JP2587041B2 - Automotive slip control system - Google Patents

Automotive slip control system

Info

Publication number
JP2587041B2
JP2587041B2 JP61173810A JP17381086A JP2587041B2 JP 2587041 B2 JP2587041 B2 JP 2587041B2 JP 61173810 A JP61173810 A JP 61173810A JP 17381086 A JP17381086 A JP 17381086A JP 2587041 B2 JP2587041 B2 JP 2587041B2
Authority
JP
Japan
Prior art keywords
slip
control
brake
engine
lower limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61173810A
Other languages
Japanese (ja)
Other versions
JPS6331862A (en
Inventor
和俊 信本
靖裕 原田
満 長岡
俊弘 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP61173810A priority Critical patent/JP2587041B2/en
Publication of JPS6331862A publication Critical patent/JPS6331862A/en
Application granted granted Critical
Publication of JP2587041B2 publication Critical patent/JP2587041B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、駆動輪への付与トルクを制御することによ
り、駆動輪の路面に対するスリップが過大になるのを防
止するようにした自動車のスリップ制御装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention controls a torque applied to a drive wheel to prevent the slip of the drive wheel from becoming too large on a road surface. The present invention relates to a control device.

(従来技術) 駆動輪の路面に対するスリップが過大になることを防
止するのは、自動車の推進力を効果的に得る上で、また
スピンを防止する等の安全性の上で効果的である。そし
て、駆動輪のスリップが過大になるのを防止するには、
スリップの原因となる駆動輪への付与トルクを減少させ
ればよいことになる。
(Prior Art) Preventing excessive slip of a drive wheel with respect to a road surface is effective in effectively obtaining a propulsive force of an automobile and in terms of safety such as preventing spin. Then, to prevent the driving wheel slip from becoming excessive,
That is, it is only necessary to reduce the applied torque to the drive wheels that causes the slip.

この種のスリップ制御を行うものとしては、従来、特
開昭58−16948号公報、あるいは特開昭60−56662号公報
に示すものがある。この両公報に開示されている技術
は、共に、駆動輪への付与トルクを低下させるのに、ブ
レーキによる駆動輪への制動力付与と、エンジンそのも
のの発生トルク低減とを利用して行うようになってい
る。より具体的には、特開昭58−16948号公報のものに
おいては、駆動輪のスリップが小さいときは駆動輪の制
動のみを行う一方、駆動輪のスリップが大きくなったと
きは、この駆動輪の制動に加えて、エンジンの発生トル
クを低下させるようになっている。また、特開昭60−56
662号公報のものにおいては、左右の駆動輪のうち片側
のみのスリップが大きいときは、このスリップの大きい
片側の駆動輪のみに対して制動を行う一方、左右両側の
駆動輪のスリップが共に大きいときは、両側の駆動輪に
対して制動を行うと共に、エンジンの発生トルクを低下
させるようにしている。
Conventionally, such a type of slip control is disclosed in JP-A-58-16948 or JP-A-60-56662. Both of the techniques disclosed in these publications reduce the torque applied to the drive wheels by using a braking force applied to the drive wheels by a brake and reducing the generated torque of the engine itself. Has become. More specifically, in Japanese Patent Application Laid-Open No. 58-16948, when the slip of the drive wheel is small, only the braking of the drive wheel is performed, while when the slip of the drive wheel is large, In addition to braking, the torque generated by the engine is reduced. Also, JP-A-60-56
In the device disclosed in Japanese Patent No. 662, when only one of the left and right driving wheels has a large slip, braking is performed on only one of the driving wheels having a large slip, while both the left and right driving wheels have a large slip. In some cases, braking is performed on the drive wheels on both sides, and the generated torque of the engine is reduced.

(発明が解決しようとする問題点) このようにエンジンをも利用してスリップ制御を行な
うようにしたものにあっては、エンジン制御の特性から
以下の問題を有することとなる。
(Problems to be Solved by the Invention) Such a system in which the slip control is performed by using the engine also has the following problems due to the characteristics of the engine control.

すなわち、エンジン制御の特性として制御の応答遅れ
の問題があり、したがってスリップ制御のためにエンジ
ンの発生トルクが大きく絞り込まれたときには、その回
復に時間が必要となり、このため発生トルクを増大させ
るエンジン制御に応答遅れを生じてしまう。
That is, there is a problem of response delay of the control as a characteristic of the engine control. Therefore, when the generated torque of the engine is greatly narrowed down for the slip control, it takes time to recover the generated torque. Causes a response delay.

そこで、本発明の目的は、エンジンの発生トルクの増
大制御を応答よく行なうようにした自動車のスリップ制
御装置を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a vehicle slip control device capable of performing an increase control of an engine generated torque with good response.

(問題点を解決するための手段、作用) 前記目的を達成するため、本発明にあっては次のよう
な構成としてある。すなわち、第19図に示すブロック図
的に示すように、 駆動輪への付与トルクを制御することにより駆動輪の
路面に対するスリップが過大になるのを防止するように
した自動車のスリップ制御装置において、 エンジンの発生トルクを調整する発生トルク調整手段
と、 駆動輪の路面に対するスリップ状態を検出するスリッ
プ検出手段と、 前記スリップ検出手段で検出されるスリップが大きく
なったとき、前記発生トルク調整手段を制御してエンジ
ンの発生トルクの低減制御を行うエンジン用スリップ制
御手段と、 前記エンジン用スリップ制御手段による制御量が、エ
ンジンの発生トルクが所定の下限値を下回るような値に
なったとき、該制御量を強制的に該下限値に設定する下
限値設定手段と、 車速を検出する車速検出手段と、 前記車速検出手段で検出される車速大きいほど前記下
限値が大きい値となるように該下限値を変更する下限値
変更手段と、 駆動輪へ付与する制動力を調整する制動力調整手段
と、 少なくとも前記下限値設定手段が作動されたとき作動
されて、前記制動力調整手段を制御することにより前記
スリップ検出手段で検出されるスリップが過大になるの
を防止するブレーキ用スリップ制御手段と、 を備えた構成としてある。
(Means and Action for Solving the Problems) In order to achieve the above object, the present invention has the following configuration. That is, as shown in the block diagram of FIG. 19, in a vehicle slip control device that controls the applied torque to the drive wheels to prevent the slip of the drive wheels on the road surface from becoming excessive, Generated torque adjusting means for adjusting the generated torque of the engine; slip detecting means for detecting a slip state of the drive wheel with respect to the road surface; and controlling the generated torque adjusting means when the slip detected by the slip detecting means increases. An engine slip control means for reducing the generated torque of the engine, and when the control amount of the engine slip control means becomes a value such that the generated torque of the engine falls below a predetermined lower limit, the control is performed. Lower limit value setting means for forcibly setting the amount to the lower limit value; vehicle speed detecting means for detecting vehicle speed; Lower limit value changing means for changing the lower limit value such that the lower limit value becomes larger as the vehicle speed detected at the step becomes higher, braking force adjusting means for adjusting a braking force applied to driving wheels, at least the lower limit value A brake slip control unit that is activated when the setting unit is activated, and controls the braking force adjustment unit to prevent the slip detected by the slip detection unit from becoming excessive. is there.

(発明の効果) 本発明によれば、エンジン発生トルクの下限値を設定
することにより、エンジンの発生トルクが過度に低下さ
れてしまう事態を防止することができる。とりわけ、上
記下限値を車速が大きいほど大きい値となるように可変
設定するようにしてあるので、車速が大きいときの失速
に起因する操安性低下を防止しつつ、車速が小さいとき
のエンストを防止することができる。勿論、エンジン発
生トルクについて下限値設定されたときは、ブレーキに
よるスリップ制御が行われるので、駆動輪の過大なスリ
ップ防止という点において何ら問題のないものとなる。
(Effect of the Invention) According to the present invention, by setting the lower limit value of the engine generated torque, it is possible to prevent a situation in which the engine generated torque is excessively reduced. In particular, since the lower limit is variably set so as to increase as the vehicle speed increases, the engine stall when the vehicle speed is low while preventing a decrease in stability due to stall when the vehicle speed is high. Can be prevented. Of course, when the lower limit value is set for the engine generated torque, the slip control by the brake is performed, so that there is no problem in preventing excessive slip of the drive wheels.

(実施例) 以下本発明の実施例を添付した図面に基づいて説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the attached drawings.

全体構成の概要 第1図において、自動車1は、駆動輪となる左右前輪
2、3と、従動輪となる左右後輪4、5との4つの車輪
を備えている。自動車1の前部には、パワーソースとし
てのエンジン6が塔載され、このエンジン6で発生した
トルクが、クラッチ7、変速機8、デファレンシャルギ
ア9を経た後、左右のドライブシャフト10、11を介し
て、駆動輪としての左右の前輪2、3に伝達される。こ
のように、自動車1は、FF式(フロントエンジン・フロ
ントドライブ)のものとされている。
1. Overview of Overall Configuration In FIG. 1, an automobile 1 includes four wheels, that is, left and right front wheels 2 and 3 serving as driving wheels and left and right rear wheels 4 and 5 serving as driven wheels. An engine 6 as a power source is mounted on a front portion of the vehicle 1. The torque generated by the engine 6 is transmitted through a clutch 7, a transmission 8, and a differential gear 9, and then transmitted to right and left drive shafts 10 and 11. Through the transmission, the driving force is transmitted to left and right front wheels 2 and 3 as driving wheels. Thus, the vehicle 1 is of the FF type (front engine / front drive).

パワーソースとしてのエンジン6は、その吸気通路12
に配設したスロットルバルブ13によって、負荷制御すな
わち発生トルクの制御が行なわれるものとされている。
より具体的には、エンジン6はガソリンエンジンとされ
て、その吸入空気量の変化によって発生トルクが変化す
るものとされ、吸入空気量の調整が、上記スロットルバ
ルブ13によって行われる。そして、スロットルバルブ13
は、スロットルアクチュエータ14によって、電磁気的に
開閉制御されるようになっている。なお、スロットルア
クチュエータ14としては、例えばDCモータ、ステップモ
ータ、油圧等の流体圧によって駆動されて電磁気的に駆
動制御されるもの等適宜のものによって構成し得る。
The engine 6 as a power source has its intake passage 12
The load control, that is, the control of the generated torque, is performed by the throttle valve 13 disposed in the first position.
More specifically, the engine 6 is a gasoline engine, and the generated torque is changed by a change in the intake air amount. The intake air amount is adjusted by the throttle valve 13. And the throttle valve 13
Is controlled to be electromagnetically opened and closed by a throttle actuator 14. It should be noted that the throttle actuator 14 may be constituted by an appropriate device such as a DC motor, a step motor, and a device driven and electromagnetically driven by a fluid pressure such as a hydraulic pressure.

各車輪2〜5には、それぞれブレーキ21、22、23ある
いは24が設けられ、各ブレーキ21〜24は、それぞれディ
スクブレーキとされている。このディスクブレーキは、
既知のように、車輪と共に回転するディスク25と、キャ
リパ26とを備えている。このキャリパ26は、ブレーキパ
ッドを保持すると共に、ホイールシリンダを備え、ホイ
ールシリンダに供給されるブレーキ液圧の大きさに応じ
た力でブレーキパッドをディスク25に押し付けることに
より、制動力が発生される。
Each of the wheels 2 to 5 is provided with a brake 21, 22, 23 or 24, respectively, and each of the brakes 21 to 24 is a disc brake. This disc brake is
As is known, it has a disk 25 that rotates with the wheels and a caliper 26. The caliper 26 holds the brake pad and includes a wheel cylinder, and a braking force is generated by pressing the brake pad against the disc 25 with a force corresponding to the magnitude of the brake fluid pressure supplied to the wheel cylinder. .

ブレーキ液圧発生源としてのマスタシリンダ27は、2
つの吐出口27a、27bを有するタンデム型とされている。
吐出口27aより伸びるブレーキ配管28は、途中で2本の
分岐管28aと28bとに分岐され、分岐管28aが右前輪用ブ
レーキ22(のホイールシリンダ)に接続され、分岐管28
bが左後輪用ブレーキ23に接続されている。また、吐出
口27bより伸びるブレーキ配管29が、途中で2本の分岐
管29aと29bとに分岐され、分岐管29aが左前輪用ブレー
キ21に接続され、分岐管29bが右後輪用ブレーキ24に接
続されている。このように、ブレーキ配管系が、いわゆ
る2系統X型とされている。そして、駆動輪となる前輪
用のブレーキ21、22に対する分岐管28a、29aには、制動
力調整手段としての電磁式液圧制御バルブ30あるいは31
が接続されている。勿論、マスタシリンダ27に発生する
ブレーキ液圧は、運転者Dによるブレーキペダル32の踏
込み量(踏込力)に応じたものとなる。
The master cylinder 27 as a brake fluid pressure source
It is a tandem type having two discharge ports 27a and 27b.
The brake pipe 28 extending from the discharge port 27a branches into two branch pipes 28a and 28b on the way, and the branch pipe 28a is connected to (the wheel cylinder of) the right front wheel brake 22.
b is connected to the left rear wheel brake 23. A brake pipe 29 extending from the discharge port 27b branches into two branch pipes 29a and 29b on the way, the branch pipe 29a is connected to the left front wheel brake 21, and the branch pipe 29b is connected to the right rear wheel brake 24. It is connected to the. As described above, the brake piping system is a so-called two-system X type. The branch pipes 28a and 29a for the front wheel brakes 21 and 22 serving as drive wheels are provided with electromagnetic hydraulic pressure control valves 30 or 31 as braking force adjusting means.
Is connected. Of course, the brake fluid pressure generated in the master cylinder 27 depends on the amount of depression (the depression force) of the brake pedal 32 by the driver D.

ブレーキ液圧制御回路 第2図に示すように、前記液圧制御バルブ30、31はそ
れぞれ、シリンダ41と、シリンダ41内に摺動自在に嵌挿
されたピストン42とを有する。このピストン42によっ
て、シリンダ41内が、容積可変室43と制御室44とに画成
されている。この容積可変室43は、マスタシリンダ27か
らブレーキ21(22)に対するブレーキ液圧の通過系路と
なっている。したがって、ピストン42の変位位置を調整
することにより、当該容積可変室43の容積が変更され
て、ブレーキ21(22)に対するブレーキ液圧を発生し得
ると共に、この発生したブレーキ液圧を増減あるいは保
持し得ることになる。
Brake Hydraulic Pressure Control Circuit As shown in FIG. 2, each of the hydraulic pressure control valves 30 and 31 has a cylinder 41 and a piston 42 slidably fitted in the cylinder 41. The inside of the cylinder 41 is defined by the piston 42 into a variable volume chamber 43 and a control chamber 44. The variable volume chamber 43 serves as a passage system for the brake fluid pressure from the master cylinder 27 to the brake 21 (22). Therefore, by adjusting the displacement position of the piston 42, the volume of the variable volume chamber 43 can be changed to generate brake fluid pressure for the brake 21 (22), and increase or decrease or maintain the generated brake fluid pressure. Will be able to do it.

ピストン42は、リターンスプリング45により容積可変
室43の容積が大きくなる方向に常時付勢されている。ま
た、ピストン42には、チェックバルブ46が一体化されて
いる。このチェックバルブ46は、ピストン42が容積可変
室43の容積を小さくする方向へ変位したときに、当該容
積可変室43の流入口側を閉塞する。これにより、容積可
変室43で発生されるブレーキ液圧は、ブレーキ21(22)
側へのみ作用して、従動輪としての後輪4、5のブレー
キ23、24には作用しないようになっている。
The piston 42 is constantly urged by the return spring 45 in a direction in which the volume of the variable volume chamber 43 increases. A check valve 46 is integrated with the piston 42. The check valve 46 closes the inlet side of the variable volume chamber 43 when the piston 42 is displaced in a direction to reduce the volume of the variable volume chamber 43. As a result, the brake fluid pressure generated in the variable volume chamber 43 is reduced by the brake 21 (22).
It acts only on the side and does not act on the brakes 23, 24 of the rear wheels 4, 5 as driven wheels.

ピストン42の変位位置の調整は、前記制御室44に対す
る制御液圧を調整することにより行われる。この点を詳
述すると、リザーバ47より伸びる供給管48が途中で2本
に分岐されて、一方の分岐管48Rがバルブ30の制御室44
に接続され、また他方の分岐管48Lがバルブ31の制御室4
4に接続されている。供給管48には、ポンプ49、リリー
フバルブ50が接続され、またその分岐管48L(48R)には
電磁開閉弁からなる供給バルブSV3(SV2)が接続されて
いる。各制御室44は、さらに排出管51Rあるいは51Lを介
してリザーバ47に接続され、排出管51L(51R)には、電
磁開閉弁からなる排出バルブSV4(SV1)が接続されてい
る。
Adjustment of the displacement position of the piston 42 is performed by adjusting the control hydraulic pressure with respect to the control chamber 44. To explain this point in detail, a supply pipe 48 extending from a reservoir 47 is branched into two parts on the way, and one branch pipe 48R is connected to the control chamber 44 of the valve 30.
To the control chamber 4 of the valve 31.
Connected to 4. The supply pipe 48 is connected to a pump 49 and a relief valve 50, and the branch pipe 48L (48R) is connected to a supply valve SV3 (SV2) composed of an electromagnetic on-off valve. Each control room 44 is further connected to a reservoir 47 via a discharge pipe 51R or 51L, and a discharge valve SV4 (SV1) composed of an electromagnetic on-off valve is connected to the discharge pipe 51L (51R).

この液圧制御バルブ30(31)を利用したブレーキ時
(スリップ制御時)には、チェックバルブ46の作用によ
り、基本的には、ブレーキペダル32の操作によるブレー
キは働かないことになる。ただし、液圧制御バルブ30
(31)で発生されるブレーキ液圧が小さいとき(例えば
減圧中)は、ブレーキペダル32の操作によるブレーキが
働くことになる。勿論、液圧制御バルブ30(31)でスリ
ップ制御用のブレーキ液圧が発生していないときは、マ
スタシリンダ27とブレーキ21(22)は連通状態となるた
め、ブレーキペダル27の操作に起因して通常のブレーキ
作用が行われることになる。
At the time of braking using the hydraulic pressure control valve 30 (31) (during slip control), the brake by the operation of the brake pedal 32 basically does not work due to the action of the check valve 46. However, the hydraulic pressure control valve 30
When the brake fluid pressure generated in (31) is small (for example, during pressure reduction), the brake by operating the brake pedal 32 operates. Of course, when the brake fluid pressure for slip control is not generated by the fluid pressure control valve 30 (31), the master cylinder 27 and the brake 21 (22) are in communication with each other. As a result, a normal braking action is performed.

各バルブSV1〜SV4は、後述するブレーキ用コントロー
ルユニットUBによって開閉制御がなされる。ブレーキ2
1、22へのブレーキ液圧の状態と各バルブSV1〜SV4との
作動関係をまとめて、次表に示してある。
The valves SV1 to SV4 are controlled to open and close by a brake control unit UB described later. Brake 2
The following table summarizes the relationship between the state of the brake fluid pressure to the valves 1 and 22 and the operation relationship between the valves SV1 to SV4.

コントロールユニットの構成概要 第1図において、Uはコントロールユニットであり、
これは大別して、前述したブレーキ用コントロールユニ
ットUBの他、スロットル用コントロールユニットUTお
よびスリップ制御用コントロールユニットUSとから構
成されている。コントロールユニットUBは、コントロ
ールユニットUSからの指令信号に基づき、前述したよ
うに各バルブSV1〜SV4の開閉制御を行う。また、スロッ
トル用コントロールユニットUTは、コントロールユニ
ットUSからの指令信号に基づき、スロットルアクチュ
エータ14の駆動制御を行う。
1. Outline of Configuration of Control Unit In FIG. 1, U is a control unit,
This is roughly divided into a brake control unit UB, a throttle control unit UT, and a slip control control unit US. The control unit UB controls the opening and closing of each of the valves SV1 to SV4 based on the command signal from the control unit US as described above. Further, the throttle control unit UT controls the drive of the throttle actuator 14 based on a command signal from the control unit US.

スリップ制御用コントロールユニットUSは、デジタ
ル式のコンピュータ、より具体的にはマイクロコンピュ
ータによって構成されている。このコントロールユニッ
トUSには、各センサ(あるいはスイッチ)61〜68から
の信号が入力される。センサ61は、スロットルバルブ13
の開度を検出するものである。センサ62はクラッチ7が
締結されているか否かを検出するものである。センサ63
は変速機8の変速段を検出するものである。センサ64、
65は駆動輪としての左右前輪2、3の回転数を検出する
ものである。センサ66は従動輪としての左後輪4の回転
数すなわち車速を検出するものである。センサ67は、ア
クセル69の操作量すなわちアクセル開度を検出するもの
である。センサ68はハンドル70の操作量すなわち舵角を
検出するものである。上記センサ64、65、66はそれぞれ
例えばピックアップを利用して構成され、センサ61、6
3、67、68は例えばポテンショメータを利用して構成さ
れ、センサ62は例えばON、OFF的に作動するスイッチに
よって構成される。
The control unit US for slip control is constituted by a digital computer, more specifically, a microcomputer. Signals from the sensors (or switches) 61 to 68 are input to the control unit US. The sensor 61 is connected to the throttle valve 13
This is for detecting the opening degree. The sensor 62 detects whether the clutch 7 is engaged. Sensor 63
Is for detecting the gear position of the transmission 8. Sensor 64,
Reference numeral 65 indicates the number of rotations of the left and right front wheels 2 and 3 as drive wheels. The sensor 66 detects the rotational speed of the rear left wheel 4 as a driven wheel, that is, the vehicle speed. The sensor 67 detects the operation amount of the accelerator 69, that is, the accelerator opening. The sensor 68 detects the operation amount of the steering wheel 70, that is, the steering angle. The sensors 64, 65, and 66 are each configured using, for example, a pickup, and the sensors 61, 6
3, 67, 68 are configured using, for example, a potentiometer, and the sensor 62 is configured, for example, by a switch that operates ON and OFF.

なお、コントロールユニットUSは、基本的にCPU,RO
M,RAM,CLOCKを備えており、その他、出入力インタフェ
イスを備えると共に、入力信号、出力信号に応じてA/D
あるいはD/A変換器をも有するが、これ等の点について
はマイクロコンピュータを利用する場合における通常の
ものと変るところがないので、その詳細な説明は省略す
る。なお、以下の説明におけるマップ等は、制御ユニッ
トUSのROMに記憶されているものである。
Note that the control unit US is basically a CPU, RO
Equipped with M, RAM, CLOCK, and other input / output interfaces, and A / D according to input signals and output signals.
Alternatively, a D / A converter is also provided, but since these points are the same as those in the case of using a microcomputer, detailed description thereof is omitted. The maps and the like in the following description are those stored in the ROM of the control unit US.

さて次に、コントロールユニットUの制御内容につい
て順次説明するが、以下の説明で用いるすべり率Sは、
次式(1)によって定義するものとする。
Next, the control contents of the control unit U will be sequentially described. The slip ratio S used in the following description is
It is defined by the following equation (1).

WD:駆動輪(2、3)の回転数 WL:従動輪(4)の回転数(車速) スロットル制御 コントロールユニットUTは、目標スロットル開度と
なるようにスロットルバルブ13(スロットルアクチュエ
ータ14)をフィードバック制御するものとなっている。
このスロットル制御の際、スリップ制御を行わないとい
は、運転者Dによって操作されたアクセル69の操作量に
1:1に対応した目標スロットル開度となるように制御
し、このときのアクセル開度とスロットル開度との対応
関係を一例を、第12図に示してある。また、コントロー
ルユニットUTは、スリップ制御の際には、第12図に示
す特性にしたがうことなく、原則的にコントロールユニ
ットUSで演算された目標スロットル開度Tnとなるよう
にスロットル制御を行うようになっている。そして、こ
の目標スロットル開度Tnに対し、その下限値TLが設けら
れて、目標スロットル開度Tnが下限値TLより小さいとき
には、目標スロットル開度Tuに変えて上記下限値TLに基
づいてスリップ制御を行うようになっており、上記下限
値TLは、本実施例では車速に応じて可変とされている
(第18図参照)。
WD: Number of rotations of drive wheels (2, 3) WL: Number of rotations of driven wheel (4) (vehicle speed) Throttle control The control unit UT feeds back the throttle valve 13 (throttle actuator 14) so that the target throttle opening is achieved. It is controlled.
If the slip control is not performed during the throttle control, the amount of operation of the accelerator 69 operated by the driver D is limited to
FIG. 12 shows an example of a correspondence relationship between the accelerator opening and the throttle opening at this time so that the target throttle opening corresponds to 1: 1. Further, the control unit UT performs the throttle control so that the target throttle opening degree Tn calculated by the control unit US is basically obtained without following the characteristics shown in FIG. 12 during the slip control. Has become. Then, a lower limit value TL is provided for the target throttle opening Tn, and when the target throttle opening Tn is smaller than the lower limit TL, the slip control is performed based on the lower limit TL by changing to the target throttle opening Tu. The lower limit value TL is variable according to the vehicle speed in the present embodiment (see FIG. 18).

コントロールユニットUTを用いたスロットルバルブ1
3のフィードバック制御は、実施例では、エンジン6の
応答速度の変動を補償するため、PI−PD制御によって行
うようにしてある。すなわち、駆動輪のスリップ制御の
際には、現在のすべり率が目標すべり率に一致するよう
に、スロットルバルブ13の開度をPI−PD制御にする。よ
り具体的には、スリップ制御の際の目標スロットル開度
Tnは、次式(2)によって演算される。
Throttle valve 1 using control unit UT
In the embodiment, the feedback control of 3 is performed by PI-PD control in order to compensate for the fluctuation of the response speed of the engine 6. That is, during the slip control of the drive wheels, the opening degree of the throttle valve 13 is set to the PI-PD control so that the current slip rate matches the target slip rate. More specifically, target throttle opening during slip control
Tn is calculated by the following equation (2).

WL:従動輪(4)の回転数 WD:駆動輪(2、3)の回転数 KP:比例定数 KI:積分定数 FP:比例定数 FD:微分定数 SET:目標すべり率(スロットル制御用) 上記式(2)のように、スロットル開度Tnは、所定の
目標すべり率SETとなるように駆動輪の回転数をフィー
ドバック制御している。換言すれば、前記(1)式から
明らかなように、スロットル開度は、目標駆動輪回転数
WETが次の(3)式 になるように制御される。
WL: Revolution of driven wheel (4) WD: Revolution of drive wheel (2, 3) KP: Proportional constant KI: Integral constant FP: Proportional constant FD: Differential constant SET: Target slip ratio (for throttle control) As shown in (2), the throttle opening Tn is feedback-controlled on the rotation speed of the drive wheels so as to reach a predetermined target slip ratio SET. In other words, as is apparent from the above equation (1), the throttle opening is determined by the following equation (3) when the target drive wheel rotational speed WET is Is controlled so that

上述したコントロールユニットUTを用いたPI−PD制
御を、ブロック線図として第3図に示してあり、この第
3図に示す「S′」は「演算子」である。また、各サフ
ィクス「n」、「n−1」は現時およびその1回前のサ
ンプリング時における各信号の値を示す。
The PI-PD control using the above-described control unit UT is shown in FIG. 3 as a block diagram, and “S ′” shown in FIG. 3 is an “operator”. The suffixes “n” and “n−1” indicate the value of each signal at the current time and at the time of the previous sampling.

ブレーキ制御 スリップ制御時においては、コントロールユニットU
Bを用いた左右の駆動輪2、3の回転(スリップ)を、
左右独立に所定の目標すべり率SBTになるようにフィー
ドバック制御する。換言すれば、ブレーキ制御は次式
(4)で設定される駆動輪回転数WBTになるようにフィ
ードバック制御を行なう。
Brake control During slip control, the control unit U
The rotation (slip) of the left and right drive wheels 2, 3 using B
Feedback control is performed so that a predetermined target slip ratio SBT is obtained independently for the left and right sides. In other words, in the brake control, feedback control is performed so that the driving wheel rotational speed WBT is set by the following equation (4).

このブレーキ目標すべり率SBTは、本実施例では後述
するようにエンジンの目標すべり率SETよりも大きく設
定してある。換言すれば、本実施例のスリップ制御は、
所定SET(WET)になるようエンジン出力を増減すると
共に、それよりも大きなSBT(WBT)になるようブレー
キによるトルク増減作用を行なうことにより、ブレーキ
の使用頻度を少なくしている。そして、本実施例では、
上記(4)式を満足するようなフィードバック制御を、
安定性に優れたI−PD制御によって行うようにしてあ
る。より具体的には、ブレーキ操作量(バルブ30、31に
おけるピストン44の操作量)Bnは、次式(5)によって
演算される。
In this embodiment, the brake target slip ratio SBT is set to be larger than the target slip ratio SET of the engine as described later. In other words, the slip control of the present embodiment
The frequency of use of the brake is reduced by increasing / decreasing the engine output so as to attain a predetermined SET (WET) and performing a torque increasing / decreasing action by the brake so as to attain a larger SBT (WBT). And in this embodiment,
Feedback control that satisfies the above equation (4)
The control is performed by I-PD control having excellent stability. More specifically, the brake operation amount (the operation amount of the piston 44 in the valves 30, 31) Bn is calculated by the following equation (5).

KI:積分定数 KD:比例定数 FD:微分定数 上記Bnが0より大きいとき(「正」のとき)がブレー
キ液圧の増圧であり、0以下のときが減圧となる。この
ブレーキ液圧の増減は、前述したようにバルブSV1〜SV4
の開閉を行なうことによりなされる。また、ブレーキ液
圧の増減速度の調整は、上記バルブSV1〜SV4の開閉時間
の割合(デューティ比)を調整(デューティ制御)する
ことによりなされるが、上記(5)式により求められた
Bnの絶対値に比例したデューティ制御とされる。したが
って、Bnの絶対値は、ブレーキ液圧の変化速度に比例し
たものとなり、逆に増減速度を決定するデューティ比が
Bnを示すものともなる。
KI: Integral constant KD: Proportional constant FD: Differential constant When Bn is greater than 0 (when "positive"), brake fluid pressure is increased, and when Bn is 0 or less, pressure is reduced. The increase and decrease of the brake fluid pressure is controlled by the valves SV1 to SV4 as described above.
Is performed by opening and closing. The rate of increase and decrease of the brake fluid pressure is adjusted by adjusting the duty ratio of the valves SV1 to SV4 (duty ratio).
Duty control is performed in proportion to the absolute value of Bn. Therefore, the absolute value of Bn is proportional to the change speed of the brake fluid pressure, and conversely, the duty ratio that determines the increase / decrease speed is
It also indicates Bn.

上述したコントロールユニットUBによるI−PD制御
を、ブロック線図として第4図に示してあり、この第4
図に示す「S′」は「演算子」である。
FIG. 4 is a block diagram showing the I-PD control by the control unit UB described above.
"S '" shown in the figure is an "operator".

スリップ制御の全体概要 コントロールユニットUによるスリップ制御の全体的
な概要について、第5図を参照しつつ説明する。なお、
この第5図中に示す符号、数値の意味することは、次の
通りである。
Overall Overview of Slip Control An overall overview of slip control by the control unit U will be described with reference to FIG. In addition,
The meanings of the signs and numerical values shown in FIG. 5 are as follows.

S/C:スリップ制御領域 E/G:エンジンによるスリップ制御 B/R:ブレーキによるスリップ制御 F/B:フィードバック制御 O/R:オープンループ制御 R/Y:リカバリ制御 B/A:バックアップ制御 A/S:緩衝制御 S=0.2:スリップ制御開始時のすべり率(SS) S=0.17:ブレーキによる目標すべり率(SBT) S=0.09:ブレーキによるスリップ制御を中止するとき
のすべり率(SBC) S=0.06:エンジンによる目標すべり率(SET) S=0.01〜0.02:緩衝制御を行う範囲のすべり率 S=0.01以下:バックアップ制御を行なう範囲のすべり
率 なお、上記数値は、実際にアイスバーンをスパイクタ
イヤによって走行して得たデータに基づいて示してあ
る。そして、緩衝制御A/Sを行うS=0.01と0.02、また
ブレーキによるスリップ制御中止時点のすべり率S=0.
09は、実施例ではそれぞれ不変としてある。一方、ブレ
ーキによる目標すべり率SBTおよびエンジンによる目標
すべり率SET、さらにはスリップ制御の開始時のすべり
率SSは、路面状況等によって変化されるものであり、
第5図ではその一例として「0.17」、「0.06」あるいは
「0.2」を示してある。そして、スリップ制御開始時の
すべり率S=0.2は、スパイクタイヤを用いたときに得
られる最大グリップ力発生時点のすべり率を用いてある
(第13図実線参照)。このように、スリップ制御開始時
のすべり率を0.2と大きくしてあるのは、この最大グリ
ップ力が得られるときの実際のすべり率が求められるよ
うにするためであり、この最大グリップ力発生時のすべ
り率に応じて、エンジンおよびブレーキによる目標すべ
り率SET、SBTが補正される。なお、第13図実線は、ス
パイクタイヤのときのグリップ力と横力との大きさ(路
面に対する摩擦係数として示す)が、すべり率との関係
でどのように変化するかを示してある。また、第13図破
線は、ノーマルタイヤのときのグリップ力と横力との関
係を示してある。
S / C: Slip control area E / G: Slip control by engine B / R: Slip control by brake F / B: Feedback control O / R: Open loop control R / Y: Recovery control B / A: Backup control A / S: Buffering control S = 0.2: Slip rate at the start of slip control (SS) S = 0.17: Target slip rate by brake (SBT) S = 0.09: Slip rate at stop of slip control by brake (SBC) S = 0.06: Target slip ratio by engine (SET) S = 0.01 to 0.02: Slip ratio in the range where buffer control is performed S = 0.01 or less: Slip ratio in the range where backup control is performed Are shown based on the data obtained by traveling. Then, S = 0.01 and 0.02 for performing the buffer control A / S, and the slip ratio S = 0 when the slip control by the brake is stopped.
09 is unchanged in each embodiment. On the other hand, the target slip rate SBT by the brake, the target slip rate SET by the engine, and the slip rate SS at the start of the slip control are changed by road surface conditions and the like.
FIG. 5 shows “0.17”, “0.06” or “0.2” as an example. The slip ratio S = 0.2 at the start of the slip control uses the slip ratio at the time of generation of the maximum grip force obtained when the spike tire is used (see the solid line in FIG. 13). In this way, the slip ratio at the start of the slip control is increased to 0.2 in order to obtain the actual slip ratio when the maximum grip force is obtained. The target slip rates SET and SBT due to the engine and the brake are corrected in accordance with the slip rate. The solid line in FIG. 13 shows how the magnitude of a grip force and a lateral force (shown as a coefficient of friction with respect to a road surface) at the time of a spike tire changes in relation to a slip ratio. The broken line in FIG. 13 shows the relationship between the grip force and the lateral force in the case of a normal tire.

以上のことを前提として、時間の経過と共に第5図に
ついて説明する。
Based on the above, FIG. 5 will be described with the passage of time.

t0〜t1 すべり率Sがスリップ制御開始条件となるS=0.2を
越えていないので、スリップ制御は行われない。すなわ
ち、駆動輪のスリップが小さいときは、スリップ制御し
ないことにより、加速性を向上させることができる(大
きなグリップ力を利用した走行)。勿論、このときは、
アクセル開度に対するスロットル開度の特性は、第12図
に示すように一律に定まる。
Since t 0 ~t 1 slip ratio S does not exceed the S = 0.2 as the slip control starting condition, the slip control is not performed. That is, when the slip of the drive wheel is small, the acceleration can be improved by not performing the slip control (running using a large grip force). Of course, at this time,
The characteristic of the throttle opening with respect to the accelerator opening is uniformly determined as shown in FIG.

t1〜t2 スリップ制御が開始されると共に、すべり率がブレー
キによるスリップ制御中止ポイント(S=0.09)以上の
ときである。このときは、すべり率が比較的大きいの
で、エンジンによる発生トルク低下とブレーキによる制
動とにより、スリップ制御が行われる。また、エンジン
の目標すべり率(S=0.06)よりもブレーキの目標すべ
り率(S=0.17)の方が大きいため、大きなスリップ時
(S>0.17)はブレーキが加圧されるが、小さなスリッ
プ時(S<0.17)では、ブレーキは加圧されずに、エン
ジンのみの制御でスリップが収束するように制御され
る。
t 1 with ~t 2 slip control is started, the slip rate is when the above slip control stop point by the brake (S = 0.09). At this time, since the slip ratio is relatively large, slip control is performed by reducing the torque generated by the engine and braking by the brake. In addition, since the target slip ratio of the brake (S = 0.17) is larger than the target slip ratio of the engine (S = 0.06), the brake is pressurized during a large slip (S> 0.17), but when the slip is small. In (S <0.17), the brake is not pressurized, and the control is performed only by the engine so that the slip is converged.

t2〜t4(リカバリ制御) スリップが収束(S<0.2)してから所定時間(例え
ば170msec)の間、スロットルバルブ13は所定開度に保
持される(オープンループ制御)。このとき、S=0/2
(t2)時点での最大加速度GMAXが求められて、このGM
AXより路面の最大μ(駆動輪の最大グリップ力)が推定
される。そして、駆動輪の最大グリップ力を発生するよ
うに、スロットルバルブ13が上述のように所定時間保持
される。この制御は、スリップの収束が急速に起こるた
めフィードバック制御では応答が間に合わず、スリップ
収束直後に車体加速度Gが落ち込むことを防止するため
になされる。このため、スリップの収束が予測されると
(S=0.2より低下)、上述のようにあらかじめ所定ト
ルクを確保して、加速性が向上される。
between t 2 ~t 4 (Recovery Control) slip convergence (S <0.2) and a predetermined time after (e.g. 170 msec), the throttle valve 13 is held at a predetermined opening (open loop control). At this time, S = 0/2
The maximum acceleration GMAX at the time (t 2 ) is obtained, and this GM
The maximum μ of the road surface (the maximum grip force of the driving wheel) is estimated from AX. Then, the throttle valve 13 is held for a predetermined time as described above so as to generate the maximum grip force of the drive wheel. This control is performed in order to prevent the body acceleration G from dropping immediately after the convergence of the slip because the response is not enough in the feedback control because the convergence of the slip occurs rapidly. Therefore, when the convergence of the slip is predicted (lower than S = 0.2), the predetermined torque is secured in advance as described above, and the acceleration is improved.

上記最大グリップ力を発生し得るような駆動輪への付
与トルクを実現するための最適スロットル開度TV
は、エンジン6のトルクカーブおよび変速比から理論
的に求まるが、実施例では、例えば第15図に示すような
マップに基づいて決定するようにしてある。このマップ
は実験的手法によって作成してあり、GMAXが0.15以下
と0.4以上のときは、GMAXの計測誤差を勘案して所定の
一定値となるようにしてある。なお、この第12図に示す
マップは、ある変速段(例えば1速)のときを前提とし
ており、他の変速段のときは最適スロットル開度TV
を補正するようにしてある。
Optimal throttle opening TV for realizing the applied torque to the driving wheels that can generate the maximum grip force
Although 0 is theoretically obtained from the torque curve and the gear ratio of the engine 6, in the embodiment, it is determined based on, for example, a map as shown in FIG. This map is created by an experimental method, and when GMAX is 0.15 or less and 0.4 or more, it is set to a predetermined constant value in consideration of the measurement error of GMAX. It should be noted that the map shown in FIG. 12 is based on a certain speed (for example, first speed), and that the optimum throttle opening TV 0 is set at another speed.
Is corrected.

t4〜t7(バックアップ制御、緩衝制御) すべり率Sが異常に低下したときに対処するために、
バックアップ制御がなされる(オープンループ制御)。
すなわち、S<0.01となったときは、フィードバック制
御をやめて、段階的にスロットルバルブ13を開いてい
く。そして、すべり率が0.01と0.02との間にあるとき
は、次のフィードバック制御へと滑らかに移行させるた
め、緩衝制御が行われる(t4〜t5およびt6〜t7)。この
バックアップ制御は、フィードバック制御やリカバリ制
御でも対処し得ないときに行われる。勿論、このバック
アップ制御は、フィードバック制御よりも応答速度が十
分に速いものとされる。
t 4 to t 7 (backup control, buffer control) To cope with the slip rate S abnormally decreasing,
Backup control is performed (open loop control).
That is, when S <0.01, the feedback control is stopped and the throttle valve 13 is opened step by step. When the slip ratio is between 0.01 and 0.02, in order to smoothly transition to the next feedback control, buffer control is performed (t 4 ~t 5 and t 6 ~t 7). This backup control is performed when the feedback control and the recovery control cannot cope. Of course, the backup control has a sufficiently high response speed than the feedback control.

このバックアップ制御におけるスロットル開度の増加
割合は、実施例では、スロットル開度のサンプリングタ
イム14msec毎に、下記の式に示すように前回のスロット
ル開度に対して0.5%開度分だけ上乗せするものであ
る。
In this embodiment, the increase rate of the throttle opening in the backup control is, in the embodiment, added by 0.5% to the previous throttle opening as shown in the following equation every 14 msec of the throttle opening sampling time. It is.

式:T=Tn-1+0.5% ここで、Tn:目標スロットル開度 Tn-1:前回のスロットル開度 また、上記緩衝制御においては、第16図に示すよう
に、フィードバック制御演算によって得られるスロット
ル開度T2と、バックアップ制御演算によって得られるス
ロットル開度T1とを、現在のすべり率S0によって比例配
分することにより目標スロットル開度Tnを算出するよう
にしてある。
Formula: T = T n-1 + 0.5% where T n : target throttle opening T n-1 : previous throttle opening In the above buffer control, as shown in FIG. a throttle opening T 2 obtained by the calculation, the throttle opening T 1 obtained by the backup control operation, are to calculate the target throttle opening Tn by prorating by the current slip ratio S 0.

t7〜t8 t7までの制御を行うことによって、エンジンのみによ
るスリップ制御へと滑らかに移行する。
By controlling the up t 7 ~t 8 t 7, a smooth transition to only by the slip control engine.

t8以降 運転者Dによりアクセル69が全閉されたため、スリッ
プ制御が中止される。このとき、スロットルバルブ13の
開度を運転者Dの意志に委ねても、十分にトルクが減少
しているため、再スリップの危険はない。なお、スリッ
プ制御の中止は、実施例では、このアクセルの全閉の
他、スリップ制御による目標スロットル開度が、運転者
により操作されるアクセル開度に対応した第12図により
定まるスロットル開度よりも小さくなったときにも行な
うようにしてある。
After t 8 Since the accelerator 69 is completely closed by the driver D, the slip control is stopped. At this time, even if the opening degree of the throttle valve 13 is left to the will of the driver D, there is no danger of re-slip because the torque is sufficiently reduced. In the embodiment, in addition to the full closing of the accelerator, the target throttle opening by the slip control is determined from the throttle opening determined by FIG. 12 corresponding to the accelerator opening operated by the driver. Is also performed when it becomes smaller.

スリップ制御の詳細(フローチャート) 次に、第6図〜第11図のフローチャートを参照しつ
つ、スリップ制御の詳細について説明するが、実施例で
は、自動車1がぬかるみ等にはまり込んだスタック中
に、ブレーキ制御を利用して当該ぬかるみ等から脱出す
るためのスタック制御をも行なうようになっている。な
お、以下の説明でPはステップを示す。
Details of Slip Control (Flowchart) Next, the details of the slip control will be described with reference to the flowcharts of FIGS. 6 to 11. In the embodiment, in the stack in which the vehicle 1 is stuck in muddy or the like, A stack control for getting out of the mud or the like is also performed by using the brake control. In the following description, P indicates a step.

第6図(メイン) P1でシステムのイニシャライズが行われた後、P2にお
いて、現在スタック中(ぬかるみ等にはまり込んで動き
がとれなくなったような状態)であるか否かが判別され
る。この判別は、後述するスタックフラグがセットされ
ているか否かをみることによって行なわれる。P2の判別
でNOのときは、P3においてアクセル69が全閉であるか否
かが判別される。このP3でNOと判別されたときは、P4に
おいて、現在のスロットル開度がアクセル開度よりも大
きいか否かが判別される。このP4でNOと判別されたとき
は、P5において、現在スリップ制御中であるか否かが判
別されるが、この判別は、スリップ制御フラグがセット
されているか否かをみることによって行なわれる。この
P5でNOと判別されたときは、P6において、スリップ制御
を行なうようなスリップが発生したか否かが判別され
る。この判別は、後述する左右前輪2、3についてのス
リップフラグがセットされているか否かをみることによ
って行なわれる。このP6でNOと判別されたときは、P7に
移行して、スリップ制御が中止される(通常の走行)。
FIG. 6 (Main) After the system has been initialized in P1, it is determined in P2 whether or not the vehicle is currently in a stack state (a state in which it cannot be stuck in a muddy area or the like). This determination is made by checking whether or not a stack flag described later is set. If the determination in P2 is NO, it is determined in P3 whether the accelerator 69 is fully closed. If NO is determined in P3, it is determined in P4 whether the current throttle opening is larger than the accelerator opening. If NO is determined in P4, it is determined in P5 whether the slip control is currently being performed. This determination is made by checking whether the slip control flag is set. this
If NO is determined in P5, it is determined in P6 whether or not a slip has occurred to perform slip control. This determination is made by checking whether a slip flag has been set for the left and right front wheels 2 and 3 described below. When NO is determined in P6, the process proceeds to P7, and the slip control is stopped (normal traveling).

前記P6でYESと判別されたときは、P8に移行して、ス
リップ制御フラグがセットされる。引き続き、P9におい
て、エンジン(スロットル)用の目標すべり率SETの初
期値(実施例では0.06)がセットされ、またP10におい
てはブレーキ用の目標すべり率SBTの初期値(実施例で
は0.07)がセットされる。この後は、それぞれ後述する
ように、スリップ制御のために、P11でのブレーキ制御
およびP12でのエンジン制御がなされる。なお、P9、P10
での初期値の設定は、前回のスリップ制御で得られた最
大加速度GMAXに基づいて、後述するP76と同様の観点か
らなされる。
When YES is determined in P6, the flow shifts to P8, where a slip control flag is set. Subsequently, in P9, the initial value of the target slip ratio SET for the engine (throttle) (0.06 in the embodiment) is set, and in P10, the initial value of the target slip ratio SBT for the brake (0.07 in the embodiment) is set. Is done. Thereafter, as described later, brake control at P11 and engine control at P12 are performed for slip control. Note that P9, P10
Is set based on the maximum acceleration GMAX obtained in the previous slip control from the same viewpoint as in P76 described later.

前記P5においてスリップ制御フラグによりYESと判別
されたときは、前述したP11へ移行して、引き続きスリ
ップ制御がなされる。
If the slip control flag is determined to be YES in P5, the process proceeds to P11 described above, and the slip control is continuously performed.

前記P4でYESと判別されたときは、スリップ制御は不
用になったときであり、P14に移行する。このP14ではス
リップ制御フラグがリセットされる。次いで、P15でエ
ンジン制御を中止し、P16でのブレーキ制御がなされ
る。なお、このP16でのブレーキ制御では、スタック中
に対処したものとしてなされる。
When YES is determined in P4, it means that the slip control has become unnecessary, and the routine shifts to P14. In this P14, the slip control flag is reset. Next, the engine control is stopped at P15, and the brake control is performed at P16. The brake control in P16 is performed as a countermeasure during stacking.

前記P3でYESと判別されたときは、P13においてブレー
キを解除した後、P14以降の処理がなされる。
When YES is determined in P3, the brake is released in P13, and then the processing after P14 is performed.

前記P2でYESと判別されたときは、P15以降の処理がな
される。
When YES is determined in P2, the processing after P15 is performed.

第7図、第8図 第7図のフローチャートは、第6図のメインフローチ
ャートに対して、例えば14msec毎に割込みされる。
7 and 8 The flowchart of FIG. 7 is interrupted, for example, every 14 msec with respect to the main flowchart of FIG.

先ず、P21において、各センサ61〜68からの各信号が
データ処理用として入力される。次いで、P22で後述す
るスリップ検出の処理がなされた後、P23でのスロット
ル制御がなされる。
First, in P21, each signal from each of the sensors 61 to 68 is input for data processing. Next, after the process of slip detection described later is performed in P22, the throttle control is performed in P23.

P23でのスロットル制御は、第8図に示すフローチャ
ートにしたがってなされる。先ず、P24において、スリ
ップ制御フラグがセットされているか否か、すなわち現
在スリップ制御を行っているか否かが判別される。この
P24でYESのときは、スロットルバルブ13の制御が、スリ
ップ制御用として、すなわち第12図に示す特性に従わな
いで、所定の目標すべり率SETを実現するような制御が
選択される。また、P24においてNOと判別されたとき
は、P26において、スロットルバルブ13の開閉制御を、
運転者Dの意志に委ねるものとして(第12図に示す特性
に従う)選択される。このP25、P26の後は、P27におい
て、目標スロットル開度を実現させるための制御がなさ
れる(後述するP68、P70、P71に従う制御あるいは第12
図の特性に従う制御)。
The throttle control at P23 is performed according to the flowchart shown in FIG. First, in P24, it is determined whether the slip control flag is set, that is, whether the slip control is currently being performed. this
When YES in P24, control for controlling the throttle valve 13 is selected for slip control, that is, control that realizes a predetermined target slip ratio SET without following the characteristics shown in FIG. When NO is determined in P24, the control of opening and closing the throttle valve 13 is performed in P26.
It is selected according to the will of the driver D (according to the characteristics shown in FIG. 12). After P25 and P26, control for realizing the target throttle opening is performed at P27 (control according to P68, P70 and P71 described later or twelfth control).
Control according to the characteristics in the figure).

第9図(スリップ検出処理) この第9図のフローチャートは、第7図のP22に対応
したものである。このフローチャートは、スリップ制御
の対象となるようなスリップが発生したか否か、および
スタックしているか否かを検出するためのものである。
FIG. 9 (slip detection process) The flowchart in FIG. 9 corresponds to P22 in FIG. This flowchart is for detecting whether or not a slip which is a target of the slip control has occurred and whether or not the vehicle is stuck.

先ず、P31で、クラッチ7が完全に接続されているか
否かが判別される。このP31でYESと判別されたときは、
スタック中ではないときであるとして、P32においてス
タックフラグがリセットされる。次いで、P33におい
て、現在車速が低速すなわち例えば6.3km/hよりも小さ
いか否かが判別される。
First, at P31, it is determined whether or not the clutch 7 is completely connected. If YES is determined in this P31,
The stack flag is reset in P32 as if it was not in the stack. Next, in P33, it is determined whether or not the current vehicle speed is low, that is, for example, smaller than 6.3 km / h.

P33でNOと判別されたときは、P34において、ハンドル
舵角に応じて、スリップ判定用の補正値αが算出される
(第14図参照)。この後P35において、左駆動輪として
の左前輪2のすべり率が、所定の基準値0.2に上記P34で
のαを加えた値(0.2+α)よりも大きいか否かが判別
される。このP35での判別で、YESのときは、左前輪2が
スリップ状態にあるとしてそのスリップフラグがセット
される。逆に、P35でNOと判別されたときは、左前輪2
のスリップフラグがリセットされる。なお、上記補正値
αは、旋回時における内外輪の回転差(特に駆動輪と従
動輪との回転差)を考慮して設定される。
When NO is determined in P33, a correction value α for slip determination is calculated in P34 according to the steering angle (see FIG. 14). Thereafter, in P35, it is determined whether or not the slip ratio of the left front wheel 2 as the left driving wheel is larger than a value (0.2 + α) obtained by adding α in P34 to the predetermined reference value 0.2. If the determination in P35 is YES, it is determined that the left front wheel 2 is in the slip state, and the slip flag is set. Conversely, if NO is determined in P35, the left front wheel 2
Is reset. The correction value α is set in consideration of a rotation difference between the inner and outer wheels during turning (particularly, a rotation difference between a driving wheel and a driven wheel).

P36あるいはP37の後は、P38、P39、P40において、右
駆動輪としての右前輪3についてのスリップフラグのセ
ット、あるいはリセットが、P35、P36、P37と同様にし
て行われる。
After P36 or P37, setting or resetting of the slip flag for the right front wheel 3 as the right driving wheel is performed in P38, P39, and P40 in the same manner as in P35, P36, and P37.

前記P33でYESと判別されたときは、低速時であり、車
速を利用したすなわち前記(1)式に基づくすべり率の
算出に誤差が大きくなるので、スリップ状態の判定を、
駆動輪の回転数のみによって検出するようにしてある。
すなわち、P41において、左前輪2の回転数が、車速10k
m/h相当の回転数よりも大きいか否かが判別される。こ
のP41でYESと判別されたときは、P42において左前輪2
のスリップフラグがセットされる。逆に、P41でNOと判
別されたときは、P43において左前輪2のスリップフラ
グがリセットされる。
When YES is determined in P33, the vehicle is at low speed, and the vehicle speed is used, that is, the error in the calculation of the slip rate based on the equation (1) becomes large.
The detection is made based only on the rotation speed of the drive wheels.
That is, in P41, the rotation speed of the left front wheel 2 is increased to the vehicle speed of 10 k
It is determined whether or not the rotation speed is higher than m / h. If YES is determined in P41, the left front wheel 2
Is set. Conversely, if NO is determined in P41, the slip flag of the left front wheel 2 is reset in P43.

P42、P43の後は、P44、P45、P46において、右前輪3
についてのスリップフラグがセットあるいはリセット
が、上記P41〜P43の場合と同様にして行われる。
After P42 and P43, in P44, P45 and P46, the right front wheel 3
Is set or reset in the same manner as in the above P41 to P43.

前記P31において、NOと判別されたときは、スタック
中である可能性が考えられるときである(スタック中
は、運転者Dは半クラッチを使用しながらぬかぬみ等か
ら脱出しようとする)。このときは、P51に移行して、
駆動輪としての左右前輪2と3との回転数の平均値が小
さいか否かが判別される(例えば車速に換算して2km/h
以下であるか否かが判別される)。P51でNOと判別され
たときは、P52において、現在スタック制御中であるか
否かが判別される。P52でNOと判別されたときは、P53に
おいて、右前輪3の回転数が、左前輪2の回転数よりも
大きいか否かが判別される。P53でYESと判別されたとき
は、右前輪3の回転数が左前輪2の回転数の1.5倍より
も大きいか否かが判別される。このP54でYESと判別され
たときは、P56でスタックフラグがセットされる。逆にP
54でNOと判別されたときは、スタック中ではないとし
て、前述したP32以降の処理がなされる。
In P31, when it is determined to be NO, it is considered that there is a possibility that the vehicle is in a stuck state. (During the stuck period, the driver D tries to escape from a mud or the like while using a half clutch.) In this case, shift to P51,
It is determined whether or not the average value of the rotational speeds of the left and right front wheels 2 and 3 as drive wheels is small (for example, 2 km / h in terms of vehicle speed).
It is determined whether or not: If NO is determined in P51, it is determined in P52 whether or not the stack control is currently being performed. If NO is determined in P52, it is determined in P53 whether the rotation speed of the right front wheel 3 is higher than the rotation speed of the left front wheel 2. When YES is determined in P53, it is determined whether or not the rotation speed of the right front wheel 3 is larger than 1.5 times the rotation speed of the left front wheel 2. When YES is determined in this P54, the stack flag is set in P56. Conversely P
When NO is determined in 54, it is determined that the vehicle is not in the stack, and the above-described processing after P32 is performed.

また、前記P53でNOと判別されたときは、P55におい
て、左前輪2の回転数が、右前輪3の回転数の1.5倍よ
りも大きいか否かが判別される。このP55でYESのときは
P56へ、またNOのときはP32へ移行する。
If NO in P53, it is determined in P55 whether the rotation speed of the left front wheel 2 is larger than 1.5 times the rotation speed of the right front wheel 3 or not. If YES in this P55
The process proceeds to P56 and, if NO, to P32.

P56の後は、P57において、車速が6.3km/hよりも大き
いか否かが判別される。このP57でYESとされたときは、
前輪2、3の目標回転数を、車速を示す従動輪回転の1.
25倍となるようにセットされる(すべり率0.2に相
当)。また、P57でNOのときは、P59において、前輪2、
3の目標回転数が、10km/hに一律にセットされる。P51
でYESのときは、P60において、ブレーキがゆっくりと解
除される。
After P56, it is determined in P57 whether the vehicle speed is higher than 6.3 km / h. If YES in this P57,
The target rotation speed of the front wheels 2 and 3 is set to 1.
It is set to be 25 times (equivalent to a slip rate of 0.2). When NO in P57, in P59, the front wheel 2,
The target speed of 3 is set uniformly to 10 km / h. P51
If the answer is YES, the brake is released slowly in P60.

第10図(ブレーキ制御) この第10図に示すフローチャートは、第6図のP11お
よびP16に対応している。
FIG. 10 (brake control) The flowchart shown in FIG. 10 corresponds to P11 and P16 in FIG.

先ず、P81において、現在スタック中であるか否かが
判別される。P81でNOのときは、P82において、ブレーキ
の応答速度Bn(SV1〜SV4の開閉制御用デューティ比に相
当)のリミット値(最大値)を、車速に応じた関数(車
速が大きい程大きくなる)として設定する。逆に、P81
でYESのときは、P83において、上記リミット値BLMを、P
82の場合よりも小さな一定値として設定する。なお、こ
のP82、P83の処理は、Bnとして前記(5)式によって算
出されたままのものを用いた場合に、ブレーキ液圧の増
減速度が速過ぎて振動発生等の原因になることを考慮し
てなされる。これに加えて、P83では、スタック中から
の脱出のため駆動輪への制動力が急激に変化するのが特
に好ましくないため、リミット値として小さな一定値と
してある。
First, in P81, it is determined whether or not the stack is currently being stacked. When NO in P81, in P82, the limit value (maximum value) of the brake response speed Bn (corresponding to the duty ratio for opening / closing control of SV1 to SV4) is set to a function corresponding to the vehicle speed (the larger the vehicle speed, the larger the value) Set as Conversely, P81
If the answer is YES in P83, the limit value BLM is
Set as a constant value smaller than 82. Note that, in the processing of P82 and P83, it is considered that, when Bn calculated as in the above equation (5) is used, the rate of increase and decrease of the brake fluid pressure is too fast, which may cause vibration or the like. Done. In addition, in P83, since it is not particularly preferable that the braking force applied to the drive wheels suddenly changes due to escape from the stack, the limit value is set to a small constant value.

P82あるいはP83の後に、P84において、すべり率S
が、ブレーキ制御の中止ポイントとなる0.09よりも大き
いか否かが判別される。P84でYESのときは、P85におい
て、右前輪用ブレーキ22の操作速度Bnが算出される(第
4図のI−PD制御におけるBnに相当)。この後、P86に
おいて、上記Bnが「0」より大きいか否かが判別され
る。この判別は、ブレーキの増圧方向を、減圧方向を負
と考えた場合、増圧方向であるか否かの判別となる。P8
6でYESのときは、P87において、Bn>BLMであるか否かが
判別される。P87でYESのときは、Bnをリミット値BLMに
設定した後、P89において、右ブレーキ22の増圧がなさ
れる。また、P87でNOのときは、P85で設定されたBnの値
でもって、P89での増圧がなされる。
After P82 or P83, the slip rate S at P84
Is greater than 0.09, which is the stop point of the brake control. If YES in P84, the operation speed Bn of the right front wheel brake 22 is calculated in P85 (corresponding to Bn in the I-PD control in FIG. 4). Thereafter, in P86, it is determined whether or not Bn is greater than “0”. This determination is to determine whether the brake pressure increasing direction is the pressure increasing direction when the pressure decreasing direction is considered negative. P8
If YES in 6, it is determined in P87 whether Bn> BLM. If YES in P87, Bn is set to the limit value BLM, and then in P89, the pressure of the right brake 22 is increased. When NO in P87, the pressure is increased in P89 with the value of Bn set in P85.

前記P86でNOのときは、Bnが「負」あるいは「0」で
あるので、P90でBnを絶対値比した後、P91〜P93の処理
を経る。このP91〜P93は、右ブレーキ22の減圧を行うと
きであり、P87、P88、P89の処理に対応している。
When NO in P86, Bn is "negative" or "0", so that the absolute value ratio of Bn in P90 is followed by the processing of P91 to P93. Steps P91 to P93 are for depressurizing the right brake 22, and correspond to the processing of P87, P88, and P89.

P89、P93の後は、P94に移行して、左ブレーキ21につ
いても右ブレーキ22と同じように増圧あるいは減圧の処
理がなされる(P84〜P93に対応した処理)。
After P89 and P93, the process shifts to P94, and pressure increase or pressure reduction processing is performed for the left brake 21 in the same manner as for the right brake 22 (processing corresponding to P84 to P93).

一方、P84でNOのときは、ブレーキ制御を中止すると
きなので、P95においてブレーキの解除がなされる。
On the other hand, if NO in P84, it means that the brake control is to be stopped, so the brake is released in P95.

なお、P85とP86との間において、駆動輪の実際の回転
数と目標回転数(実際のすべり率と目標すべり率)との
差が大きいときは、例えば前記(5)式における積分定
数KIを小さくするような補正を行なうことにより、ブ
レーキのかけ過ぎによる加速の悪化やエンストを防止す
る上で好ましいものとなる。
When the difference between the actual rotation speed of the drive wheel and the target rotation speed (actual slip ratio and target slip ratio) is large between P85 and P86, for example, the integration constant KI in the above equation (5) is calculated. Performing the correction to reduce the value is preferable in preventing acceleration deterioration and engine stall due to excessive braking.

第11図(エンジン制御) この第11図に示すフローチャートは、第6図のP12対
応してしている。
FIG. 11 (engine control) The flowchart shown in FIG. 11 corresponds to P12 in FIG.

P61において、スリップが収束状態へ移行したか否か
(第5図のt2時点を通過したときか否か)が判別され
る。このP61でNOのときは、P62において、左前輪2のす
べり率Sが0.2よりも大きいか否かが判別される。P62で
NOのときは、P63で右前輪3のすべり率Sが0.2よりも大
きいか否かが判別される。このP63でNOのときは、P64に
おいて、左右前輪2、3のうち片側のみブレーキ制御中
か、すなわちスプリット路を走行しているときであるか
否かが判別される。P64でYESのときは、P65において、
左右前輪2、3のうちすべり率の低い方の駆動輪を基準
として,現在のすべり率が算出される(セレクトロ
ー)。逆に、P64でNOのときは、左右前輪2、3のう
ち、すべり率の大きい方の駆動輪に合せて、現在のすべ
り率が算出される(セレクトハイ)。なお、P62、P63で
NOのときも、P66に移行する。
In P61, whether the transition slip to a converged state (whether the time that has passed through t 2 time points of FIG. 5) is determined. If NO in P61, it is determined in P62 whether the slip ratio S of the left front wheel 2 is greater than 0.2. At P62
If NO, it is determined in P63 whether the slip ratio S of the right front wheel 3 is greater than 0.2. If NO in P63, it is determined in P64 whether only one of the left and right front wheels 2, 3 is under brake control, that is, whether the vehicle is traveling on a split road. If YES at P64, at P65
The current slip ratio is calculated based on the drive wheel having the lower slip ratio among the left and right front wheels 2 and 3 (select low). Conversely, when the answer is NO in P64, the current slip ratio is calculated according to the drive wheel having the larger slip ratio among the left and right front wheels 2 and 3 (select high). In P62 and P63
If NO, the program shifts to P66.

上記P66でのセレクトハイは、すべり易い方の駆動輪
のすべりを抑制すべく現在のすべり率を算出することに
より、ブレーキの使用をより一層回避し得るものとな
る。逆に、上記P65でのセレクトローは、例えば左右駆
動輪が接地する路面の摩擦係数が異なるようなスプリッ
ト路を走行する場合に、ブレーキによってすべり易い方
の駆動輪のスリップを抑制しつつ、すべり難い側の駆動
輪のグリップ力を生かした走行が行なえることとなる。
なお、このセレクトローの場合は、ブレーキの酷使を避
けるため、例えば一定時間に限定したり、あるいはブレ
ーキが過熱した場合にこのセレクトローを中止させるよ
うなバックアップ手段を講じておくとよい。
The select high in P66 allows the use of the brake to be further avoided by calculating the current slip ratio in order to suppress the slip of the drive wheel that is more likely to slip. Conversely, when the vehicle is traveling on a split road in which the friction coefficient of the road surface on which the left and right drive wheels contact the ground is different, for example, the select low in P65 suppresses the slip of the drive wheel that is more likely to slip by the brake, This makes it possible to run with the grip of the driving wheel on the difficult side.
In the case of this select row, in order to avoid overuse of the brake, it is preferable to limit the time to, for example, a predetermined time, or to provide a backup means for stopping the select row when the brake is overheated.

P65、P66の後は、P67において、現在のすべり率Sが
0.02よりも大きいか否かが判別される。このP67でYESの
ときは、P68において、フィードバック制御に基づく目
標スロットル開度Tnが算出される。勿論、このときは、
スロットルバルブ13の目標スロットル開度(Tn)は、P6
5、P66で設定されたあるいは後述するP76で変更された
目標すべり率SETを実現すべく設定される。
After P65 and P66, at P67, the current slip ratio S
It is determined whether it is greater than 0.02. If YES in P67, the target throttle opening Tn based on the feedback control is calculated in P68. Of course, at this time,
The target throttle opening (Tn) of the throttle valve 13 is P6
5. The target slip ratio SET set in P66 or changed in P76 described later is set to realize the target slip ratio SET.

P67でNOのときは、P69において、現在のすべり率Sが
0.01よりも大きいか否かが判別される。このP69でYESの
ときはP70において、前述した緩衝制御における目標ス
ロットル開度Tnの算出がなされる。また、P69でNOのと
きは、P71において、前述したバックアップ制御におけ
る目標スロットル開度Tnの算出がなされる。
If NO in P67, the current slip ratio S is
It is determined whether it is greater than 0.01. If YES in P69, the target throttle opening Tn in the above-described buffer control is calculated in P70. If NO in P69, the target throttle opening Tn in the backup control described above is calculated in P71.

このようにしてP68あるいはP70、P71で求められた目
標スロットル開度Tnは、後述するようにスロットル下限
値TLとの比較がなされた上で最終的な設定がなされる
(P72、P73、P74) 一方、P61でYESのときは、駆動輪の大きなスリップが
収束しつつある状態にあるとしてP75で移行して、スリ
ップ収束方向へ移行した後所定時間(リカバリ制御を行
う時間で、実施例では前述したように170msec)経過し
たか否かが判別される。P75でNOのときは、リカバリ制
御を行うべく、P76以降の処理がなされる。すなわち、
先ず、P76で、自動車1の最大加速度GMAXが計測される
(第5図t2時点)。次いで、P77において、このGMAXが
得られるような最適スロットル開度Tv0が設定される
(第15図参照)。さらに、P78において、変速機8の現
在の変速段に応じて、P77での最適スロットル開度Tv0
補正される。すなわち、変速段の相違によって、駆動輪
への付与トルクも異なるため、P77ではある基準の変速
段についての最適スロットル開度Tv0を設定して、P78で
この変速段の相違を補正するようにしてある。この後
は、P79において、P76でのGMAXより路面の摩擦係数を
推定して、その後のエンジン(スロットル)、ブレーキ
によるスリップ制御の目標すべり率SET、SBTを共に変
更する。
The target throttle opening degree Tn obtained in P68 or P70 or P71 in this way is compared with the throttle lower limit value TL as described later, and is finally set (P72, P73, P74). On the other hand, if YES in P61, it is determined that the large slip of the drive wheel is converging, and the flow shifts in P75, and after shifting to the slip convergence direction, a predetermined time (time for performing the recovery control. As described above, it is determined whether or not 170 msec has elapsed. If the answer is NO in P75, the processes in and after P76 are performed to perform the recovery control. That is,
First, at P76, the maximum acceleration GMAX of the car 1 is measured (FIG. 5 t 2 time). Then, in P77, the optimum throttle opening Tv 0 as this GMAX is obtained is set (see FIG. 15). Further, in P78, the optimum throttle opening Tv 0 in P77 is corrected according to the current gear position of the transmission 8. That is, since the applied torque to the drive wheels also varies depending on the shift speed, the optimum throttle opening Tv 0 for a certain reference shift speed is set in P77, and the difference in the shift speed is corrected in P78. It is. Thereafter, in P79, the friction coefficient of the road surface is estimated from GMAX in P76, and the target slip rates SET and SBT of the subsequent slip control by the engine (throttle) and the brake are changed.

前記P75でYESのときは、リカバリ制御終了ということ
で、前述したP62以降の処理がなされる。
If YES in P75, it means that the recovery control is to be ended, and the above-described processing from P62 is performed.

このP76において変更されるエンジンとブレーキとの
目標すべり率SET、SBTは、P73で計測された最大加速
度GMAXに基づいて、例えば第17図、第18図に示すよう
に変更される。この第17図は直進路の場合を示し、第18
図は曲進路の場合を示してある。この第17図、第18図か
ら明らかなように、原則として、最大加速度GMAXが大
きいほど、目標すべり率SET、SBTを大きくするように
してある。そして目標すべり率SET、SBTには、それぞ
れリミット値を設けるようにしてある。
The target slip rates SET and SBT of the engine and the brake, which are changed in P76, are changed based on the maximum acceleration GMAX measured in P73, for example, as shown in FIGS. 17 and 18. FIG. 17 shows a case of a straight road, and FIG.
The figure shows the case of a curved course. As apparent from FIGS. 17 and 18, in principle, the target slip rates SET and SBT are set to increase as the maximum acceleration GMAX increases. The target slip rates SET and SBT are each provided with a limit value.

スロットル下限値(TL)の設定(P72、P73、P74) P72において、目標スロットル開度の下限値TLが、第
18図に示すマップに基づいて、現在の車速及び変速段に
応じた値に設定される。すなわち、本実施例では、現車
速を維持するのに必要なスロットル開度を下限値TLと
して設定するようにされている。そして、次のP73にお
いて、前記P87あるいはP74、P71で得られた目標スロッ
トル開度Tnと上記スロットル下限値TLとの比較がなさ
れ、目標スロトル開度Tnが下限値TLより小さいとき
は、P74でこの下限値TLが目標スロットル開度Tnとされ
る。これにより、スリップ制御中におけるスロットルバ
ルブ13が全閉となるまで絞り込まれることなく、最低
限、現車速を維持するのに必要なスロットル開度まで抑
えられ、スリップ収束直後でのエンジン発生トルクは応
答よく立ち上がることとなる。勿論、スリップ収束に対
応して余剰となるエンジンの発生トルクは、第5図に示
すように、ブレーキ制御で吸収される。
Throttle lower limit (TL) setting (P72, P73, P74) In P72, the lower limit TL of the target throttle opening is
Based on the map shown in FIG. 18, the value is set according to the current vehicle speed and gear position. That is, in the present embodiment, the throttle opening required to maintain the current vehicle speed is set as the lower limit value TL. Then, in the next P73, the target throttle opening Tn obtained in the above P87 or P74, P71 is compared with the throttle lower limit value TL, and when the target throttle opening Tn is smaller than the lower limit value TL, in P74, This lower limit value TL is set as the target throttle opening Tn. As a result, the throttle opening during the slip control is not reduced until the throttle valve 13 is fully closed, and at a minimum, the throttle opening required to maintain the current vehicle speed is suppressed. Will stand up well. Of course, the surplus generated torque of the engine corresponding to the convergence of the slip is absorbed by the brake control as shown in FIG.

以上実施例について説明したが、本発明はこれに限ら
ず例えば次のような場合をも含むものである。
Although the embodiment has been described above, the present invention is not limited to this and includes, for example, the following case.

エンジン6の発生トルク調整としては、エンジンの発
生出力に最も影響を与える要因を変更制御するものが好
ましい。すなわち、いわゆる負荷制御によって発生トル
クを調整するものが好ましく、オットー式エンジン(例
えばガソリンエンジン)にあっては混合気量を調整する
ことにより、またディーゼルエンジンにあっては燃料噴
射量を調整することが好ましい。しかしながら、この負
荷制御に限らず、オットー式エンジンにあっては点火時
期を調整することにより、またディーゼルエンジンにあ
っては燃料噴射時期を調整することにより行ってもよ
い。さらに、過給を行うエンジンにあっては、過給圧を
調整することにより行ってもよい。勿論、パワーソース
としては、内燃機関に限らず、電気モータであってもよ
く、この場合の発生トルクの調整は、モータへの供電電
力を調整することにより行えばよい。
As the adjustment of the generated torque of the engine 6, it is preferable to change and control the factor that most affects the generated output of the engine. That is, it is preferable that the generated torque is adjusted by so-called load control. In the case of an Otto type engine (for example, a gasoline engine), the amount of air-fuel mixture is adjusted. In the case of a diesel engine, the amount of fuel injection is adjusted. Is preferred. However, the present invention is not limited to this load control, and may be performed by adjusting the ignition timing in an Otto engine, or by adjusting the fuel injection timing in a diesel engine. Further, in the case of a supercharging engine, the supercharging may be performed by adjusting the supercharging pressure. Of course, the power source is not limited to the internal combustion engine, but may be an electric motor. In this case, the generated torque may be adjusted by adjusting the power supplied to the motor.

自動車1としては、前輪2、3が駆動輪のものに限ら
ず、後輪4、5が駆動輪のものであってもよくあるいは
4輪共に駆動輪とされるものであってもよい。
The vehicle 1 is not limited to the front wheels 2 and 3 having drive wheels, and the rear wheels 4 and 5 may be drive wheels or all four wheels may be drive wheels.

駆動輪のすべり状態を検出するには、実施例のように
駆動輪の回転数のように直接的に検出してもよいが、こ
の他、車両の状態に応じてこのすべり状態を予測、すな
わち間接的に検出するようにしてもよい。このような車
両の状態としては、例えば、パワーソースの発生トルク
増加あるいは回転数増加、アクセル開度の変化、駆動軸
の回転変化の他、操舵状態(コーナリング)、車体の浮
上り状態(加速)、積載量等が考えられる。これに加え
て、大気温度の高低、雨、雪、アイスバーン等の路面μ
を自動的に検出あるいはマニュアル式にインプットし
て、上記駆動輪のすべり状態の予測をより一層適切なも
のとすることもできる。
In order to detect the slip state of the drive wheel, the slip state may be directly detected like the rotation speed of the drive wheel as in the embodiment, but in addition, the slip state is predicted according to the state of the vehicle, that is, You may make it detect indirectly. Such vehicle states include, for example, an increase in the generated torque or the number of revolutions of the power source, a change in the accelerator opening, a change in the rotation of the drive shaft, a steering state (cornering), and a floating state of the vehicle body (acceleration). , Load capacity, and the like. In addition to this, the road surface μ such as atmospheric temperature, rain, snow, ice burn, etc.
Can be automatically detected or input manually to make the prediction of the slip state of the drive wheels even more appropriate.

第2図のブレーキ液圧制御回路およびセンサ64、65、
66は、既存のABS(アンチブレーキロックシステム)の
ものを使用し得る。
The brake fluid pressure control circuit and sensors 64 and 65 of FIG.
66 can use the thing of the existing ABS (anti-brake lock system).

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す全体系統図。 第2図はブレーキ液圧の制御回路の一例を示す図。 第3図はスロットルバルブをフィードバック制御すると
きのブロック線図。 第4図はブレーキをフィードバック制御するときのブロ
ック線図。 第5図は本発明の制御例を図式的に示すグラフ。 第6図〜第11図は本発明の制御例を示すフローチャー
ト。 第12図はスリップ制御を行なわないときのアクセル開度
に対するスロットル開度の特性を示すグラフ。 第13図は駆動輪のグリップ力と横力との関係を、すべり
率と路面に対する摩擦係数との関係で示すグラフ。 第14図はスリップ制御開始時のすべり率をハンドル舵角
に応じて補正するときの補正値を示すグラフ。 第15図はリカバリ制御時における最大加速度に対応した
最適スロットル開度を示すグラフ。 第16図は緩衝制御を行なうときのすべり率とスロットル
開度との関係を示すグラフ。 第17図は目標すべり率を決定する際に用いるマップの一
例を示すグラフ。 第18図はスロットル開度の下限値TLと車速との関係を
示すグラフ。 第19図は本発明の全体構成図。 1:自動車 2、3:前輪(駆動輪) 4、5:後輪(従動輪) 6:エンジン(パワーソース) 13:スロットルバルブ 14:スロットルアクチュエータ 21〜24:ブレーキ 27:マスタシリンダ 30、31:液圧制御バルブ 32:ブレーキペダル 61:センサ(スロットル開度) 63:センサ(変速段) 64、65:センサ(駆動輪回転数) 66:センサ(従動輪回転数) 67:センサ(アクセル開度) 69:アクセル SV1〜SV4:電磁開閉バルブ U:コントロールユニット
FIG. 1 is an overall system diagram showing one embodiment of the present invention. FIG. 2 is a diagram showing an example of a control circuit for a brake fluid pressure. FIG. 3 is a block diagram when the feedback control of the throttle valve is performed. FIG. 4 is a block diagram when the brake is feedback controlled. FIG. 5 is a graph schematically showing a control example of the present invention. 6 to 11 are flowcharts showing control examples of the present invention. FIG. 12 is a graph showing characteristics of the throttle opening with respect to the accelerator opening when the slip control is not performed. FIG. 13 is a graph showing the relationship between the grip force of the drive wheels and the lateral force by the relationship between the slip ratio and the coefficient of friction on the road surface. FIG. 14 is a graph showing a correction value when the slip ratio at the start of the slip control is corrected according to the steering angle. FIG. 15 is a graph showing the optimal throttle opening corresponding to the maximum acceleration during the recovery control. FIG. 16 is a graph showing the relationship between the slip ratio and the throttle opening when performing the buffer control. FIG. 17 is a graph showing an example of a map used for determining a target slip ratio. FIG. 18 is a graph showing the relationship between the lower limit value TL of the throttle opening and the vehicle speed. FIG. 19 is an overall configuration diagram of the present invention. 1: Automobile 2, 3: Front wheel (drive wheel) 4, 5: Rear wheel (driven wheel) 6: Engine (power source) 13: Throttle valve 14: Throttle actuator 21 to 24: Brake 27: Master cylinder 30, 31: Hydraulic pressure control valve 32: Brake pedal 61: Sensor (throttle opening) 63: Sensor (gear position) 64, 65: Sensor (driving wheel speed) 66: Sensor (driven wheel speed) 67: Sensor (accelerator speed) 69: Accelerator SV1 to SV4: Electromagnetic open / close valve U: Control unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松岡 俊弘 広島県安芸郡府中町新地3番1号 マツ ダ株式会社内 (56)参考文献 特開 昭62−29461(JP,A) 特開 昭60−99757(JP,A) 特開 昭61−16136(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihiro Matsuoka 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima Prefecture Inside Mazda Corporation (56) References JP-A-62-29461 (JP, A) JP-A-60 -99757 (JP, A) JP-A-61-16136 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】駆動輪への付与トルクを制御することによ
り駆動輪の路面に対するスリップが過大になるのを防止
するようにした自動車のスリップ制御装置において、 エンジンの発生トルクを調整する発生トルク調整手段
と、 駆動輪の路面に対するスリップ状態を検出するスリップ
検出手段と、 前記スリップ検出手段で検出されるスリップが大きくな
ったとき、前記発生トルク調整手段を制御してエンジン
の発生トルクの低減制御を行うエンジン用スリップ制御
手段と、 前記エンジン用スリップ制御手段による制御量が、エン
ジンの発生トルクが所定の下限値を下回るような値にな
ったとき、該制御量を強制的に該下限値に設定する下限
値設定手段と、 車速を検出する車速検出手段と、 前記車速検出手段で検出される車速大きいほど前記下限
値が大きい値となるように該下限値を変更する下限値変
更手段と、 駆動輪へ付与する制動力を調整する制動力調整手段と、 少なくとも前記下限値設定手段が作動されたとき作動さ
れて、前記制動力調整手段を制御することにより前記ス
リップ検出手段で検出されるスリップが過大になるのを
防止するブレーキ用スリップ制御手段と、 を備えていることを特徴とする自動車のスリップ制御装
置。
In a slip control apparatus for an automobile, wherein a torque applied to a drive wheel is controlled to prevent an excessive slip of a drive wheel on a road surface, a generated torque adjustment for adjusting a generated torque of an engine. Means, a slip detecting means for detecting a slip state of the drive wheel with respect to the road surface, and a control for reducing the generated torque of the engine by controlling the generated torque adjusting means when the slip detected by the slip detecting means becomes large. When the control amount by the engine slip control means to be performed and the control amount by the engine slip control means become a value such that the torque generated by the engine falls below a predetermined lower limit value, the control amount is forcibly set to the lower limit value. Lower limit value setting means, vehicle speed detecting means for detecting vehicle speed, and the lower the vehicle speed detected by the vehicle speed detecting means, the lower the lower Lower limit value changing means for changing the lower limit value so that the value becomes a large value; braking force adjusting means for adjusting the braking force applied to the drive wheels; and actuated when at least the lower limit value setting means is actuated. And a brake slip control means for controlling the braking force adjusting means to prevent the slip detected by the slip detecting means from becoming excessive. A slip control apparatus for an automobile, comprising:
JP61173810A 1986-07-25 1986-07-25 Automotive slip control system Expired - Lifetime JP2587041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61173810A JP2587041B2 (en) 1986-07-25 1986-07-25 Automotive slip control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61173810A JP2587041B2 (en) 1986-07-25 1986-07-25 Automotive slip control system

Publications (2)

Publication Number Publication Date
JPS6331862A JPS6331862A (en) 1988-02-10
JP2587041B2 true JP2587041B2 (en) 1997-03-05

Family

ID=15967577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61173810A Expired - Lifetime JP2587041B2 (en) 1986-07-25 1986-07-25 Automotive slip control system

Country Status (1)

Country Link
JP (1) JP2587041B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01285629A (en) * 1988-05-11 1989-11-16 Akebono Brake Ind Co Ltd Traction control method for vehicle
JP2503602B2 (en) * 1988-09-05 1996-06-05 三菱自動車工業株式会社 Vehicle acceleration slip prevention device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229461A (en) * 1985-08-01 1987-02-07 Toyota Motor Corp Acceleration slip controller for vehicle

Also Published As

Publication number Publication date
JPS6331862A (en) 1988-02-10

Similar Documents

Publication Publication Date Title
JP2537807B2 (en) Automotive slip control system
JP2621858B2 (en) Automotive slip control system
JP2587041B2 (en) Automotive slip control system
JP2677392B2 (en) Vehicle slip control device
JP2603227B2 (en) Automotive slip control system
JP2526262B2 (en) Vehicle slip control device
JP2512718B2 (en) Automotive slip control system
JPS6343856A (en) Slip controller for automobile
JP2603226B2 (en) Automotive slip control system
JP2693148B2 (en) Automotive slip control system
JP2502981B2 (en) Vehicle slip control device
JP2610835B2 (en) Automotive slip control system
JP2593477B2 (en) Automotive slip control device
JP2512720B2 (en) Automotive slip control system
JP2543506B2 (en) Automotive slip control system
JP2512719B2 (en) Automotive slip control system
JP2502983B2 (en) Vehicle slip control device
JPH0790718B2 (en) Automotive slip control device
JP2684632B2 (en) Automotive slip control device
JP2540520B2 (en) Automotive slip control system
JP2502993B2 (en) Vehicle slip control device
JP2593452B2 (en) Automotive slip control system
JPS6338064A (en) Slip controller for automobile
JP2697835B2 (en) Vehicle slip control device
JP2502984B2 (en) Vehicle slip control device