JP2586892B2 - Surface acoustic wave resonator - Google Patents

Surface acoustic wave resonator

Info

Publication number
JP2586892B2
JP2586892B2 JP61230972A JP23097286A JP2586892B2 JP 2586892 B2 JP2586892 B2 JP 2586892B2 JP 61230972 A JP61230972 A JP 61230972A JP 23097286 A JP23097286 A JP 23097286A JP 2586892 B2 JP2586892 B2 JP 2586892B2
Authority
JP
Japan
Prior art keywords
saw
chip
resonator
electrode
reflectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61230972A
Other languages
Japanese (ja)
Other versions
JPS6384309A (en
Inventor
孝夫 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP61230972A priority Critical patent/JP2586892B2/en
Publication of JPS6384309A publication Critical patent/JPS6384309A/en
Application granted granted Critical
Publication of JP2586892B2 publication Critical patent/JP2586892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は弾性表面波(SAW)共振子,殊に小型化し且
つ製造歩留りを向上させたSAW共振子に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave (SAW) resonator, and more particularly to a SAW resonator that is reduced in size and has improved manufacturing yield.

(従来の技術) SAW共振子は第2図に示すように圧電基板1の表面に
1対のIDT2を置きその両側に反射器3,3を設けるのが一
般的である。このようなSAW共振子を量産する場合には
フォトマスク上に同一パターンをマトリクス状に多数並
べ,これをフォトリソグラフィ技術を用いて大面積の圧
電基板(ウエハー)4上に第3図のように多数のSAW共
振子パターンを作成し,このウエハー4から通常SAWの
伝搬方向と平行および垂直にダイシングにより分割切断
し多数のSAW共振子を得る。従って各SAW共振子のチップ
の両端は伝搬方向に垂直に,即ち反射器の端の電極と平
行に切断されることになる。
(Prior Art) As shown in FIG. 2, a SAW resonator generally has a pair of IDTs 2 placed on the surface of a piezoelectric substrate 1 and reflectors 3 provided on both sides thereof. When such SAW resonators are mass-produced, a large number of identical patterns are arranged in a matrix on a photomask, and these are arranged on a large-area piezoelectric substrate (wafer) 4 by photolithography as shown in FIG. A large number of SAW resonator patterns are formed, and the wafer 4 is divided and cut by dicing in a direction parallel and perpendicular to the normal SAW propagation direction to obtain a large number of SAW resonators. Therefore, both ends of the tip of each SAW resonator are cut perpendicular to the propagation direction, that is, parallel to the electrode at the end of the reflector.

ところで,SAW共振子IDTの対数或は反射器の本数が充
分多い場合にはSAWの振動エネルギーが反射器間で充分
閉じ込められチップの両端までもつれる量はきわめて少
なく,チップの両端のエッジによってSAWが反射される
ことによる影響は小さく問題とならない。
By the way, when the logarithm of the SAW resonator IDT or the number of reflectors is sufficiently large, the vibration energy of the SAW is sufficiently confined between the reflectors, and the amount of entanglement to both ends of the chip is extremely small. The effect due to the reflection is small and does not matter.

一方,部品の小型化に対する要求が厳しくなった今
日,SAW共振子に対しても超小型化が要求される為チップ
の長さが充分にとれず反射器の本数が制約されるように
なるとこの反射器本数の減少を補うために従来は電極膜
厚を厚くすることにより反射器1本当りの反射率を高め
て特性を補っていた。
On the other hand, as the demand for miniaturization of components has become severer, ultra-miniaturization of SAW resonators is also required, so if the chip length is not sufficient and the number of reflectors becomes limited, Conventionally, in order to compensate for the decrease in the number of reflectors, the reflectivity per reflector is increased by increasing the thickness of the electrode to compensate for the characteristics.

しかしながら上述した電極膜厚を厚くする方法にも限
界があり,IDT対数に反射器本数を加えた実効対数が200
対以下になると電極膜厚を波長の4%以上に厚くしても
SAWの振動エネルギーが反射器間で充分に閉じ込まら
ず,チップの両端にもれてしまう割合が多くなってく
る。
However, there is a limit to the method of increasing the electrode thickness described above, and the effective logarithm of adding the number of reflectors to the IDT logarithm is 200.
If the electrode thickness is less than the pair, even if the electrode thickness is increased to 4% or more of the wavelength
The rate at which the SAW vibration energy is not sufficiently confined between the reflectors and leaks to both ends of the chip increases.

即ち,チップの両端のエッジで反射される波の位相が
共振している波の位相と一致すればQは良くなり,逆に
両者の位相が逆になればが打ち消されてQは
低下するがSAWの波長は数μm〜数十μmと小さいた
め,この位相整合を製造上コントロールして波長の1/4
の寸法以下の精度でウエハーからチップを切断すること
は実質的不可能である。
That is, if the phase of the wave reflected at the edges at both ends of the chip coincides with the phase of the resonating wave, Q is improved, and conversely, if the phases of both are reversed, Q is canceled out and Q becomes
Although the SAW wavelength is reduced, the wavelength of the SAW is as small as several μm to several tens of μm.
It is virtually impossible to cut chips from a wafer with an accuracy of less than or equal to the size.

このため実効対数の少ないSAW共振子ではウエハーか
らチップに切断したときその切断される位置のバラツキ
によりSAWの反射波が共振している波の位相と合ったり
合わなかったりしてQやCI(クリスタルインピーダン
ス)がばらついてしまうという欠点があった。又,この
バラツキを除去するために,丁度反射波の位相が共振し
ている波の位相と合う位置でチップを切断しようとした
り,チップの両端にアブゾーバを塗布して反射波を吸収
してしまい特性の劣化を防いだりしようとする試みがな
された例はあるが,どちらも製造工程上無理があり,こ
のQやCIのバラツキを良くすることができなく,製造歩
留りが大きく低下するという欠点があった。
For this reason, in a SAW resonator having a small effective logarithm, when a wafer is cut into chips, the reflected wave of the SAW may or may not match the phase of the resonating wave due to variation in the cutting position, and the Q or CI (crystal) Impedance). Also, in order to eliminate this variation, the chip may be cut at a position where the phase of the reflected wave exactly matches the phase of the resonating wave, or an absorber may be applied to both ends of the chip to absorb the reflected wave. Attempts have been made to prevent the deterioration of characteristics, but in both cases, it is impossible to improve the quality and variation of Q and CI, and the production yield is greatly reduced. there were.

(発明の目的) 本発明は上述の如き従来の小型で反射器本数の少ない
SAW共振子の製造歩留りの悪い欠点を解決するためにな
されたのもであって,QやCIについて製造歩留りの良いSA
W共振子を提供することを目的とする。
(Object of the Invention) The present invention is a conventional small-sized reflector having a small number of reflectors as described above.
This was done in order to solve the disadvantage of poor production yield of SAW resonators.
It is intended to provide a W resonator.

(発明の概要) 上述の目的を達成する為,本発明に於いてはSAW共振
子のチップの端を伝搬方向と垂直な方向に対して (nは正の整数,λはSAWの波長,WはIDTの交叉幅)だけ
傾けて切断することを特徴とする。
(Summary of the Invention) In order to achieve the above-mentioned object, in the present invention, the end of the SAW resonator chip is placed in a direction perpendicular to the propagation direction. (N is a positive integer, λ is the wavelength of the SAW, and W is the cross width of the IDT).

(発明の実施例) 以下,本発明を図面に示した実施例に基づいて詳細に
説明する。
Hereinafter, the present invention will be described in detail based on an embodiment shown in the drawings.

第1図は本発明の一実施例を示すSAW共振子のパター
ンとチップの切断方法を説明する図であって,基板はST
カット水晶,共振周波数は61.25MHz,SAWの波長λは50.6
μm,反射器1本の電極幅は12.65μm,電極はアルミニウ
ムである。又,IDT対数は80対,反射器本数は両側共100
本であり,交叉幅Wは15λ,電極膜厚は2μmである。
FIG. 1 is a view for explaining a SAW resonator pattern and a method for cutting a chip according to an embodiment of the present invention.
Cut quartz, resonance frequency is 61.25MHz, SAW wavelength λ is 50.6
μm, the electrode width of one reflector is 12.65 μm, and the electrode is aluminum. The number of IDTs is 80 and the number of reflectors is 100 on both sides.
The cross width W is 15λ, and the electrode film thickness is 2 μm.

第1図においてチップの端をSAWの伝搬方向と垂直な
方向,即ち反射器の端の電極4と平行に α=tan-1(nλ/2W)(nは正の整数) だけ傾ける。たとえばn=1とすると α=tan-1{(λ/2)/15λ}=1.9゜ 傾ける。
In FIG. 1, the end of the chip is inclined by α = tan −1 (nλ / 2W) (n is a positive integer) in a direction perpendicular to the SAW propagation direction, that is, in parallel with the electrode 4 at the end of the reflector. For example, if n = 1, the inclination is α = tan -1 {(λ / 2) / 15λ} = 1.9 °.

こうすることにより交叉幅Wの範囲においては,チッ
プのエッジによって反射される波が,共振しているSAW
の波と位相が合うところと合わないところが平均的に存
在する。即ち,交叉幅Wの幅の中で位相が合ってQが良
くなるところと,位相が合わずQが悪くなるところが存
在し,平均的には良くも悪くもならずチップのエッジに
アブゾーバを塗布した場合とほヾ同じ効果が得られる。
Thus, in the range of the crossover width W, the wave reflected by the edge of the chip is
There are places where the phase of the wave matches and where it does not. That is, in the width of the crossover width W, there is a place where the phase is matched and Q is improved, and a place where the phase is not matched and Q is deteriorated. On average, neither is good nor bad, and the absorber is applied to the edge of the chip. Approximately the same effect can be obtained.

反射器の端の電極とチップのエッジとの間隙dとQの
関係は第4図に示すようにλ/2の周期でQが良くなった
り悪くなったりする。それ故チップのエッジを交叉幅W
に対してこのλ/2分だけ傾けてやればその反射波の位相
の一致の程度は平均化され,前述のように良くも悪くも
ならず結局はQやCIのバラツキが減少し,極端に悪くな
るものがなくなる分だけ製造歩留りが改善される。
As shown in FIG. 4, the relationship between the gap d between the electrode at the end of the reflector and the edge of the chip and Q becomes better or worse at a cycle of λ / 2. Therefore, the edge width of the chip must be
In contrast, if the angle is tilted by λ / 2, the degree of coincidence of the phase of the reflected wave is averaged, and as described above, it does not get better or worse, and eventually the variation of Q and CI decreases, and extremely The manufacturing yield is improved as much as there is no worsening.

第5図はチップの端を第2図に示されるように反射器
の端の電極と平行に切断した場合のCIのバラツキの分布
を示した図であり,第6図は本発明によりチップの端を
反射器の端の電極に対して1.9゜傾けた場合のCIのバラ
ツキを示した図であり,個数は共に200個である。これ
らの結果により明らかなように,チップを傾けた場合と
傾けない場合とでは,その平均値はほヾ等しいがバラツ
キは傾けた場合の高が大きく改善されている。即ち,チ
ップのエッジにおける反射波の影響が交叉幅の範囲内で
平均化され,あたかもエッジにアブゾーバを塗布した場
合と同じようになり,反射波によりCIが劣下する影響が
現われずに製造歩留りが向上する。又,この分布はQに
ついても同じ結果が得られた。
FIG. 5 is a diagram showing the distribution of CI variation when the end of the chip is cut in parallel with the electrode at the end of the reflector as shown in FIG. 2, and FIG. 6 is a diagram showing the distribution of the chip according to the present invention. FIG. 7 is a diagram showing the variation of CI when the end is inclined by 1.9 ° with respect to the electrode at the end of the reflector, and the number of both is 200. As is apparent from these results, the average value is almost equal between the case where the chip is tilted and the case where the chip is not tilted, but the variation when the chip is tilted is greatly improved. In other words, the effect of the reflected wave at the edge of the chip is averaged within the range of the crossover width, as if the absorber were applied to the edge, and the reflected wave did not show the effect of deteriorating the CI, resulting in a production yield. Is improved. The same result was obtained for Q in this distribution.

又,この傾斜角αが決まればチップ上の切断位置はこ
れと平行であれば左右に多少ずれてもその効果は同じで
ある。
If the inclination angle α is determined, the effect is the same even if the cutting position on the chip is slightly shifted left and right if it is parallel to this.

以上1ポートSAW共振子1個の場合についてのみ説明
したが,本発明は1ポート共振子が2個入った2チャン
ネル構成のSAW共振子についても適用可能である。例え
ば61.25MHzと67.25MHzの2つの共振周波数のパターンを
1つのチップに構成した場合は,チップの端部傾斜切断
角αを低い周波数側(61.25MHz)で反射器本数の少ない
方の角度に合わせても良いし,両端の各々の最適値の平
均値に合わせても良い。但し波長で基準化した交叉幅が
同じであれば角度αは両者共同じ値となる。
Although only the case of one one-port SAW resonator has been described above, the present invention is also applicable to a two-channel SAW resonator having two one-port resonators. For example, when a pattern of two resonance frequencies of 61.25 MHz and 67.25 MHz is formed on one chip, the end inclined cutting angle α of the chip is adjusted to an angle with a smaller number of reflectors on the lower frequency side (61.25 MHz). Alternatively, it may be adjusted to the average value of the optimum values at both ends. However, if the cross width normalized by the wavelength is the same, the angle α has the same value in both cases.

更に,本発明は2ポートSAW共振子,すべり波共振
子,リーキーSAW共振子,Love波型共振子,多対IDT型SAW
共振子などあらゆるIDT励振型共振子に対して適用可能
である。
Further, the present invention relates to a two-port SAW resonator, a slip wave resonator, a leaky SAW resonator, a Love wave type resonator, a multi-pair IDT type SAW resonator.
It can be applied to any IDT-excited resonator such as a resonator.

(発明の効果) 本発明は以上説明したように構成するものであるか
ら,小型化によりチップの長さが制限され反射器本数が
極端に減少したSAW共振子の製造歩留りを改善する上で
著しい効果がある。
(Effect of the Invention) Since the present invention is configured as described above, it is remarkable in improving the production yield of a SAW resonator in which the length of a chip is limited by miniaturization and the number of reflectors is extremely reduced. effective.

【図面の簡単な説明】 第1図は本発明によるSAW共振子のチップの端を傾けて
切断することを説明する図,第2図は通常のSAW共振子
のチップの切断した形状を示す図,第3図は圧電基板の
ウエハー上にSAW共振子のパターンを多数形成した図,
第4図は反射器の端の電極とチップの端との間隙とQと
の関係を示す図,第5図は従来の切断方法によるCIのバ
ラツキを示す図,第6図は本発明による切断方法による
CIのバラツキを示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view for explaining cutting of a SAW resonator chip according to the present invention by tilting its end, and FIG. 2 is a view showing a cut shape of a normal SAW resonator chip. FIG. 3 is a view showing a number of SAW resonator patterns formed on a piezoelectric substrate wafer,
FIG. 4 is a diagram showing the relationship between the gap between the electrode at the end of the reflector and the end of the chip and Q, FIG. 5 is a diagram showing the variation in CI by the conventional cutting method, and FIG. By way
It is a figure which shows the dispersion | variation of CI.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧電基板上にインタディジタルトランスジ
ューサ(IDT)電極を置きその両側に反射器を設けた弾
性表面波(SAW)共振子において,IDTの交叉幅をW,SAWの
波長をλとするとき前記圧電基板の端をSAW伝搬方向と
垂直な方向に対して, α=tan-1(nλ/2W)(但しnは正の整数) だけ傾けて切断したことを特徴とする弾性表面波共振
子。
In a surface acoustic wave (SAW) resonator in which an interdigital transducer (IDT) electrode is placed on a piezoelectric substrate and reflectors are provided on both sides thereof, the cross width of the IDT is W and the wavelength of the SAW is λ. Wherein the edge of the piezoelectric substrate is cut at an angle of α = tan −1 (nλ / 2W) (where n is a positive integer) with respect to a direction perpendicular to the SAW propagation direction. Child.
JP61230972A 1986-09-29 1986-09-29 Surface acoustic wave resonator Expired - Lifetime JP2586892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61230972A JP2586892B2 (en) 1986-09-29 1986-09-29 Surface acoustic wave resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61230972A JP2586892B2 (en) 1986-09-29 1986-09-29 Surface acoustic wave resonator

Publications (2)

Publication Number Publication Date
JPS6384309A JPS6384309A (en) 1988-04-14
JP2586892B2 true JP2586892B2 (en) 1997-03-05

Family

ID=16916207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61230972A Expired - Lifetime JP2586892B2 (en) 1986-09-29 1986-09-29 Surface acoustic wave resonator

Country Status (1)

Country Link
JP (1) JP2586892B2 (en)

Also Published As

Publication number Publication date
JPS6384309A (en) 1988-04-14

Similar Documents

Publication Publication Date Title
US9276558B2 (en) Surface acoustic wave device including a confinement layer
US8305162B2 (en) Surface acoustic wave resonator and surface acoustic wave oscillator
JP3301399B2 (en) Surface acoustic wave device
JPWO2018097016A1 (en) Elastic wave device
US6791237B2 (en) Surface acoustic wave substrate and surface acoustic wave functional element
US20070182278A1 (en) Surface acoustic wave device and electronic apparatus
JPH09167936A (en) Surface acoustic wave device
JP3622202B2 (en) Method for adjusting temperature characteristics of surface acoustic wave device
KR100712413B1 (en) Low-loss surface acoustic wave filter on quartz substrate with optimized cut
JP3724575B2 (en) Surface acoustic wave device
JPH027207B2 (en)
JP2006295311A (en) Surface acoustic wave element chip and surface acoustic wave device
US4742319A (en) Surface-acoustic-wave resonator
JP3840852B2 (en) Surface acoustic wave device and 2-port surface acoustic wave resonator
JP2620085B2 (en) 2-port SAW resonator
JP2586892B2 (en) Surface acoustic wave resonator
JP2850122B2 (en) 2-port SAW resonator
US20020057142A1 (en) Surface acoustic wave filter
US20020075102A1 (en) Surface acoustic wave filter
JPH033412B2 (en)
JP2745012B2 (en) Leaky SAW resonator
JPS60140918A (en) Surface acoustic wave resonator
JP2775255B2 (en) Electrode structure of IDT-excited piezoelectric resonator
JP2002223143A (en) Surface acoustic wave device
JPS614316A (en) Two-port elastic surface wave resonator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term