting of non-surfactant sulfobetaines, polysorbates, polyoxyethylene alkyl ethers, and sugar alcohols, and a reducing agent and Since it is a non-denaturing preparation buffer that does not contain a protein denaturant, it is possible to suitably separate antibodies while maintaining a higher-order structure that maintains disulfide bonds, hydrogen bonds, and the like.
 本発明の態様6に係る抗体分離方法は、上記態様1において、上記調製バッファが、非イオン性界面活性剤又は両性界面活性剤を含んでいてもよい。 In the antibody separation method according to aspect 6 of the present invention, in the aspect 1, the preparation buffer may contain a nonionic surfactant or an amphoteric surfactant.
 上記の構成によれば、調製バッファとして、非イオン性界面活性剤又は両性界面活性剤を含む非還元調製バッファを用いるので、ジスルフィド結合を維持した状態で好適に抗体を分離することができる。 According to the above configuration, since the non-reducing preparation buffer containing a nonionic surfactant or an amphoteric surfactant is used as the preparation buffer, the antibody can be preferably separated while maintaining the disulfide bond.
 本発明の態様7に係る抗体分離方法は、上記態様6において、上記非イオン性界面活性剤が、3-[(4-ヘプチル)フェニル-3-ヒドロキシプロピル]ジメチルアンモニオプロパンスルホネート、又は、Triton Xであり、上記両性界面活性剤が、3-(3-コラミドプロピル)ジメチルアンモニオ-1-プロパンスルホネート、3-[(3-コラミドプロピル)ジメチルアンモニオ]-2-ヒドロキシ-1-プロパンスルホネート、又は、3-[N,N-ジメチル(3-ミリストイルアミノプロピル)アンモニオ]プロパンスルホナート,アミドスルホベタイン-14であってもよい。 The antibody separation method according to aspect 7 of the present invention is the antibody separation method according to aspect 6, wherein the nonionic surfactant is 3-[(4-heptyl) phenyl-3-hydroxypropyl] dimethylammoniopropanesulfonate, or Triton. X and the amphoteric surfactant is 3- (3-colamidopropyl) dimethylammonio-1-propanesulfonate, 3-[(3-colamidopropyl) dimethylammonio] -2-hydroxy-1- It may be propane sulfonate, or 3- [N, N-dimethyl (3-myristoylaminopropyl) ammonio] propane sulfonate, amide sulfobetaine-14.
 上記の構成によれば、ジスルフィド結合を維持した状態でより好適に抗体を分離することができる。 According to the above configuration, the antibody can be more preferably separated while maintaining the disulfide bond.
 本発明の態様8に係る抗体分離方法は、上記態様1~7の何れかにおいて、上記1次元目電気泳動において、電圧を一定に維持して電流が0より大きい所定の電流値にまで減少したときに昇圧して電流を増加させ、昇圧中に電流が減少し始めたときに電圧を一定に維持し、かつ、電流値が0より大きく、100μA以下となるように電圧制御してもよい。 The antibody separation method according to Aspect 8 of the present invention is the antibody separation method according to any one of Aspects 1 to 7, wherein the voltage is kept constant and the current is reduced to a predetermined current value greater than 0 in the first-dimensional electrophoresis. The voltage may be controlled such that the voltage is sometimes increased to increase the current, the voltage is maintained constant when the current starts to decrease during the voltage increase, and the current value is greater than 0 and equal to or less than 100 μA.
 上記の構成によれば、電圧を一定に制御している間に、電流が負の勾配を示し、勾配が0に近づいたときに、昇圧(リニアグラジエント)制御し、電圧を昇圧している間に、電流の勾配が減少し始めたときに、電圧を一定に維持する。そして、電流値が可能な限り低く推移し、電流値の上限を100μAとするように電圧制御する。このように、適切に電圧制御することによって、好適な1次元目電気泳動が可能である。 According to the above configuration, while the voltage is controlled to be constant, the current exhibits a negative gradient, and when the gradient approaches 0, the voltage is boosted (linear gradient) and the voltage is boosted. At the same time, the voltage is kept constant when the current gradient begins to decrease. Then, the voltage is controlled so that the current value changes as low as possible and the upper limit of the current value is 100 μA. Thus, suitable first-dimensional electrophoresis is possible by appropriately controlling the voltage.
 本発明の態様9に係る抗体評価方法は、上記態様1~8の何れかの抗体分離方法により分離した抗体が、基準となる医薬に含まれる抗体と同一であるか否かを評価する評価工程を包含する。 The antibody evaluation method according to aspect 9 of the present invention is an evaluation step for evaluating whether or not the antibody separated by the antibody separation method according to any one of the above aspects 1 to 8 is the same as the antibody contained in the reference drug. Is included.
 上記の構成によれば、評価する抗体を分離する時に、上記態様1~8の何れかの抗体分離方法により抗体を分離するので、ジスルフィド結合を維持した状態で好適に抗体を分離したパターンが得られる。したがって、抗体を、4量体を維持した状態でそのまま検出することができるので、より適切に評価することができる。 According to the above configuration, when the antibody to be evaluated is separated, the antibody is separated by the antibody separation method of any one of the above aspects 1 to 8, so that a pattern in which the antibody is suitably separated while maintaining the disulfide bond is obtained. It is done. Therefore, the antibody can be detected as it is while maintaining the tetramer, and thus can be evaluated more appropriately.
 本発明の態様10に係る医薬の評価方法は、上記態様1~8の何れかの抗体分離方法により分離した医薬に含まれる抗体が均一であるか否かを評価する評価工程を包含する。 The pharmaceutical evaluation method according to the tenth aspect of the present invention includes an evaluation step for evaluating whether or not the antibody contained in the pharmaceutical separated by the antibody separation method according to any of the first to eighth aspects is uniform.
 上記の構成によれば、評価する医薬を分離する時に、上記態様1~8の何れかの抗体分離方法により医薬を分離するので、ジスルフィド結合を維持した状態で好適に抗体を分離したパターンが得られる。したがって、抗体を、4量体を維持した状態でそのまま検出することができるので、より適切に評価することができる。 According to the above configuration, when separating the drug to be evaluated, the drug is separated by the antibody separation method according to any one of the above aspects 1 to 8, and thus a pattern in which the antibody is suitably separated while maintaining the disulfide bond is obtained. It is done. Therefore, the antibody can be detected as it is while maintaining the tetramer, and thus can be evaluated more appropriately.
 本発明の態様11に係る抗体の2次元電気泳動用キットは、非界面活性剤型スルホベタイン類、ポリソルベート類、ポリオキシエチレンアルキルエーテル類、及び、糖アルコール類からなる群より選択される添加剤を含み、還元剤を含まない調製バッファ(非変性調製バッファ)を備えている。 The antibody two-dimensional electrophoresis kit according to aspect 11 of the present invention is an additive selected from the group consisting of non-surfactant sulfobetaines, polysorbates, polyoxyethylene alkyl ethers, and sugar alcohols And a preparation buffer that does not contain a reducing agent (non-denaturing preparation buffer).
 上記の構成によれば、還元剤を含まず、非界面活性剤型スルホベタイン類、ポリソルベート類、ポリオキシエチレンアルキルエーテル類、及び、糖アルコール類からなる群より選択される添加剤を含む非変性調製バッファを備えているので、ジスルフィド結合を維持した状態で好適に抗体を分離するために使用することができる。 According to the above configuration, a non-denaturing agent that does not contain a reducing agent and contains an additive selected from the group consisting of non-surfactant sulfobetaines, polysorbates, polyoxyethylene alkyl ethers, and sugar alcohols Since the preparation buffer is provided, it can be used to suitably separate antibodies while maintaining disulfide bonds.
 本発明の態様12に係る抗体の2次元電気泳動用キットは、非イオン性界面活性剤又は両性界面活性剤を含み、還元剤を含まない調製バッファ(非還元調製バッファ)を備えている。 The kit for two-dimensional electrophoresis of antibodies according to aspect 12 of the present invention includes a preparation buffer (non-reduction preparation buffer) containing a nonionic surfactant or an amphoteric surfactant and not containing a reducing agent.
 上記の構成によれば、還元剤を含まず、非イオン性界面活性剤又は両性界面活性剤を含む非還元調製バッファを備えているので、ジスルフィド結合を維持した状態で好適に抗体を分離するために使用することができる。 According to the above-described configuration, since the non-reducing preparation buffer containing a nonionic surfactant or an amphoteric surfactant is provided without a reducing agent, the antibody is preferably separated while maintaining a disulfide bond. Can be used for
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 〔実施例1:抗体(Infliximab)の非還元2次元電気泳動〕
 抗体分子全体のグライコフォームや凝集体を検出するために、2次元電気泳動(等電点電気泳動およびSDS-PAGE)を非還元条件下で行った。
[Example 1: Non-reducing two-dimensional electrophoresis of antibody (Infliximab)]
Two-dimensional electrophoresis (isoelectric focusing and SDS-PAGE) was performed under non-reducing conditions in order to detect glycoforms and aggregates of the whole antibody molecule.
 PBSに溶解した抗体(Infliximab、田辺三菱社製)は、脱塩精製を行わずに、蛍光体IC5標識キット(IC5-OSu special packaging、同仁化学研究所製)で標識し、2μg/μLに調整したものを2次元電気泳動に供した。2次元電気泳動を、シャープマニファクチュアリングシステム社製のAuto2Dを用いて自動で行った。IEFチップとして、pH6~10のものを用い、PAGEチップとして、アクリルアミド濃度7.5%のものを用いた。等電点電気泳動時間を45分間とし、総処理時間を130分間とした。 Antibody dissolved in PBS (Infliximab, manufactured by Mitsubishi Tanabe) is labeled with a fluorescent IC5 labeling kit (IC5-OSu special packaging, manufactured by Dojindo Laboratories) without desalting, and adjusted to 2 μg / μL. This was subjected to two-dimensional electrophoresis. Two-dimensional electrophoresis was automatically performed using Auto2D manufactured by Sharp Manufacturing System. An IEF chip having a pH of 6 to 10 was used, and a PAGE chip having an acrylamide concentration of 7.5% was used. The isoelectric focusing time was 45 minutes and the total processing time was 130 minutes.
 IPGドライストリップゲルとして、上記組成の酸性アクリルアミドバッファ混合液及び塩基性アクリルアミドバッファ混合液を混合し、図1に示すIPGゲル作製器具100を用いて作製したゲルを用いた。IPGドライストリップゲルに、調製した抗体サンプルを導入した。サンプル導入時間は30分間とした。100μLの膨潤液で5分間IPGゲルを膨潤させた後、IPGゲルに電圧を印加し、非還元条件下で等電点電気泳動を行った。膨潤液として、上記非還元バッファを用いた。 As an IPG dry strip gel, a gel prepared by mixing an acidic acrylamide buffer mixed solution and a basic acrylamide buffer mixed solution having the above-described composition and using the IPG gel preparation instrument 100 shown in FIG. 1 was used. The prepared antibody sample was introduced into an IPG dry strip gel. The sample introduction time was 30 minutes. After the IPG gel was swollen with 100 μL of the swelling solution for 5 minutes, voltage was applied to the IPG gel and isoelectric focusing was performed under non-reducing conditions. The non-reducing buffer was used as the swelling liquid.
 電圧の印加を、Step1:200V,5分間一定、Step2:1000V,5分間リニアグラジエント、Step3:1000V,5分間一定、Step4:7000V,15分間リニアグラジエント、Step5:7000V,15分間一定、の通り制御した。 The voltage application is controlled as follows: Step 1: 200 V, constant for 5 minutes, Step 2: 1000 V, linear gradient for 5 minutes, Step 3: 1000 V, constant for 5 minutes, Step 4: 7000 V, linear gradient for 15 minutes, Step 5: 7000 V, constant for 15 minutes did.
 等電点電気泳動後のゲルを700μLの平衡化液(0.5mM Tris-HCl(pH8.8)(Wako社製)、4.75% SDS(Bio-Rad社製)、0.5mM
 EDTA(Dojindo社製)、20v/v% グリセロール(Wako社製)、及び、0.005% BPB(Sigma社製))で10分間平衡化した後、IPGゲルとアクリルアミドゲルを接触させ、電流を流し、非還元条件下でSDS-PAGEを行った。ゲルに流す電流を、10mAの定電流を10分間、20mAの定電流を30分間、の通り制御した。泳動バッファとして、Tris、Glysin及びSDSを含むバッファを用いた。
700 μL of the gel after isoelectric focusing (0.5 mM Tris-HCl (pH 8.8) (manufactured by Wako)), 4.75% SDS (manufactured by Bio-Rad), 0.5 mM
After equilibrating with EDTA (manufactured by Dojindo), 20 v / v% glycerol (manufactured by Wako), and 0.005% BPB (manufactured by Sigma) for 10 minutes, the IPG gel and acrylamide gel were contacted, SDS-PAGE was performed under non-reducing conditions. The current flowing through the gel was controlled as follows: a constant current of 10 mA for 10 minutes and a constant current of 20 mA for 30 minutes. As the electrophoresis buffer, a buffer containing Tris, Glysin and SDS was used.
 SDS-PAGE後のアクリルアミドゲルにおいて、GE Healthcare社製のイメージャーtyphoonを用いて、検出波長:660nm、PMT 400Vで蛍光検出した。結果を図2に示す。 In the acrylamide gel after SDS-PAGE, fluorescence was detected at a detection wavelength of 660 nm and a PMT of 400 V using an imager typhoon manufactured by GE Healthcare. The results are shown in FIG.
 図2に示すように、160kD付近に主の抗体スポット群が検出され、300kD付近に2量体と思われるアイソフォーム群が検出された。また、主の抗体スポットと共に、主の抗体スポットよりも若干分子量の小さい抗体(LC脱離、糖鎖脱離等)由来のタンパク質スポットが検出された。Urea及びCHAPSを含み、還元剤を含まない非還元調製バッファを用いることにより、医薬品に含まれる多数のグライコフォームや多量体をクリアに分離できることが示された。 As shown in FIG. 2, a main antibody spot group was detected around 160 kD, and an isoform group considered to be a dimer was detected around 300 kD. In addition to the main antibody spot, a protein spot derived from an antibody (LC desorption, sugar chain desorption, etc.) having a slightly lower molecular weight than the main antibody spot was detected. It was shown that a large number of glycoforms and multimers contained in a pharmaceutical can be clearly separated by using a non-reducing preparation buffer containing Urea and CHAPS and no reducing agent.
 〔実施例2:抗体(Infliximab)の非変性2次元電気泳動〕
 抗体を完全変性させずに2次元電気泳動で分離する方法を検討した。
[Example 2: Non-denaturing two-dimensional electrophoresis of antibody (Infliximab)]
A method of separating the antibodies by two-dimensional electrophoresis without completely denaturing the antibodies was examined.
 抗体(Infliximab、田辺三菱社製)を、4w/v5 NDSB(Merck社製)、15v/v% Glycerol(Wako社製)、及び、0.5% Ampholyte(pH6-11)(invitrogen社製)を含む非変性調製バッファに溶解した以外は、実施例1と同様に、2次元電気泳動をAuto2Dにおいて行い、スポットを検出した。結果を図3に示す。 Antibody (Infliximab, Mitsubishi Tanabe) 4w / v5 NDSB (Merck), 15v / v% Glycerol (Wako), and 0.5% Amphorite (pH 6-11) (Invitrogen) Two-dimensional electrophoresis was performed in Auto2D in the same manner as in Example 1 except that it was dissolved in a non-denaturing preparation buffer, and spots were detected. The results are shown in FIG.
 図3に示すように、等電点及び分子量方向に規則的に配列したスポット群が検出された。図3におけるスポット群において、縦方向のスポット位置の違いは、糖鎖付加数による分子量の違いを表しており、横方向のスポット位置の差は、シアル酸付加数による等電点の違いを表している。すなわち、抗体分子を修飾する糖鎖の数と末端修飾の種類が異なるグライコフォームが検出されたと考えられる。NDSB及びGlycerolを含み、還元剤及びタンパク質変性剤を含まない非変性調製バッファを用いることにより、タンパク質変性によるアーティファクトを防ぐと共に、分解やサブユニットの脱離のない状態のまま、抗体のアイソフォームをクリアに分離できることが示された。 As shown in FIG. 3, a spot group regularly arranged in the isoelectric point and molecular weight direction was detected. In the spot group in FIG. 3, the difference in the spot position in the vertical direction represents the difference in molecular weight due to the number of added sugar chains, and the difference in the spot position in the horizontal direction represents the difference in isoelectric point due to the number of sialic acid additions. ing. That is, it is considered that glycoforms having different numbers of sugar chains for modifying antibody molecules and different types of terminal modifications were detected. By using a non-denaturing preparation buffer that contains NDSB and Glycerol but does not contain reducing agents and protein denaturing agents, it prevents artifacts due to protein denaturation and allows antibody isoforms to remain intact without degradation or subunit elimination. It was shown that it can be clearly separated.
 ここで、非還元条件及び非変性条件のそれぞれで分離した抗体サンプルの2次元電気泳動によるパターンの違いについて解析する。図4に、実施例1の非還元2次元電気泳動(a)及び実施例2の非変性2次元電気泳動(b)のそれぞれで分離した抗体サンプルの2次元電気泳動の結果を示す。また、図4の(c)に、図4中(b)のb-b’間の蛍光強度を示すグラフを示す。 Here, we will analyze the difference in patterns by two-dimensional electrophoresis of antibody samples separated under non-reducing conditions and non-denaturing conditions. FIG. 4 shows the results of two-dimensional electrophoresis of antibody samples separated in each of non-reducing two-dimensional electrophoresis (a) of Example 1 and non-denaturing two-dimensional electrophoresis (b) of Example 2. FIG. 4C is a graph showing the fluorescence intensity between b and b ′ in FIG. 4B.
 図4中(a)に示すように、非還元2次元電気泳動においては、Aの領域に複数の抗体の多量体と推測されるスポットが検出され、Bの領域に不純物(目的成分由来ではないタンパク質)と推測されるスポットが検出された。そして、160kDa付近のXの領域に抗体の完全体(目的成分)が検出されているが、110~140kDa付近のYの領域及び60~80kDa付近のZの領域に、一部立体構造が解離した、若干分子量の小さい抗体由来と推測されるスポットが検出された。一方、非変性2次元電気泳動においては、図4中(b)に示すように、160kDa付近のXの領域にスポットが検出された。また、図4中(b)では視認しづらいが、図4中(c)に示すように、Xの領域とは別に、Aの領域にも蛍光強度の上昇が見られるため、160kDa付近のAの領域にもスポットが検出されていることが分かる。 As shown in FIG. 4 (a), in non-reducing two-dimensional electrophoresis, spots presumed to be multimers of a plurality of antibodies are detected in the region A, and impurities (not derived from the target component) are detected in the region B. A spot presumed to be (protein) was detected. The complete antibody (target component) was detected in the X region near 160 kDa, but part of the three-dimensional structure was dissociated into the Y region near 110 to 140 kDa and the Z region near 60 to 80 kDa. A spot presumed to be derived from an antibody having a slightly small molecular weight was detected. On the other hand, in non-denaturing two-dimensional electrophoresis, as shown in FIG. 4 (b), spots were detected in the X region near 160 kDa. Further, although it is difficult to visually recognize in FIG. 4B, as shown in FIG. 4C, an increase in fluorescence intensity is seen in the A region separately from the X region. It can be seen that spots are also detected in the region.
 すなわち、図4中(b)においては、図4中(a)のように、Bの領域に不純物と推測されるスポット、110~140kDa付近のYの領域、及び60~80kDa付近のZの領域に、一部立体構造が解離した若干分子量の小さいスポットが検出されなかった。よって、Y、Z及びBの領域のスポットは抗体の目的成分由来のタンパク質であると判断できる。このように、図4中(b)のパターンを確認することで、抗体サンプル中の目的成分、多量体、目的成分由来のタンパク質、及び、不純物の有無を判断できる。 That is, in FIG. 4 (b), as shown in FIG. 4 (a), in the B region, a spot that is supposed to be an impurity, a Y region near 110 to 140 kDa, and a Z region near 60 to 80 kDa. In addition, a spot having a slightly small molecular weight in which a part of the three-dimensional structure was dissociated was not detected. Therefore, it can be determined that the spots in the Y, Z, and B regions are proteins derived from the target component of the antibody. Thus, by confirming the pattern of (b) in FIG. 4, the presence or absence of the target component, multimer, protein derived from the target component, and impurities in the antibody sample can be determined.
 したがって、非還元条件及び非変性条件のそれぞれで分離した抗体サンプルの2次元電気泳動によるパターンを比較することで、抗体以外の不純物の有無、多量体共存の有無、インタクト(完全体)以外の抗体混入の有無などを評価することができる。 Therefore, by comparing the two-dimensional electrophoresis patterns of antibody samples separated under non-reducing conditions and non-denaturing conditions, the presence or absence of impurities other than antibodies, the presence or absence of multimers, and antibodies other than intact The presence or absence of contamination can be evaluated.
 〔実施例3:他の抗体の非還元2次元電気泳動〕
 抗体として、Trastuzumab(中外製薬社製)、Cetuximab(BMS社製)、Bevacizumab(Roche社製)、及び、Rituximab(中外製薬社製)を用いた以外は、実施例1と同様に、2次元電気泳動をAuto2Dにおいて行い、スポットを検出した。結果を図5に示す。なお、図5(a)においては、pH範囲7~10、図5(b)~(c)においては、pH範囲6~9を示している。
[Example 3: Non-reducing two-dimensional electrophoresis of other antibodies]
As in Example 1, two-dimensional electricity was used except that Trastuzumab (manufactured by Chugai Pharmaceutical), Cetuximab (manufactured by BMS), Bevacizumab (manufactured by Roche), and Rituximab (manufactured by Chugai Pharmaceutical) were used as antibodies. Electrophoresis was performed in Auto2D and spots were detected. The results are shown in FIG. 5A shows the pH range 7 to 10, and FIGS. 5B to 5C show the pH range 6 to 9.
 図5に示すように、Trastuzumab(a)、Cetuximab(b)、Bevaczumab(c)、及び、Rituximab(d)についても、図2に示すInfliximabと同様に、主の抗体スポット群と共に、2量体と思われるアイソフォーム群が検出された。 As shown in FIG. 5, for trastuzumab (a), cetuximab (b), bevacumab (c), and Rituximab (d), as well as the main antibody spot group shown in FIG. An isoform group was detected.
 〔実施例4:他の抗体の非変性2次元電気泳動〕
 Trastuzumab(中外製薬社製)及びCetuximab(BMS社製)を、実施例2の非変性調製バッファ(+NDSB)に溶解したもの、並びに、Trastuzumab(中外製薬社製)を、50v/v% Glycerol(Wako社製)、0.1% Ampholyte(pH6~11)(invitrogen社製)、及び、水を含む調製バッファ(-NDSB)に溶解したものを用い、実施例2と同様に、2次元電気泳動をAuto2Dにおいて行い、スポットを検出した。結果を図6に示す。なお、図6(a)及び(c)においては、pH範囲7~10、図6(b)においては、pH範囲6~9を示している。
[Example 4: Non-denaturing two-dimensional electrophoresis of other antibodies]
Trastuzumab (manufactured by Chugai Pharmaceutical Co., Ltd.) and Cetuximab (manufactured by BMS) were dissolved in the non-denaturing preparation buffer (+ NDSB) of Example 2, and Trastuzumab (manufactured by Chugai Pharmaceutical Co., Ltd.) were mixed with 50 v / v% Glycerol (Wako). ), 0.1% Amphorite (pH 6-11) (manufactured by Invitrogen), and a solution dissolved in water-containing preparation buffer (-NDSB), two-dimensional electrophoresis was performed in the same manner as in Example 2. Performed in Auto2D to detect spots. The results are shown in FIG. 6A and 6C show the pH range 7 to 10, and FIG. 6B shows the pH range 6 to 9.
 図6に示すように、NDSBを含む非変性調製バッファに溶解したTrastuzumab(a)及びCetuximab(b)は、図3に示すInfliximabと同様に、等電点及び分子量方向に規則的に配列したスポット群が検出された。NDSBを含まない調製バッファに溶解したTrastuzumab(c)については、抗体の多量体と推測されるスポットが検出されており、NDSBを含む調製バッファに溶解したTrastuzumab(c)の方がより安定した検出が可能であることが示された。 As shown in FIG. 6, Trastuzumab (a) and Cetuximab (b) dissolved in a non-denaturing preparation buffer containing NDSB are spots regularly arranged in the direction of isoelectric point and molecular weight as in Infliximab shown in FIG. A group was detected. For trastuzumab (c) dissolved in a preparation buffer that does not contain NDSB, spots presumed to be antibody multimers have been detected, and the detection of trastuzumab (c) dissolved in a preparation buffer that contains NDSB is more stable. Was shown to be possible.
 〔実施例5:泳動条件の違いによる1次元目電気泳動時の電流値の変化〕
 1次元目の等電点電気泳動時の電圧制御条件の最適化を検討した。泳動条件1(Step1:200V,5分間一定、Step2:1000V,5分間リニアグラジエント、Step3:1000V,5分間一定、Step4:7000V,15分間リニアグラジエント、Step5:7000V,15分間一定)、及び、泳動条件2(Step1:200V,5分間一定、Step2:1000V,5分間リニアグラジエント、Step3:1000V,5分間一定、Step4:4000V,10分間リニアグラジエント、Step5:4000V,10分間一定、Step6:7000V,10分間リニアグラジエント、Step7:7000V,20分間一定)のそれぞれにより等電点電気泳動時の電圧を制御したときの電流値の変化を観察し、結果を図7に示す。図7中(a)は、泳動条件1の等電点電気泳動を行った時の電圧値及び電流値の変化を示すグラフであり、図7中(b)は、泳動条件2の等電点電気泳動を行った時の電圧値及び電流値の変化を示すグラフである。図7において、縦軸右側の数値は電流値を、縦軸左側の数値は電圧値を、横軸は時間(秒)を表している。
[Example 5: Change in current value during first-dimensional electrophoresis due to difference in electrophoresis conditions]
The optimization of voltage control conditions during the first-dimension isoelectric focusing was investigated. Electrophoresis conditions 1 (Step 1: 200 V, constant for 5 minutes, Step 2: 1000 V, linear gradient for 5 minutes, Step 3: 1000 V, constant for 5 minutes, Step 4: 7000 V, linear gradient for 15 minutes, Step 5: 7000 V, constant for 15 minutes) and electrophoresis Condition 2 (Step 1: 200V, constant for 5 minutes, Step 2: 1000V, linear gradient for 5 minutes, Step 3: 1000V, constant for 5 minutes, Step 4: 4000V, linear gradient for 10 minutes, Step 5: 4000V, constant for 10 minutes, Step 6: 7000V, 10 The change in the current value when the voltage during isoelectric focusing is controlled by each of the linear gradient of the minute, Step 7: 7000 V, constant for 20 minutes) is shown in FIG. 7A is a graph showing changes in voltage value and current value when isoelectric focusing is performed under electrophoresis condition 1, and FIG. 7B is an isoelectric point under electrophoresis condition 2. It is a graph which shows the change of the voltage value and electric current value when performing electrophoresis. In FIG. 7, the numerical value on the right side of the vertical axis represents the current value, the numerical value on the left side of the vertical axis represents the voltage value, and the horizontal axis represents time (seconds).
 図7に示すように、電圧を一定に制御するステップでは、電流は負の勾配を示し、勾配が0に近づいたときに、昇圧(リニアグラジエント)制御することが理想的であることが示された。また、電圧を昇圧制御するステップでは、電流の勾配が減少し始めてから(負)、電圧を一定に保持することが理想的であることが示された。さらに、電流値が可能な限り低く推移するように電圧を昇圧することが好ましく、電流値の上限は100μAとすればよいことが示された。 As shown in FIG. 7, in the step of controlling the voltage to be constant, the current shows a negative gradient, and it is shown that it is ideal to perform step-up (linear gradient) control when the gradient approaches zero. It was. Further, it was shown that in the step of controlling the voltage to be boosted, it is ideal to keep the voltage constant after the current gradient starts to decrease (negative). Furthermore, it has been shown that the voltage is preferably boosted so that the current value is as low as possible, and the upper limit of the current value may be 100 μA.
 〔参考例1:IPGドライストリップゲルの検討〕
 1次元目の等電点電気泳動のIPGゲルにおいて、平均分子量が160kD以上と非常に高分子で複雑な高次構造をとる抗体を非還元条件で分離するために、アクリルアミド濃度(%T)とビスアクリルアミド濃度(%C)の最適化を検討した。作成するpH範囲は、多くの抗体の等電点をカバーするpH6~10を選択した。
[Reference Example 1: Examination of IPG dry strip gel]
In an IPG gel of isoelectric focusing in the first dimension, an acrylamide concentration (% T) is used in order to separate an antibody having an average molecular weight of 160 kD or more and a very high molecular complex in a higher order structure under non-reducing conditions. Optimization of the bisacrylamide concentration (% C) was examined. As the pH range to be prepared, pH 6 to 10 that covers the isoelectric point of many antibodies was selected.
 2次元電気泳動で一般的に用いられている、4.0%T、3.0%Cから各濃度を下方に変化させたゲルを作製し、電流値と分離パターンとから分離性能を評価した。分離サンプルとして、マウス肝臓可溶性タンパク質をIC5(IC5-OSu special packaging、同仁化学研究所製)で標識し、Auto2D(シャープマニファクチュアリングシステム社製)を用いて2次元電気泳動を行った。マウス肝臓可溶性タンパク質としては、マウス肝臓組織を可溶化バッファ(50mM Tris-HCl(pH7.6)、20% Glycerol、0.3M NaCl)下ですり潰し、その上澄み部分を用いた。 Gels were prepared by changing each concentration downward from 4.0% T and 3.0% C, which are commonly used in two-dimensional electrophoresis, and the separation performance was evaluated from the current value and the separation pattern. . As a separated sample, mouse liver soluble protein was labeled with IC5 (IC5-OSu special packaging, manufactured by Dojindo Laboratories), and two-dimensional electrophoresis was performed using Auto2D (manufactured by Sharp Manufacturing System). As mouse liver soluble protein, mouse liver tissue was ground under a solubilization buffer (50 mM Tris-HCl (pH 7.6), 20% Glycerol, 0.3 M NaCl), and the supernatant was used.
 泳動条件は、上記泳動条件2の通りにした。4.0%T、3.0%Cのゲル(a)と3.6%T、2.7%Cのゲル(b)をそれぞれ用いた結果を図8に示す。 The electrophoresis conditions were the same as the electrophoresis conditions 2 described above. FIG. 8 shows the results of using 4.0% T and 3.0% C gel (a) and 3.6% T and 2.7% C gel (b), respectively.
 図8に示すように、ゲル中の各濃度を3.6%T、2.7%Cにすることで、高分子領域の分離とサンプルの導入効率とが改善したことが示された。 As shown in FIG. 8, it was shown that the separation of the polymer region and the sample introduction efficiency were improved by setting each concentration in the gel to 3.6% T and 2.7% C.
 〔参考例2:従来の還元条件における抗体の2次元電気泳動〕
 Cetuximab(BMS社製)を用いて、還元条件1(還元剤(DTT)を含む泳動条件で1次元目電気泳動及び2次元電気泳動を行う)、及び、還元条件2(還元剤(DTT)を含まない泳動条件で1次元目電気泳動を行い、還元剤(DTT)を含む泳動条件で2次元目電気泳動を行う)のそれぞれについて、Auto2D(シャープマニファクチュアリングシステム社製)を用いて2次元電気泳動を行った。CetuximabはIC5(IC5-OSu special packaging、同仁化学研究所製)で標識した。他の泳動条件は、上記泳動条件2の通りにした。
[Reference Example 2: Two-dimensional electrophoresis of antibody under conventional reducing conditions]
Using Cetuximab (manufactured by BMS), reducing condition 1 (performing first- and second-dimensional electrophoresis under electrophoresis conditions including a reducing agent (DTT)) and reducing condition 2 (reducing agent (DTT)) 2D electrophoresis using Auto2D (manufactured by Sharp Manufacturing System Co., Ltd.) for each of the first-dimensional electrophoresis under the electrophoresis conditions not included and the second-dimensional electrophoresis under the electrophoresis conditions including the reducing agent (DTT). Electrophoresis was performed. Cetuximab was labeled with IC5 (IC5-OSu special packaging, manufactured by Dojindo Laboratories). Other electrophoretic conditions were the same as the electrophoretic conditions 2 described above.
 結果を図9に示す。図9中(a)は還元条件1の結果を示し、図9中(b)は還元条件2の結果を示す。従来一般的な還元条件1で抗体分子を分離すると、図9中(a)に示すように、約60kDにH鎖が検出され、約20kDにL鎖が検出された。また、図9中(b)に示すように、1次元目電気泳動を非還元条件で行い、2次元目電気泳動を還元条件で行う、還元条件2で抗体分子を分離しても、同様に、約60kDにH鎖検出され、約20kDにL鎖が検出されたが、還元条件1の場合より複雑な分離パターンを示した。 The results are shown in FIG. 9A shows the result of the reduction condition 1, and FIG. 9B shows the result of the reduction condition 2. When antibody molecules were separated under conventional reducing conditions 1, as shown in FIG. 9 (a), an H chain was detected at about 60 kD, and an L chain was detected at about 20 kD. Further, as shown in FIG. 9 (b), even when the first-dimensional electrophoresis is performed under non-reducing conditions and the second-dimensional electrophoresis is performed under reducing conditions, and antibody molecules are separated under reducing conditions 2, The H chain was detected at about 60 kD and the L chain was detected at about 20 kD, but showed a more complicated separation pattern than in the case of reducing condition 1.
 本発明は、医薬分野、農薬分野等に利用することができる。 The present invention can be used in the fields of medicine, agricultural chemicals, and the like.
 10 ゲル作製治具
 20 グラジエントミキサ
 30 グラジエントミキサ
 40 ペリスタポンプ
 50 シリコンチューブ
 100 IPGゲル作製器具
DESCRIPTION OF SYMBOLS 10 Gel preparation jig | tool 20 Gradient mixer 30 Gradient mixer 40 Peristaltic pump 50 Silicon tube 100 IPG gel preparation instrument

Claims (12)

  1.  還元剤を含まない調製バッファに溶解した抗体タンパク質を、還元剤を含まない泳動バッファを用いて1次元目電気泳動により分離する1次元目電気泳動工程と、
     上記1次元目電気泳動工程において分離した上記抗体タンパク質を、還元剤を含まない泳動バッファを用いて2次元目電気泳動により分離する2次元目電気泳動工程と
    を包含することを特徴とする、抗体分離方法。
    A first-dimensional electrophoresis step in which antibody protein dissolved in a preparation buffer not containing a reducing agent is separated by first-dimensional electrophoresis using an electrophoresis buffer that does not contain a reducing agent;
    A second-dimensional electrophoresis step of separating the antibody protein separated in the first-dimensional electrophoresis step by a second-dimensional electrophoresis using an electrophoresis buffer that does not contain a reducing agent. Separation method.
  2.  上記調製バッファは、非界面活性剤型スルホベタイン類、ポリソルベート類、ポリオキシエチレンアルキルエーテル類、及び、糖アルコール類からなる群より選択される添加剤を含むことを特徴とする請求項1に記載の抗体分離方法。 The said preparation buffer contains the additive selected from the group which consists of non-surfactant type sulfobetaines, polysorbates, polyoxyethylene alkyl ethers, and sugar alcohols, The claim 1 characterized by the above-mentioned. Antibody separation method.
  3.  上記非界面活性剤型スルホベタイン類は、グリシンベタイン、ジメチルエチルアンモニウムプロパンスルホネート(NDSB-195)、3-(1-ピリジノ)-1-プロパンスルホネート(NDSB-201)、ジメチル(2-ヒドロキシエチル)アンモニウムプロパンスルホネート(NDSB-211)、3-(1-メチルピペリジニウム)-1-プロパンスルホネート(NDSB-221)、ジメチルベンジルアンモニウムプロパンスルホネート(NDSB-256)、及び、3-(4-tert-ブチル-1-ピリジノ)-1-プロパンスルホネート(NDSB-256-4T)からなる群より選択され、
     上記ポリソルベート類は、Tween 80(登録商標)であり、
     上記ポリオキシエチレンアルキルエーテル類は、ポリエチレングリコールであり、
     上記糖アルコール類は、ソルビトールである
    ことを特徴とする請求項2に記載の抗体分離方法。
    Non-surfactant type sulfobetaines include glycine betaine, dimethylethylammonium propanesulfonate (NDSB-195), 3- (1-pyridino) -1-propanesulfonate (NDSB-201), dimethyl (2-hydroxyethyl) Ammonium propane sulfonate (NDSB-211), 3- (1-methylpiperidinium) -1-propane sulfonate (NDSB-221), dimethylbenzyl ammonium propane sulfonate (NDSB-256), and 3- (4-tert- Selected from the group consisting of butyl-1-pyridino) -1-propanesulfonate (NDSB-256-4T);
    The polysorbate is Tween 80 (registered trademark),
    The polyoxyethylene alkyl ethers are polyethylene glycols,
    The antibody separation method according to claim 2, wherein the sugar alcohol is sorbitol.
  4.  上記調製バッファ中の上記添加剤の濃度が、1w/v%以上、6w/v%以下であることを特徴とする請求項2又は3に記載の抗体分離方法。 4. The antibody separation method according to claim 2, wherein the concentration of the additive in the preparation buffer is 1 w / v% or more and 6 w / v% or less.
  5.  上記調製バッファは、タンパク質変性剤を含まないことを特徴とする請求項2~4のいずれか1項に記載の抗体分離方法。 The antibody separation method according to any one of claims 2 to 4, wherein the preparation buffer does not contain a protein denaturant.
  6.  上記調製バッファは、非イオン性界面活性剤又は両性界面活性剤を含むことを特徴とする請求項1に記載の抗体分離方法。 The antibody separation method according to claim 1, wherein the preparation buffer contains a nonionic surfactant or an amphoteric surfactant.
  7.  上記非イオン性界面活性剤は、3-[(4-ヘプチル)フェニル-3-ヒドロキシプロピル]ジメチルアンモニオプロパンスルホネート、又は、Triton Xであり、
     上記両性界面活性剤は、3-(3-コラミドプロピル)ジメチルアンモニオ-1-プロパンスルホネート、3-[(3-コラミドプロピル)ジメチルアンモニオ]-2-ヒドロキシ-1-プロパンスルホネート、又は、3-[N,N-ジメチル(3-ミリストイルアミノプロピル)アンモニオ]プロパンスルホナート,アミドスルホベタイン-14である
    ことを特徴とする請求項6に記載の抗体分離方法。
    The nonionic surfactant is 3-[(4-heptyl) phenyl-3-hydroxypropyl] dimethylammoniopropane sulfonate or Triton X,
    The amphoteric surfactant is 3- (3-colamidopropyl) dimethylammonio-1-propanesulfonate, 3-[(3-colamidopropyl) dimethylammonio] -2-hydroxy-1-propanesulfonate, or The method for separating antibodies according to claim 6, which is 3- [N, N-dimethyl (3-myristoylaminopropyl) ammonio] propanesulfonate or amidosulfobetaine-14.
  8.  上記1次元目電気泳動において、
     電圧を一定に維持して電流が0より大きい所定の電流値にまで減少したときに昇圧して電流を増加させ、昇圧中に電流が減少し始めたときに電圧を一定に維持し、かつ、電流値が0より大きく、100μA以下となるように電圧制御する、請求項1~7のいずれか1項に記載の抗体分離方法。
    In the first dimension electrophoresis,
    Maintaining the voltage constant and increasing the current when the current decreases to a predetermined current value greater than 0, increasing the current, maintaining the voltage constant when the current begins to decrease during the boost; and The antibody separation method according to any one of claims 1 to 7, wherein the voltage is controlled so that the current value is greater than 0 and 100 μA or less.
  9.  請求項1~8の何れか1項に記載の抗体分離方法により分離した抗体が、基準となる医薬に含まれる抗体と同一であるか否かを評価する評価工程を包含することを特徴とする抗体評価方法。 An evaluation step of evaluating whether or not the antibody separated by the antibody separation method according to any one of claims 1 to 8 is the same as an antibody contained in a reference medicine is characterized. Antibody evaluation method.
  10.  請求項1~8の何れか1項に記載の抗体分離方法により分離した医薬に含まれる抗体が均一であるか否かを評価する評価工程を包含することを特徴とする医薬の評価方法。 A method for evaluating a medicine, comprising an evaluation step for evaluating whether or not the antibody contained in the medicine separated by the antibody separation method according to any one of claims 1 to 8 is uniform.
  11.  非界面活性剤型スルホベタイン類、ポリソルベート類、ポリオキシエチレンアルキルエーテル類、及び、糖アルコール類からなる群より選択される添加剤を含み、還元剤を含まない調製バッファを備えていることを特徴とする抗体の2次元電気泳動用キット。 It comprises an additive selected from the group consisting of non-surfactant sulfobetaines, polysorbates, polyoxyethylene alkyl ethers, and sugar alcohols, and has a preparation buffer that does not contain a reducing agent. A kit for two-dimensional electrophoresis of antibodies.
  12.  非イオン性界面活性剤又は両性界面活性剤を含み、還元剤を含まない調製バッファを備えていることを特徴とする抗体の2次元電気泳動用キット。 An antibody two-dimensional electrophoresis kit comprising a preparation buffer containing a nonionic surfactant or an amphoteric surfactant and not containing a reducing agent.
PCT/JP2014/080490 2013-11-26 2014-11-18 Antibody separation method, antibody evaluation method, medicine evaluation method, and 2-d antibody electrophoresis kit WO2015079977A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015550664A JPWO2015079977A1 (en) 2013-11-26 2014-11-18 Antibody separation method, antibody evaluation method, pharmaceutical evaluation method, and antibody two-dimensional electrophoresis kit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-244150 2013-11-26
JP2013244150 2013-11-26

Publications (1)

Publication Number Publication Date
WO2015079977A1 true WO2015079977A1 (en) 2015-06-04

Family

ID=53198922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080490 WO2015079977A1 (en) 2013-11-26 2014-11-18 Antibody separation method, antibody evaluation method, medicine evaluation method, and 2-d antibody electrophoresis kit

Country Status (2)

Country Link
JP (1) JPWO2015079977A1 (en)
WO (1) WO2015079977A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107515303A (en) * 2017-09-30 2017-12-26 广州万孚生物技术股份有限公司 Detect the test strips of HIV antibody in urine, detection cup and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222297A (en) * 1988-07-11 1990-01-25 Hidechika Okada Novel glycoprotein
JPH04505709A (en) * 1989-11-07 1992-10-08 ブリストル―マイアーズ スクイブ カンパニー oligomeric immunoglobulin
JPH11511973A (en) * 1996-02-02 1999-10-19 ルードヴィッヒ・インスティテュート・フォア・キャンサー・リサーチ Colon cell and colon cancer cell-related nucleic acid molecules, proteins and peptides
JP2005027671A (en) * 1998-05-20 2005-02-03 Kyowa Hakko Kogyo Co Ltd Genetically recombinant antibody
JP2006189358A (en) * 2005-01-07 2006-07-20 Nippon Meat Packers Inc Preserving method of protein-containing liquid, and diluting solution used therein
JP2007516281A (en) * 2003-12-23 2007-06-21 レツク・フアーマシユーテイカルズ・デー・デー Pharmaceutical composition comprising active ingredient and sulfobetaine
JP2007535296A (en) * 2003-06-27 2007-12-06 バイオジェン・アイデック・エムエイ・インコーポレイテッド Use of hydrophobic interaction chromatography or hinge region modification to generate heterogeneous antibody solutions
WO2013066866A1 (en) * 2011-10-31 2013-05-10 Genentech, Inc. Antibody formulations
WO2013094735A1 (en) * 2011-12-22 2013-06-27 シャープ株式会社 Control method, control device, control system, and control program

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222297A (en) * 1988-07-11 1990-01-25 Hidechika Okada Novel glycoprotein
JPH04505709A (en) * 1989-11-07 1992-10-08 ブリストル―マイアーズ スクイブ カンパニー oligomeric immunoglobulin
JPH11511973A (en) * 1996-02-02 1999-10-19 ルードヴィッヒ・インスティテュート・フォア・キャンサー・リサーチ Colon cell and colon cancer cell-related nucleic acid molecules, proteins and peptides
JP2005027671A (en) * 1998-05-20 2005-02-03 Kyowa Hakko Kogyo Co Ltd Genetically recombinant antibody
JP2007535296A (en) * 2003-06-27 2007-12-06 バイオジェン・アイデック・エムエイ・インコーポレイテッド Use of hydrophobic interaction chromatography or hinge region modification to generate heterogeneous antibody solutions
JP2007516281A (en) * 2003-12-23 2007-06-21 レツク・フアーマシユーテイカルズ・デー・デー Pharmaceutical composition comprising active ingredient and sulfobetaine
JP2006189358A (en) * 2005-01-07 2006-07-20 Nippon Meat Packers Inc Preserving method of protein-containing liquid, and diluting solution used therein
WO2013066866A1 (en) * 2011-10-31 2013-05-10 Genentech, Inc. Antibody formulations
WO2013094735A1 (en) * 2011-12-22 2013-06-27 シャープ株式会社 Control method, control device, control system, and control program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HONG JI ET AL.: "Electrophoretic analysis of the novel antigen for the gastrointestinal-specific monoclonal antibody, A33", ELECTROPHORESIS, vol. 18, 1997, pages 614 - 621 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107515303A (en) * 2017-09-30 2017-12-26 广州万孚生物技术股份有限公司 Detect the test strips of HIV antibody in urine, detection cup and preparation method thereof
CN107515303B (en) * 2017-09-30 2024-06-07 广州万孚生物技术股份有限公司 Test paper strip and test cup for detecting HIV antibodies in urine and preparation method thereof

Also Published As

Publication number Publication date
JPWO2015079977A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
El Rassi Electrophoretic and electrochromatographic separation of proteins in capillaries: an update covering 2007–2009
Chevalier Highlights on the capacities of" Gel-based" proteomics
Lopez Two-dimensional electrophoresis in proteome expression analysis
US9159537B2 (en) Method for analyzing sample components
EP3679364A1 (en) Method of purity determination by capillary electrophoresis
US9057694B2 (en) Compositions and methods for improving resolution of biomolecules separated on polyacrylamide gels
Drabik et al. Gel electrophoresis
Li et al. Agarose native gel electrophoresis of proteins
JP2005531756A (en) Electrophoresis
US20150376230A1 (en) Methods for reducing aggregate levels in protein preparations by treatment with thio-heterocyclic cations
Rabilloud Variations on a theme: changes to electrophoretic separations that can make a difference
Zhang et al. Separation of monoclonal antibody charge state variants by open tubular capillary electrochromatography with immobilised protein as stationary phase
Bhimwal et al. Recent advances in capillary gel electrophoresis for the analysis of proteins
Yagi et al. Application of microchip electrophoresis sodium dodecyl sulfate for the evaluation of change of degradation species of therapeutic antibodies in stability testing
EP2183583B1 (en) A buffer system for a long-lasting precast electrophoresis gel
WO2015079977A1 (en) Antibody separation method, antibody evaluation method, medicine evaluation method, and 2-d antibody electrophoresis kit
CA2752349A1 (en) Aqueous transfer buffer
JP2008292492A (en) Electrophoresis separation method
US20110308951A1 (en) Long-lasting precast electrophoresis gel
US10023609B2 (en) Methods for reducing chromatin content in protein preparations by treatment with alkyl cations
Cooper et al. Probing the conformational behavior of a monoclonal antibody with surfactant affinity capillary electrophoresis (SurfACE)
US10520471B2 (en) Modified electrode buffers for stain-free protein detection in electrophoresis
Yang et al. Determination of dissociation constants of amino acids by capillary zone electrophoresis
Andrasi et al. Analysis of rituximab, a therapeutic monoclonal antibody by capillary zone electrophoresis
Gahoual et al. Biopharmaceutical applications of capillary electromigration methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865843

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015550664

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865843

Country of ref document: EP

Kind code of ref document: A1