JP2587620Y2 - Pipe branch perforator - Google Patents

Pipe branch perforator

Info

Publication number
JP2587620Y2
JP2587620Y2 JP1993052641U JP5264193U JP2587620Y2 JP 2587620 Y2 JP2587620 Y2 JP 2587620Y2 JP 1993052641 U JP1993052641 U JP 1993052641U JP 5264193 U JP5264193 U JP 5264193U JP 2587620 Y2 JP2587620 Y2 JP 2587620Y2
Authority
JP
Japan
Prior art keywords
pipe
shaft
branch pipe
casing
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1993052641U
Other languages
Japanese (ja)
Other versions
JPH0724507U (en
Inventor
群平 横山
健次 木谷
Original Assignee
矢野技研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢野技研株式会社 filed Critical 矢野技研株式会社
Priority to JP1993052641U priority Critical patent/JP2587620Y2/en
Publication of JPH0724507U publication Critical patent/JPH0724507U/en
Application granted granted Critical
Publication of JP2587620Y2 publication Critical patent/JP2587620Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drilling And Boring (AREA)
  • Branch Pipes, Bends, And The Like (AREA)

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、例えば、地域暖房シス
テムの熱水輸送管やスチーム輸送管など、管内に熱流体
が流動する熱流体輸送管に対して、断流しない状態で分
岐管用の穿孔を施す場合に用いられる管分岐用穿孔装置
であって、詳しくは、熱流体輸送管の穿孔相当箇所の外
周面に分岐管を接続するとともに、前記分岐管内の管軸
芯方向に沿って出退移動自在な駆動回転軸の先端に前記
分岐管で囲繞された熱流体輸送管の管壁に分岐孔を形成
する穿孔用カッターを装着し、かつ、前記駆動回転軸と
ケーシングとの間に軸受部を設けてある穿孔機の前記ケ
ーシングを、前記分岐管の先端部に着脱自在に固定連結
してある管分岐用穿孔装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a hot-water transport pipe in which a hot fluid flows in a pipe, such as a hot-water transport pipe or a steam transport pipe of a district heating system. This is a pipe branching drilling device used for performing drilling. More specifically, a branch pipe is connected to an outer peripheral surface of a portion corresponding to the drilling of a thermal fluid transport pipe, and the pipe extends along a pipe axis direction in the branch pipe. wherein the tip of the freely rotated shaft withdrawal movement
A branch hole is formed in the pipe wall of the thermal fluid transport pipe surrounded by the branch pipe
A pipe branch in which a casing of a drilling machine having a drilling cutter mounted thereon and having a bearing portion provided between the drive rotary shaft and the casing is detachably fixedly connected to a distal end portion of the branch pipe. The present invention relates to a punching device for use.

【0002】[0002]

【従来の技術】従来の管分岐用穿孔装置では、熱流体輸
送管に、該熱流体輸送管の管軸芯方向に対して直交する
状態で分岐管を溶接等の適宜手段で接続し、この接続さ
れた分岐管の先端部に、穿孔機のケーシングを気密又は
液密状態で直接固定連結していた(例えば、特開平2−
311209号公報参照)。
2. Description of the Related Art In a conventional pipe branching drilling device, a heat fluid
Perpendicular to the pipe axis of the thermal fluid transport pipe
In this state, connect the branch pipes by appropriate means such as welding, and
At the end of the branched pipe, the casing of the drilling machine is airtight or
It was directly fixedly connected in a liquid-tight state (for example,
See Japanese Unexamined Patent Publication No. 311209).

【0003】[0003]

【考案が解決しようとする課題】この種の管分岐用穿孔
装置では、分岐管の先端部に固定連結された穿孔機の駆
動回転軸を駆動回転させながら、当該駆動回転軸の先端
に装着された穿孔用カッターを分岐管内の管軸芯方向に
沿って熱流体輸送管側に所定の切削速度で移動させ、分
岐管で囲繞された熱流体輸送管の管壁に分岐孔を切削形
成する。そして、流体輸送管の管壁に少し孔があくと、
熱流体輸送管内の熱流体が分岐管内に流入し、穿孔機の
穿孔用カッター及び駆動回転軸が流入した熱流体に晒さ
れることになる。それ故に、前記熱流体輸送管が、例え
ば地域暖房システムの熱水輸送管やスチーム輸送管であ
る場合には、穿孔機の穿孔用カッター及び駆動回転軸が
熱流体輸送管から分岐管内に流入した熱水(例えば、7
0℃〜80℃)やスチーム(例えば、200℃)に晒さ
れ、この状態で穿孔作業が長時間続くと、前記駆動回転
軸が熱膨張によって拡径し、その結果、駆動回転軸がケ
ーシングの軸受部に圧接され、穿孔機の駆動負荷が増大
するばかりでなく、駆動回転軸が焼付いて回転不能の事
態に陥る可能性があった。本考案は、前述の実情に鑑み
て為されたものであって、その目的は、穿孔装置の軸芯
方向でのコンパクト化を図りながら、穿孔作業に伴う駆
動回転軸の軸受部相当箇所での熱膨張を抑制して、所期
の穿孔作業を駆動負荷の増大等を招くことなく良好に行
うことができ、しかも、そのための冷却構造を工夫する
ことにより、冷却を必要としない流体輸送管に分岐孔を
形成する際、流体輸送管に接続される分岐管の長さ変動
に対する許容範囲を拡大して、穿孔作業の容易化、能率
化を促進することができるようにする点にある。
In this type of pipe branching drilling device, the drilling device is mounted on the tip of the driving rotary shaft while drivingly rotating the driving rotary shaft of the drilling machine fixedly connected to the distal end of the branch pipe. The drilling cutter is moved at a predetermined cutting speed to the heat fluid transport pipe side along the pipe axis direction in the branch pipe to form a branch hole in the pipe wall of the heat fluid transport pipe surrounded by the branch pipe. And when a little hole is made in the pipe wall of the fluid transport pipe,
The thermal fluid in the thermal fluid transport pipe flows into the branch pipe, and the drilling cutter and the driving rotary shaft of the drilling machine are exposed to the thermal fluid flowing in. Therefore, when the heat fluid transport pipe is, for example, a hot water transport pipe or a steam transport pipe of a district heating system, the drilling cutter and the driving rotary shaft of the drilling machine flow into the branch pipe from the hot fluid transport pipe. Hot water (for example, 7
(0 ° C. to 80 ° C.) or steam (e.g., 200 ° C.), and if the drilling operation continues for a long time in this state, the drive rotary shaft expands in diameter due to thermal expansion, and as a result, the drive rotary shaft becomes When pressed against the bearing, not only does the driving load of the drilling machine increase, but also there is a possibility that the driving rotary shaft will seize and become unable to rotate. The present invention has been made in view of the above-described circumstances, and its purpose is to reduce the size of the drilling device in the axial direction and to reduce the size of the drilling device at a position corresponding to the bearing portion of the drive rotary shaft associated with the drilling operation. By suppressing the thermal expansion, the intended drilling operation can be performed well without increasing the driving load , and the cooling structure for that purpose is devised.
This makes it possible to create branch holes in fluid transport pipes that do not require cooling.
When forming, change in length of branch pipe connected to fluid transport pipe
The permissible range for drilling, making drilling easier and more efficient
Lies in the fact that in so that it is possible to accelerate the reduction.

【0004】[0004]

【課題を解決するための手段】前記目的を達成するため
に、本考案では、熱流体輸送管の穿孔相当箇所の外周面
に分岐管を接続するとともに、前記分岐管内の管軸芯に
沿って出退移動自在な駆動回転軸の先端に前記分岐管で
囲繞された熱流体輸送管の管壁に分岐孔を形成する穿孔
用カッターを装着し、かつ、前記駆動回転軸とケーシン
グとの間に軸受部を設けてある穿孔機のケーシングを、
前記分岐管の先端部に気密又は液密状態で着脱自在に固
定連結してある管分岐用穿孔装置であって、前記分岐管
の先端部と穿孔機のケーシングとの間に、冷却媒体が存
在する冷却室を形成する冷却用筐体を気密又は液密状態
で脱着自在に固定連結するとともに、前記穿孔機の駆動
回転軸のうち、前記冷却室内に位置する軸部分に、放熱
フィンを備えた放熱部材を、熱伝導状態で軸芯方向に相
対移動自在に外嵌させてある事を特徴とするものであ
り、それによる作用・効果は次の通りである。
In order to achieve the above object, according to the present invention, a branch pipe is connected to an outer peripheral surface of a portion corresponding to a perforation of a thermal fluid transport pipe, and the branch pipe is provided along a pipe axis in the branch pipe. The branch pipe at the tip of the drive shaft
A casing of a drilling machine equipped with a drilling cutter for forming a branch hole in the pipe wall of the surrounded heat fluid transport pipe , and having a bearing between the drive rotary shaft and the casing,
What is claimed is: 1. A pipe branching drilling device which is detachably fixedly connected to a distal end of the branch pipe in an airtight or liquid tight state , wherein a cooling medium is present between the distal end of the branch pipe and a casing of the drilling machine. Air-tight or liquid-tight housing that forms a cooling chamber
In addition to being fixedly connected detachably , the heat-dissipating member provided with the heat-dissipating fins on the shaft portion of the driving rotary shaft of the drilling machine, which is located in the cooling chamber, is relatively movable in the axial direction in the heat conduction state. It is characterized by being fitted externally, and the operation and effect of the feature are as follows.

【0005】[0005]

【作用】熱流体輸送管の穿孔作業時に、当該熱流体輸送
管から分岐管内に流入した熱流体により、該分岐管内に
位置する穿孔機の穿孔用カッター及び駆動回転軸の先端
側部分が温度上昇しても、分岐管の先端部と穿孔機のケ
ーシングとの間に気密又は液密状態で固定連結された冷
却用筐体の冷却室内に存在する冷却媒体によって、駆動
回転軸を冷却することができる。しかも、この冷却室内
に位置する軸部分には放熱フィンを備えた放熱部材が熱
伝導状態で相対移動自在に外嵌保持されているから、放
熱フィンと冷却媒体との接触表面積の増大によって効率
良く冷却することができるとともに、例えば、前記放熱
部材を駆動回転軸に固着した場合のように、冷却室の軸
芯方向長さを、駆動回転軸の作動ストロークと放熱部材
の軸芯方向長さとの和にほぼ相当する長さに構成する必
要がない。換言すれば、前記放熱部材を駆動回転軸に固
着する場合に比して冷却用筐体の軸芯方向長さを短く構
成することができる。更に、水道管や下水管など、冷却
を必要としない流体輸送管の管壁に分岐孔を形成する場
合には、前記冷却用筐体を、分岐管の先端部と穿孔機の
ケーシングとの間から取外すことによって、該冷却用筐
体の軸芯方向長さに相当する分だけ、前記分岐管に対す
る駆動回転軸の送込み量を増大することが可能となる。
The heat fluid flowing into the branch pipe from the heat fluid transport pipe during the drilling operation of the heat fluid transport pipe causes the heat fluid to flow into the branch pipe.
Drilling cutter of the drilling machine located and the tip of the driving rotary shaft
Even if the temperature of the side part rises, the cold connection fixedly connected in airtight or liquid tight state between the tip of the branch pipe and the casing of the drilling machine
The drive rotating shaft can be cooled by the cooling medium existing in the cooling chamber of the housing for cooling . In addition, since the heat dissipating member provided with the heat dissipating fins is fitted on the shaft portion located in the cooling chamber so as to be relatively movable in a heat conducting state, the contact area between the heat dissipating fins and the cooling medium is efficiently increased. The cooling chamber can be cooled, and, for example, as in the case where the heat radiating member is fixed to the driving rotary shaft, the axial direction length of the cooling chamber is defined by the operating stroke of the driving rotary shaft and the axial direction length of the heat radiating member. It is not necessary to make the length approximately equivalent to the sum. In other words, the length of the cooling housing in the axial direction can be made shorter than when the heat radiation member is fixed to the driving rotary shaft. Furthermore, cooling such as water pipes and sewer pipes
Where a branch hole is formed in the pipe wall of a fluid transport pipe that does not require
In this case, the cooling housing is connected to the tip of the branch pipe and the drilling machine.
By removing from the space between the casing and the casing,
The length corresponding to the axial length of the body is
It is possible to increase the feed amount of the driving rotary shaft.

【0006】[0006]

【考案の効果】従って、熱流体輸送管の穿孔加工に伴う
駆動回転軸の温度上昇を、分岐管の先端部と穿孔機のケ
ーシングとの間に気密又は液密状態で固定連結された冷
却用筐体の冷却室内において効率良く冷却することがで
きるから、駆動回転軸の軸受部相当箇所での熱膨張に起
因する駆動負荷の増大や駆動回転軸の焼付きを抑制し
て、所期の穿孔作業を良好に行うことができる。しか
も、前記放熱部材を駆動回転軸に固着する場合に比して
穿孔装置全体の軸芯方向でのコンパクト化を図ることが
できるとともに、前記冷却用筐体を脱着自在に構成する
だけの簡単な改造をもって、冷却を必要としない流体輸
送管に分岐孔を形成する際、流体輸送管に接続される分
岐管の長さ変動に対する許容範囲が大きくなり、その分
だけ穿孔作業の容易化、能率化を促進し易い
Therefore, the temperature rise of the driving rotary shaft caused by the drilling of the thermal fluid transport pipe can be prevented by the air-tight or liquid-tight cooling connection between the tip of the branch pipe and the casing of the drilling machine.
The cooling can be efficiently performed in the cooling chamber of the cooling housing, so that an increase in drive load and seizure of the drive rotation shaft due to thermal expansion at the bearing portion of the drive rotation shaft can be suppressed. Can be satisfactorily performed. Moreover, it is possible to reduce the size of the entire drilling device in the axial direction as compared with the case where the heat radiation member is fixed to the driving rotary shaft.
And the cooling housing is configured to be detachable.
Fluid transfer that does not require cooling with only simple modifications
When forming a branch hole in the feed pipe, the part connected to the fluid transport pipe
The tolerance for variations in manifold length has increased,
Only, it is easy to facilitate the perforation work and promote efficiency .

【0007】[0007]

【実施例】〔第1実施例〕 図1〜図4は管分岐用穿孔装置を示し、これは、熱水や
スチーム等の熱流体が流動する熱流体輸送管1の穿孔相
当箇所の外周面に、当該熱流体輸送管1の管軸芯Xに対
して直交する姿勢で分岐管2を接続するとともに、前記
分岐管2内の管軸芯Yに沿って出退移動自在な駆動回転
軸3の先端に前記分岐管2で囲繞された熱流体輸送管1
の管壁に分岐孔を形成する穿孔用カッター4を脱着自在
に装着し、かつ、前記駆動回転軸3とケーシング5との
間に気密状態又は液密状態の軸受部6を設けてある穿孔
機Aの前記ケーシング5を、前記分岐管2の先端部に気
密状態又は液密状態で脱着自在に固定連結してある。前
記分岐管2は、前記熱流体輸送管1に溶接された第1分
岐用管体2Aと、当該第1分岐用管体2Aの連結フラン
ジ2aにボルト10・ナット11を介して気密状態又は
液密状態で固定連結される連結フランジ2bを備えた第
2分岐用管体2Bとから構成されている。前記穿孔用カ
ッター4は、センタードリル4Aと円筒状カッター4B
とから構成されている。そして、図1、図5、図6に示
すように、前記分岐管2の先端部と穿孔機Aのケーシン
グ5との間に、冷却水(冷却媒体の一例)が流動する冷
却室7を形成するとともに、前記穿孔機Aの駆動回転軸
3のうち、前記冷却室7内に位置する軸部分に、複数の
放熱フィン8aを外周面に備えた円筒状の放熱部材8
を、熱伝導状態で軸芯方向に相対移動自在に外嵌保持さ
せてある。前記冷却室7は、第2分岐用管体2Bの先端
側の連結フランジ2cにボルト10を介して気密状態又
は液密状態で脱着自在に固定連結される連結フランジ9
aと、穿孔機Aのケーシング5の連結フランジ5aにボ
ルト10・ナット11を介して気密状態又は液密状態で
脱着自在に固定連結される連結フランジ9bとを備えた
冷却用筐体である冷却用管体9を、第2分岐用管体2B
とケーシング5との間に固定連結することにより構成さ
れている。また、前記冷却用管体9には、冷却室7に連
通する状態で給水管9Aと排水管9Bとが溶接されてい
て、これら両接続管9A,9Bの各々は、冷却室7に対
して冷却水を供給する冷却水供給機構Bに接続されてい
る。この冷却水供給機構Bとしては、施工現場又はその
近くに配設されている水道管を利用して構成してもよ
い。この場合には、常温(例えば20℃〜30℃)水道
水を冷却水として使用することになる。また、水道水よ
りも低い温度の冷却水が必要である場合には、前記冷却
水供給機構Bを、前記排水管9Bから排出される水を貯
留するタンクと、当該タンク内の貯留水を所定温度(例
えば2℃〜4℃)にまで冷却する冷却器、及び、冷却さ
れた冷却水を給水管9Bに供給するポンプ等から構成し
て、前記冷却室7に対して冷却水を循環供給するように
構成してもよい。前記放熱部材8は、円周方向の一箇所
が軸芯方向に沿って分離され、かつ、その分離箇所に沿
って一対の連結用フランジ8Bが折曲形成されている銅
製又はアルミニウム合金製の放熱円筒体8Aの外面に、
銅又はアルミニウム合金から製作された棒状の多数の放
熱フィン8aを溶接して構成されている。更に、前記一
対の連結用フランジ8Bに形成された複数のボルト挿通
孔8bのうち、円周方向で相対向するボルト挿通孔8b
に亘ってそれぞれボルト8Cを挿通し、これら各ボルト
8Cの雄ネジ部に、一方の連結用フランジ8Bとの間に
圧縮コイルスプリング8Dを介在した状態でナット8E
を螺合してある。そして、前記各ナット8Eの締め付け
力を調整して、前記放熱円筒体8Aと駆動回転軸3との
軸芯方向での相対摺動を許容する状態で、当該放熱円筒
体8Aの内周面を駆動回転軸3の外周面に密着させるこ
とにより、駆動回転軸3と放熱円筒体8Aとの間で熱の
授受が行われる。また、前記放熱円筒体8Aは、圧縮コ
イルスプリング8Dの弾性収縮範囲内で拡径方向(直径
方向外方)に弾性変形可能であるから、前記ナット8E
を少し強く締め付け操作しても、穿孔時における駆動回
転軸3の駆動回転及び軸芯方向の出退移動に支障が生じ
ることはない。次に、前記穿孔機Aについて説明する。
前記ケーシング5に回転自在に軸支された駆動回転軸3
内に、当該駆動回転軸3の前端部(分岐管2の存在側)
に対して相対回転のみ自在に連結された第1送り軸12
と、当該第1送り軸12の後端部(分岐管2の存在側と
は反対側)の外周面に形成された雄ネジ12aに螺合す
る雌ネジ13aを備えた第2送り軸13とを同芯状態で
配設するとともに、前記第2送り軸13のうち、前記ケ
ーシング5から突出する後端部には手動ハンドル14を
止着してある。また、前記駆動回転軸3の後端部の外面
に対して軸芯方向にスライド移動自在にスプライン嵌合
された駆動筒軸15を、前記ケーシング5にベアリング
16を介して回転のみ自在に支承させ、この駆動筒軸1
5の前端部側近くには、図外の電動モータ又はエンジン
に連動された駆動入力軸17のウォーム18に噛合する
ウォームホイール19を固着するとともに、前記ケーシ
ング5内の後部側には、前記駆動回転軸3と平行な軸芯
周りで回転自在な第1伝動軸20と、この第1伝動軸2
0に対して直交する軸芯周りで回転自在な第2伝動軸2
1、及び、前記駆動回転軸3と平行な軸芯方向に一定範
囲内でスライド移動操作自在な操作軸22とを支承させ
てある。前記第1伝動軸20には、第2送り軸13の後
端近くに固着した第1平歯車23に第2平歯車24を介
して噛合連動する第3平歯車25を固着するとともに、
前記第2伝動軸21に固着した第1カサ歯車26に噛合
連動する第2カサ歯車27を、前記第1伝動軸20に対
して遊嵌してある。また、前記第1伝動軸20のうち、
前記第3平歯車25と第2カサ歯車27との間に位置す
る軸部分には、第2カサ歯車27に噛合する自動送り状
態と第2カサ歯車27から離脱させた手動送り状態とに
切り替え自在なドッグクラッチ28を軸芯方向にスライ
ド移動自在に外嵌させるとともに、前記操作軸22に
は、前記ドッグクラッチ28に係合するシフトフォーク
29と操作ノブ30とを取付けてある。前記第2伝動軸
21には、駆動筒軸15の後端部に固着した第1食違い
歯車31に噛合連動する第2食違い歯車32を固着する
とともに、前記第1伝動軸20の前端部には、送り量を
演算処理するための回転数を計測する回転計33が連結
されている。そして、図外の電動モータ又はエンジンが
駆動されると、ウォーム18及びウォームホイール19
を介して駆動筒軸15が駆動回転され、更に、この駆動
筒軸15にスプライン嵌合する駆動回転軸3を介して穿
孔用カッター4が駆動回転される。これと同時に、前記
駆動筒軸15から第1食違い歯車31、第2食違い歯車
32、第2伝動軸21、第1カサ歯車26、第2カサ歯
車27、自動送り状態にあるドッグクラッチ28を介し
て第1伝動軸20に動力が伝達され、更に、当該第1伝
動軸20から第3平歯車25、第2平歯車24、第1平
歯車23を介して第2送り軸13に動力が伝達される。
この第2送り軸13が駆動回転すると、これに螺合する
第1送り軸12が突出側にスライド移動し、これと軸芯
方向に一体移動する駆動回転軸3を介して穿孔用カッタ
ー4が熱流体輸送管1側に所定切削送り速度で送られ
る。また、緊急時に手動操作する場合には、前記操作ノ
ブ30を押し込み操作してドッグクラッチ28を自動送
り状態から手動送り状態に切り換える。しかるのち、手
動ハンドル14を回転操作すると、第2送り軸13の回
転に連れて第1送り軸12が軸芯方向にスライド移動
し、駆動回転軸3を介して穿孔用カッター4が分岐管2
の管軸芯に沿って出退移動する。前記軸受部6は、図2
に示すように、前記ケーシング5の前端側の開口部に、
前記回転駆動軸3の外周面に摺接する円筒状のブッシュ
6Aをボルト34にて締め付け固定するとともに、前記
ブッシュ6Aの内周面で、かつ、その軸芯方向に所定間
隔を隔てた二箇所に形成した環状溝には、リップパッキ
ン6BとOリング6Cとを装着して構成されている。
1 to 4 show a pipe branching perforation apparatus, which is an outer peripheral surface of a hot fluid transport pipe 1 through which a hot fluid such as hot water or steam flows. The branch pipe 2 is connected in a posture orthogonal to the pipe axis X of the thermal fluid transport pipe 1 and the drive rotary shaft 3 is movable along the pipe axis Y in the branch pipe 2. The thermal fluid transport pipe 1 surrounded by the branch pipe 2 at the tip of
A drilling machine in which a drilling cutter 4 for forming a branch hole is detachably mounted on the pipe wall of the above, and an air-tight or liquid-tight bearing portion 6 is provided between the drive rotary shaft 3 and the casing 5. The casing 5 of A is fixedly connected to the distal end of the branch pipe 2 in a gas-tight or liquid-tight manner so as to be detachable. The branch pipe 2 is connected to a first branch pipe 2A welded to the thermal fluid transport pipe 1 and a connection flange 2a of the first branch pipe 2A via a bolt 10 and a nut 11 in an airtight state or a liquid state. And a second branch pipe 2B having a connection flange 2b fixedly connected in a dense state. The drill 4 includes a center drill 4A and a cylindrical cutter 4B.
It is composed of As shown in FIGS. 1, 5, and 6, a cooling chamber 7 in which cooling water (an example of a cooling medium) flows is formed between the tip of the branch pipe 2 and the casing 5 of the drilling machine A. In addition, a cylindrical heat dissipating member 8 having a plurality of heat dissipating fins 8a on its outer peripheral surface is provided on a shaft portion of the driving rotary shaft 3 of the drilling machine A, which is located inside the cooling chamber 7.
Are externally fitted and held so as to be relatively movable in the axial direction in a heat conductive state. The cooling chamber 7 is connected to the connecting flange 2c on the distal end side of the second branch pipe 2B via a bolt 10 in a gas-tight or liquid-tight state so as to be detachably fixedly connected thereto.
a, and a connecting flange 9b which is detachably fixedly connected to the connecting flange 5a of the casing 5 of the drilling machine A via a bolt 10 and a nut 11 in an air-tight state or a liquid-tight state.
The cooling pipe 9, which is a cooling housing, is connected to the second branch pipe 2B.
And the casing 5 is fixedly connected. Further, a water supply pipe 9A and a drain pipe 9B are welded to the cooling pipe 9 in a state of communicating with the cooling chamber 7, and each of these connecting pipes 9A and 9B is connected to the cooling chamber 7. It is connected to a cooling water supply mechanism B that supplies cooling water. The cooling water supply mechanism B may be configured using a water pipe provided at or near a construction site. In this case, tap water at normal temperature (for example, 20 ° C. to 30 ° C.) is used as cooling water. When cooling water having a temperature lower than that of tap water is required, the cooling water supply mechanism B is provided with a tank for storing the water discharged from the drain pipe 9B and a storage water in the tank. A cooling device that cools to a temperature (for example, 2 ° C. to 4 ° C.), a pump that supplies the cooled cooling water to the water supply pipe 9B, and the like, and circulates and supplies the cooling water to the cooling chamber 7. It may be configured as follows. The heat dissipating member 8 is a heat dissipating member made of copper or aluminum alloy in which one portion in the circumferential direction is separated along the axial direction, and a pair of connecting flanges 8B are bent along the separated portion. On the outer surface of the cylindrical body 8A,
A large number of rod-shaped heat radiation fins 8a made of copper or aluminum alloy are welded. Further, of the plurality of bolt insertion holes 8b formed in the pair of connection flanges 8B, the bolt insertion holes 8b opposed in the circumferential direction are provided.
The bolt 8C is inserted through each of the bolts 8C, and the nut 8E is inserted into the male screw portion of each of the bolts 8C with the compression coil spring 8D interposed between it and one of the connecting flanges 8B.
Is screwed. Then, by adjusting the tightening force of the nuts 8E, the inner peripheral surface of the heat-dissipating cylindrical body 8A is adjusted in a state where relative sliding of the heat-dissipating cylindrical body 8A and the drive rotary shaft 3 in the axial direction is allowed. Heat is exchanged between the drive rotary shaft 3 and the heat dissipating cylindrical body 8A by bringing the drive rotary shaft 3 into close contact with the outer peripheral surface of the drive rotary shaft 3. Further, since the heat dissipating cylindrical body 8A is elastically deformable in the radially expanding direction (diameter outward) within the elastic contraction range of the compression coil spring 8D, the nut 8E is formed.
Does not hinder the drive rotation of the drive rotary shaft 3 and the movement in the axial direction when drilling. Next, the punch A will be described.
The drive rotary shaft 3 rotatably supported by the casing 5
Inside the front end of the drive rotary shaft 3 (the side where the branch pipe 2 exists)
First feed shaft 12 connected only to relative rotation with respect to
And a second feed shaft 13 having a female screw 13a screwed into a male screw 12a formed on the outer peripheral surface of the rear end portion of the first feed shaft 12 (the side opposite to the side where the branch pipe 2 exists). And a manual handle 14 is fixed to a rear end of the second feed shaft 13 protruding from the casing 5. Further, a drive cylinder shaft 15 spline-fitted to the outer surface of the rear end portion of the drive rotation shaft 3 so as to be slidable in the axial direction so as to be freely slidably supported on the casing 5 via a bearing 16. , This drive cylinder shaft 1
A worm wheel 19 meshing with a worm 18 of a drive input shaft 17 interlocked with an electric motor or an engine (not shown) is fixed near the front end of the drive gear 5, and the drive A first transmission shaft 20 rotatable about an axis parallel to the rotation shaft 3, and a first transmission shaft 2
Second transmission shaft 2 rotatable about an axis orthogonal to zero
1, and an operation shaft 22 that is slidably movable within a certain range in an axial direction parallel to the drive rotation shaft 3. A third spur gear 25 that meshes with and interlocks with a first spur gear 23 fixed near the rear end of the second feed shaft 13 via a second spur gear 24 is fixed to the first transmission shaft 20.
A second bevel gear 27 that meshes with a first bevel gear 26 fixed to the second transmission shaft 21 is loosely fitted to the first transmission shaft 20. Also, of the first transmission shaft 20,
The shaft portion located between the third spur gear 25 and the second bevel gear 27 is switched between an automatic feed state meshing with the second bevel gear 27 and a manual feed state disengaged from the second bevel gear 27. A free dog clutch 28 is externally slidably movable in the axial direction, and a shift fork 29 and an operation knob 30 that are engaged with the dog clutch 28 are attached to the operation shaft 22. A second staggered gear 32 that meshes with and interlocks with a first staggered gear 31 fixed to the rear end of the drive cylinder shaft 15 is fixed to the second transmission shaft 21, and a front end of the first transmission shaft 20. Is connected to a tachometer 33 for measuring the number of revolutions for calculating the feed amount. When an electric motor or engine (not shown) is driven, the worm 18 and the worm wheel 19
The driving cylinder shaft 15 is driven and rotated via the shaft, and the drilling cutter 4 is further driven and rotated via the driving rotating shaft 3 which is spline-fitted to the driving cylinder shaft 15. At the same time, the first staggered gear 31, the second staggered gear 32, the second transmission shaft 21, the first bevel gear 26, the second bevel gear 27, and the dog clutch 28 in the automatic feed state from the drive cylinder shaft 15. Power is transmitted to the first transmission shaft 20 via the first transmission shaft 20, and is further transmitted from the first transmission shaft 20 to the second feed shaft 13 via the third spur gear 25, the second spur gear 24, and the first spur gear 23. Is transmitted.
When the second feed shaft 13 is driven to rotate, the first feed shaft 12 screwed with the second feed shaft 13 slides to the projecting side, and the cutter 4 for drilling is driven via the drive rotary shaft 3 that moves integrally with the first feed shaft 12 in the axial direction. It is sent to the thermal fluid transport pipe 1 at a predetermined cutting feed speed. In the case of manual operation in an emergency, the operation knob 30 is pushed in to switch the dog clutch 28 from the automatic feed state to the manual feed state. Thereafter, when the manual handle 14 is rotated, the first feed shaft 12 slides in the axial direction along with the rotation of the second feed shaft 13, and the drilling cutter 4 is moved via the drive rotary shaft 3 into the branch pipe 2.
Move back and forth along the pipe axis. The bearing 6 is shown in FIG.
As shown in the figure, in the opening on the front end side of the casing 5,
A cylindrical bush 6A that is in sliding contact with the outer peripheral surface of the rotary drive shaft 3 is fastened and fixed with a bolt 34, and at two locations on the inner peripheral surface of the bush 6A and at predetermined intervals in the axial direction thereof. A lip packing 6B and an O-ring 6C are attached to the formed annular groove.

【0008】〔第2実施例〕 図7は放熱部材8の別実施例を示し、前記回転駆動軸3
の外径よりも少し大なる内径を備えた放熱円筒体8Fの
内周面で、かつ、その軸芯方向の両端部に形成された環
状溝8fの各々には、前記回転駆動軸3の外周面に対し
て軸芯方向に摺動自在に液密状態で密着するOリング8
Gを装着して、放熱円筒体8Fの内周面と回転駆動軸3
の外周面との間に環状の密封空間Sを形成するととも
に、前記放熱円筒体8Fには、複数の放熱フィン8a
と、前記密封空間Sに熱伝導性に優れた熱輸送媒体(例
えば、ディゼルオイル等)を注入するためのニップル8
Hとを設け、更に、前記放熱円筒体8Fの内周面には、
多数の吸熱フィン8Jを固着してある。そして、この実
施例の場合には、前記回転駆動軸3から密封空間S内の
熱輸送媒体及びOリング8Gを介して放熱円筒体8Fの
放熱フィン8aに熱が伝導される。 〔第3実施例〕 図8は、前記冷却室7を構成する冷却用管体9に、冷凍
機40のコイル状の蒸発器41を取付け、当該蒸発器4
1によって前記冷却室7内に密封された水等の熱輸送媒
体を冷却するように構成したものである。また、この実
施例の場合、前記冷凍機40は、冷却用管体9に取付け
た温度センサ42の検出信号に基づいて、冷却室7内の
熱輸送媒体が設定温度となるように駆動制御される。 〔その他の実施例〕 前述の実施例では、前記冷却室7に水道水又は冷却
水を供給するように構成したが、水道水又は冷却水以外
の冷媒液を冷却室7に直接流動させるように構成して実
施してもよい。 前記放熱部材8の形状としては、回転駆動軸3に対
して軸芯方向から摺動自在に外嵌可能な円筒状に形成し
もよく、また、円筒体を半割り状にした一対の半円筒体
から構成して、これら両半円筒体を駆動回転軸3に外嵌
させた状態でボルト・ナット等で連結してもよい。要す
るに、前記放熱部材8としては、駆動回転軸3に対して
熱伝導状態で軸芯方向に相対移動自在に外嵌させること
のできるものであれば、如何なる形状のものを用いても
よい。 前記放熱フィン8aの形状としても、ピン状や板状
のものに限らず、円環状や螺旋状等に構成して実施する
ことができる。
[Second Embodiment] FIG. 7 shows another embodiment of the heat dissipating member 8 and the rotary drive shaft 3
Each of the annular grooves 8f formed on the inner peripheral surface of the heat radiation cylindrical body 8F having an inner diameter slightly larger than the outer diameter of O-ring 8 slidably adheres in a liquid-tight manner to the surface in the axial direction
G, the inner peripheral surface of the heat dissipating cylindrical body 8F and the rotating drive shaft 3
An annular sealed space S is formed with the outer peripheral surface of the radiating fin 8a.
And a nipple 8 for injecting a heat transport medium (for example, diesel oil) having excellent thermal conductivity into the sealed space S.
H, and further, on the inner peripheral surface of the heat radiation cylindrical body 8F,
Many heat absorbing fins 8J are fixed. In the case of this embodiment, heat is conducted from the rotary drive shaft 3 to the radiating fins 8a of the radiating cylinder 8F via the heat transport medium in the sealed space S and the O-ring 8G. Third Embodiment FIG. 8 shows that a coil-shaped evaporator 41 of a refrigerator 40 is attached to a cooling pipe 9 constituting the cooling chamber 7,
1 is configured to cool a heat transport medium such as water sealed in the cooling chamber 7. Further, in the case of this embodiment, the refrigerator 40 is driven and controlled based on the detection signal of the temperature sensor 42 attached to the cooling pipe 9 so that the heat transport medium in the cooling chamber 7 becomes the set temperature. You. [Other Embodiments] In the above-described embodiment, tap water or cooling water is supplied to the cooling chamber 7. However, refrigerant liquid other than tap water or cooling water is caused to flow directly into the cooling chamber 7. It may be configured and implemented. The shape of the heat dissipating member 8 may be a cylindrical shape that can be slidably fitted to the rotary drive shaft 3 from the axial direction, or a pair of semi-cylindrical members each having a half-cylindrical body. The two semi-cylindrical bodies may be connected to each other with bolts and nuts or the like in a state of being fitted to the drive rotating shaft 3 outside. In short, the heat dissipating member 8 may have any shape as long as the heat dissipating member 8 can be fitted to the drive rotary shaft 3 in a heat conductive state so as to be relatively movable in the axial direction. The shape of the radiating fins 8a is not limited to a pin-like or plate-like shape, but may be a ring-like or spiral-like structure.

【0009】尚、実用新案登録請求の範囲の項に図面と
の対照を便利にするために符号を記すが、該記入により
本考案は添付図面の構成に限定されるものではない。
In the claims of the utility model registration, reference numerals are written for convenience of comparison with the drawings, but the present invention is not limited to the configuration of the attached drawings by the entry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施例を示す管分岐用穿孔装置全体の一部
切欠き側面図
FIG. 1 is a partially cutaway side view of the entire pipe branching perforation apparatus showing a first embodiment.

【図2】穿孔機の前部の拡大断面側面図FIG. 2 is an enlarged sectional side view of the front part of the drilling machine.

【図3】穿孔機の後部の拡大断面側面図FIG. 3 is an enlarged sectional side view of the rear part of the drilling machine.

【図4】穿孔機の後部の拡大断面背面図FIG. 4 is an enlarged sectional rear view of the rear part of the drilling machine.

【図5】図6の中央断面図FIG. 5 is a central sectional view of FIG. 6;

【図6】放熱部材の半断面側面図FIG. 6 is a half sectional side view of a heat radiation member.

【図7】第2実施例を示す冷却部の断面側面図FIG. 7 is a sectional side view of a cooling unit according to a second embodiment.

【図8】第3実施例を示す冷却部の断面側面図FIG. 8 is a sectional side view of a cooling unit according to a third embodiment.

【符号の説明】[Explanation of symbols]

A 穿孔機 1 熱流体輸送管 2 分岐管 3 駆動回転軸 4 穿孔用カッター 5 ケーシング 6 軸受部 7 冷却室 8 放熱部材 8a 放熱フィン 冷却用筐体 Reference Signs List A drilling machine 1 thermal fluid transport pipe 2 branch pipe 3 drive rotating shaft 4 drilling cutter 5 casing 6 bearing unit 7 cooling chamber 8 heat radiating member 8a heat radiating fin 9 cooling housing

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B23B 41/08 F16L 41/06Continuation of front page (58) Field surveyed (Int. Cl. 6 , DB name) B23B 41/08 F16L 41/06

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 熱流体輸送管(1)の穿孔相当箇所の外
周面に分岐管(2)を接続するとともに、前記分岐管
(2)内の管軸芯に沿って出退移動自在な駆動回転軸
(3)の先端に前記分岐管(2)で囲繞された熱流体輸
送管(1)の管壁に分岐孔を形成する穿孔用カッター
(4)を装着し、かつ、前記駆動回転軸(3)とケーシ
ング(5)との間に軸受部(6)を設けてある穿孔機
(A)の前記ケーシング(5)を、前記分岐管(2)の
先端部に気密又は液密状態で着脱自在に固定連結してあ
る管分岐用穿孔装置であって、 前記分岐管(2)の先端部と穿孔機(A)のケーシング
(5)との間に、冷却媒体が存在する冷却室(7)を形
成する冷却用筐体(9)を気密又は液密状態で脱着自在
に固定連結するとともに、前記穿孔機(A)の駆動回転
軸(3)のうち、前記冷却室(7)内に位置する軸部分
に、放熱フィン(8a)を備えた放熱部材(8)を、熱
伝導状態で軸芯方向に相対移動自在に外嵌させてある管
分岐用穿孔装置。
1. A drive that connects a branch pipe (2) to an outer peripheral surface of a portion corresponding to a perforation of a thermal fluid transport pipe (1) and that can move back and forth along a pipe axis in the branch pipe (2). Heat fluid transfer surrounded by the branch pipe (2) at the tip of the rotating shaft (3)
A pipe cutter (4) for forming a branch hole is mounted on the pipe wall of the feed pipe (1) , and a bearing (6) is provided between the drive rotary shaft (3) and the casing (5). A pipe branching drilling device in which the casing (5) of a drilling machine (A) is detachably fixedly connected to a tip end of the branch pipe (2) in an airtight or liquid tight state , wherein the branch pipe is provided. A cooling chamber (7) in which a cooling medium exists is formed between the tip of (2) and the casing (5) of the drilling machine (A).
The cooling casing (9) to be formed can be detached in an airtight or liquid tight state.
And a heat radiating member (8) provided with a heat radiating fin (8a) on a shaft portion of the driving rotary shaft (3) of the drilling machine (A) located in the cooling chamber (7). A pipe branching drilling device which is fitted externally so as to be relatively movable in the axial direction in a heat conducting state.
JP1993052641U 1993-09-29 1993-09-29 Pipe branch perforator Expired - Fee Related JP2587620Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1993052641U JP2587620Y2 (en) 1993-09-29 1993-09-29 Pipe branch perforator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1993052641U JP2587620Y2 (en) 1993-09-29 1993-09-29 Pipe branch perforator

Publications (2)

Publication Number Publication Date
JPH0724507U JPH0724507U (en) 1995-05-09
JP2587620Y2 true JP2587620Y2 (en) 1998-12-24

Family

ID=12920466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1993052641U Expired - Fee Related JP2587620Y2 (en) 1993-09-29 1993-09-29 Pipe branch perforator

Country Status (1)

Country Link
JP (1) JP2587620Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102289678B1 (en) * 2021-06-02 2021-08-17 (주)대양이엔지 Cooling apparatus for boring machine

Also Published As

Publication number Publication date
JPH0724507U (en) 1995-05-09

Similar Documents

Publication Publication Date Title
US5950716A (en) Oil cooler
US10247491B2 (en) Process of friction stir welding on tube end joints and a product produced thereby
US4585059A (en) Heat transfer tube assembly
US20190040774A1 (en) Heat exchanger and system for warming and cooling a fluid circulating in a housing
JPH09195764A (en) Transmission cooler, and transmission or the like having it
JP2587620Y2 (en) Pipe branch perforator
US3831672A (en) Liquid-to-liquid heat exchanger
CN210772901U (en) Anti-freezing device for condenser
US3228382A (en) Temperature responsive fan
JP3227876B2 (en) Heat exchanger
DE2166363A1 (en) ROTATING HEAT EXCHANGER FAN WITH RIBS
US1542614A (en) Rotary engine
CN116729069B (en) New energy automobile air conditioning system
JPS60142194A (en) Lubricating oil cooling device of reduction gear
CN216843037U (en) Gear speed reducer convenient to cool and radiate
CN202158696U (en) Evaporator adopting rotary arc-shaped heat exchange tubes
JPS5922366Y2 (en) Cooling device for gear type reversing speed reducer
CN103388822B (en) Roller slag cooler used for boiler
JP2592847Y2 (en) Automatic transmission oil cooler
CN216814558U (en) Central air conditioning pipeline connection structure
HRP950536A2 (en) Cooling system for a generator in a tank surrounded by running water
CN214470223U (en) Split type heat exchanger
CN218325243U (en) Double-layer heat-insulation pump capable of preventing material crystallization and good in heat-insulation performance
KR200325590Y1 (en) Heat exchage pipe
JPH085413Y2 (en) Cooling system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees