JP2584381B2 - Purification method of raw noble gas - Google Patents

Purification method of raw noble gas

Info

Publication number
JP2584381B2
JP2584381B2 JP4027149A JP2714992A JP2584381B2 JP 2584381 B2 JP2584381 B2 JP 2584381B2 JP 4027149 A JP4027149 A JP 4027149A JP 2714992 A JP2714992 A JP 2714992A JP 2584381 B2 JP2584381 B2 JP 2584381B2
Authority
JP
Japan
Prior art keywords
gas
alloy
nitrogen
hydrogen
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4027149A
Other languages
Japanese (ja)
Other versions
JPH07257913A (en
Inventor
岱夫 野村
▲吉▼伸 服部
雄二 土江
憲之 豊松
和田  弘
勝 矢田部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IWATANI GASU KAIHATSU KENKYUSHO KK
IWATANI GASU KK
Original Assignee
IWATANI GASU KAIHATSU KENKYUSHO KK
IWATANI GASU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IWATANI GASU KAIHATSU KENKYUSHO KK, IWATANI GASU KK filed Critical IWATANI GASU KAIHATSU KENKYUSHO KK
Priority to JP4027149A priority Critical patent/JP2584381B2/en
Publication of JPH07257913A publication Critical patent/JPH07257913A/en
Application granted granted Critical
Publication of JP2584381B2 publication Critical patent/JP2584381B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、不純ガスとして窒素を
同伴するヘリウムガス又はアルゴンガスからなる原料希
ガスの精製方法に関し、水素吸蔵用合金を利用してこれ
に上記原料希ガスを接触させ、不純窒素ガス成分を当該
合金に吸着せしめるとともに、ヘリウムガス成分或はア
ルゴンガス成分をそのまま通過させて原料希ガスを高純
度に精製できるものを提供する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a raw material dilute comprising helium gas or argon gas accompanied by nitrogen as an impurity gas.
Regarding the gas purification method, the raw material rare gas is brought into contact with the hydrogen storage alloy using a hydrogen storage alloy to cause the impurity nitrogen gas component to be adsorbed by the alloy, and the helium gas component or the argon gas component is allowed to pass through the raw material to pass through the raw material. To provide a rare gas that can be purified to high purity.

【0002】[0002]

【従来技術及びその問題点】ヘリウムガスやアルゴンガ
スはともに不活性な希ガス構造をとるので、鉄鋼業、半
導体関連工業を初め多くの工業分野で必需の環境ガスと
して拡く用いられるとともに、機器分析計、例えばガス
クロマトグラフのキャリヤーガスとして常用される。
2. Description of the Related Art Helium gas and argon gas both have an inert noble gas structure, so they are widely used as necessary environmental gases in many industrial fields, including the steel industry and the semiconductor-related industry. It is commonly used as a carrier gas in an analyzer, for example, a gas chromatograph.

【0003】しかしながら、工業的に供給される原料ヘ
リウムガス或はアルゴンガスには、窒素ガスを初め、酸
素ガス、二酸化炭素等の各種不純ガス成分が十数ppm
〜数百ppmの割合で混入しているのが実情である。
However, the raw material helium gas or argon gas supplied industrially contains various impurity gas components such as nitrogen gas, oxygen gas, carbon dioxide, etc.
The fact is that it is mixed at a rate of ~ several hundred ppm.

【0004】特に、窒素ガスが上記各原料希ガスに混入
すると、以下の弊害が出て来る。 (1) 原料ヘリウムガス或いはアルゴンガスを環境ガ
スに使用する鉄鋼業においては、耐摩耗性を向上する目
的で鋼の表面に窒化処理を施す場合を除いて窒素ガスは
有害であり、主として温度条件によっては原料希ガス
同伴する窒素成分が種々の元素、例えばP、S、Ni、
Cr等と化学結合をつくり、鋼の特性を低下させてしま
う。
[0004] In particular, if nitrogen gas is mixed into each of the above-mentioned raw material rare gases , the following adverse effects will occur. (1) In the steel industry that uses raw material helium gas or argon gas as an environmental gas, nitrogen gas is harmful except when the surface of steel is subjected to nitriding treatment for the purpose of improving abrasion resistance. Depending on the nitrogen component accompanying the raw material rare gas , various elements such as P, S, Ni,
It forms a chemical bond with Cr and the like, and degrades the properties of steel.

【0005】因みに、原料ヘリウムガス或いはアルゴン
ガスは高価であるため、これらのガスを大量に使用する
当該鉄鋼業界ではその再生利用を検討しているが、再生
された希ガスは当初の原料希ガスに比較して窒素の含有
量はさらに増大しており、上記弊害を増々助長させるこ
とになる。
[0005] Incidentally, since the raw material helium gas or argon gas is expensive, but in the steel industry to use these gases in large quantities are considering their recycling, regenerated noble gases initial raw noble gas The nitrogen content is further increased as compared with the above, which further promotes the above-mentioned adverse effects.

【0006】(2) 半導体工業用の超高純度水素の製
造に際しては、ガスクロマトグラフによってプロセスの
連続管理或いは品質管理を行なうが、このクロマトグラ
フのキャリヤーガスとして原料ヘリウムガス或いはアル
ゴンガスを用いると、その窒素保証濃度は良品でも10
ppm以下の品質しか期待できない。この結果、例えば
窒素含有濃度19.5ppmの試料ガスをこの程度のキ
ャリヤーガスを用いて測定した場合、同一極性のクロマ
トグラムは得られるものの、クロマトグラムの面積感度
は低下せざるを得ない。
(2) In the production of ultrahigh-purity hydrogen for the semiconductor industry, continuous control or quality control of the process is performed by gas chromatography. When a raw material helium gas or argon gas is used as a carrier gas for this chromatograph, The guaranteed nitrogen concentration is 10 even for non-defective products.
Only quality below ppm can be expected . As a result, for example, when a sample gas having a nitrogen content of 19.5 ppm is measured using such a carrier gas, a chromatogram having the same polarity can be obtained, but the area sensitivity of the chromatogram must be reduced.

【0007】ましてや、窒素含有濃度7.7ppmの試
料ガスを測定すれば、クロマトグラムは極性が反転して
しまって定量が不可能になってしまう。従って、水素ガ
ス中の窒素含有割合が10ppm以下になれば、当該ク
ロマトグラムでは窒素の検出はきわめて不十分になるう
え、特に、数ppm以下の場合にはほとんど検出不可能
となって、超高純度の水素を製造するという所期の目的
を達成できない。
[0007] Even more, by measuring the sample gas of nitrogen containing concentrations 7.7 ppm, chromatograms polarity becomes impossible quantitation gone inverted. Therefore, when the nitrogen content ratio in the hydrogen gas becomes 10 ppm or less, the detection of nitrogen in the chromatogram becomes extremely insufficient. In particular, when the nitrogen content is several ppm or less, it becomes almost impossible to detect nitrogen. The intended purpose of producing pure hydrogen cannot be achieved.

【0008】そこで、これらの原料希ガスから不純ガス
成分を除去しようとすれば、従来では、例えば、鉄とハ
ロゲン化金属を組み合わせた脱酸素剤を用いて酸素を除
去する技術、各種アルカリ溶液を用いて二酸化炭素を湿
式除去する技術があるが、窒素に関しては、例えば、
(イ)活性炭、(ロ)シリカゲル、(ハ)ゼオライト等
のモルキューラー・シーブを吸着剤に用いて物理吸着せ
しめるPSA法(Pressure Swing Ad
sorption法)と、例えば、特開昭57−156
314号公報に示すように、水素吸蔵用合金を用いて可
逆的に吸着させる方法がある。
In order to remove impure gas components from these rare gases , conventionally, for example, a technique of removing oxygen using a deoxidizer in which iron and a metal halide are combined, and various alkaline solutions have been used. There is a technology for wet removal of carbon dioxide using, for nitrogen, for example,
(A) PSA method (Pressure Swing Ad) in which sorbents such as activated carbon, (b) silica gel, and (c) zeolite are physically adsorbed using adsorbent.
solution method) and, for example, JP-A-57-156.
As shown in Japanese Patent Publication No. 314, it is possible to use an alloy for hydrogen storage.
There is a reverse adsorption method.

【0009】しかしながら、一般に、物理吸着では、 (a)微量の窒素ガスを吸着させるにはこれに見合うよ
うに固相側と気相側の平衡圧を小さく設定しなければな
らない (b)平衡圧は温度によって規定されるので平衡圧を小
さく保つには操作系全体を極低温に保つ必要がある。
However, in general, in physical adsorption, (a) in order to adsorb a small amount of nitrogen gas, the equilibrium pressure on the solid phase side and the gas phase side must be set small to match this. Since the pressure is determined by the temperature, it is necessary to keep the entire operation system at a very low temperature in order to keep the equilibrium pressure low.

【0010】従って、上記PSA法では、極低温設備及
び冷熱供給源が常時必要になるので、装置全体が複雑で
処理コストの上昇を招くうえ、なによりも、除去能力が
不十分であり、10ppm程度の窒素ガスがなお残留す
る場合が少なくない。
[0010] Therefore, in the PSA method, since a cryogenic facility and a cold heat supply source are always required, the entire apparatus is complicated and the processing cost is increased. In many cases, a certain amount of nitrogen gas still remains.

【0011】一方、水素吸蔵用合金を用いる方法では、
合金に原料希ガスを接触させるだけであるため、PSA
法に比べて精製処理を迅速且つ容易に行なえるうえ、処
理コストを低減できるが、合金の吸着性能を容易に再生
できるよう窒素ガスを可逆的に吸着させていることか
ら、合金への窒素ガスの吸着が未だ十分ではない。この
結果、精製希ガス中には数ppm程度の不純窒素ガスが
残ることになり、希ガスを高純度に精製することができ
なかった。
On the other hand, in a method using a hydrogen storage alloy,
PSA because only the raw material gas is brought into contact with the alloy
The purification process is quicker and easier than the
Processing cost can be reduced, but alloy adsorption performance can be easily regenerated
That nitrogen gas is reversibly adsorbed
Furthermore, the adsorption of nitrogen gas to the alloy is not yet sufficient. this
As a result, several ppm of impure nitrogen gas is contained in the purified rare gas.
And the rare gas can be purified to high purity.
Did not.

【0012】[0012]

【問題点を解決するための手段】水素吸蔵用合金は、そ
の名前からも判るように、水素の貯蔵或いは運搬を主目
的として使用されるもので、適切な平衡圧の前・後で、
水素を金属格子内に安全且つ高密度で吸・脱着できる性
質を有する。即ち、水素吸蔵用合金は、冷却状態や加圧
状態で水素ガスを吸蔵し、加熱状態や減圧状態で水素ガ
スを放出する。 また、水素吸蔵用合金は、水素ガス以外
にも、希ガス中に不純ガス成分として含まれる酸素ガス
や窒素ガスを可逆的に吸・脱着できる性質を有する。
[Means for Solving the Problems] As the name implies, an alloy for hydrogen storage is used mainly for storing or transporting hydrogen. Before and after an appropriate equilibrium pressure,
Hydrogen can be safely and densely absorbed and desorbed in the metal lattice. That is, the alloy for hydrogen storage is cooled or pressurized.
In this state, hydrogen gas is absorbed, and when heated or decompressed, hydrogen gas
Release In addition, alloys for hydrogen storage are other than hydrogen gas.
Oxygen gas contained as an impure gas component in rare gases
And nitrogen gas can be reversibly absorbed and desorbed.

【0013】そこで、本発明者等は加熱温度を徐々に上
げながら、水素吸蔵用合金(TiMn1.2、TiMn
1.5、TiMn1.65、TiMn、TiMn
0.6Cr0.9、Ti0.3Zr0.7Mn2.0
を使用)に所定圧で100%窒素ガスを接触させ、夫々
の加熱温度における合金の単位重量当たりの窒素吸着量
を測定し、以下の知見を得た(図3参照)。
Therefore, the present inventors gradually increased the heating temperature while gradually increasing the hydrogen storage alloys (TiMn 1.2 , TiMn 1.2) .
1.5 , TiMn 1.65 , TiMn 2 , TiMn
0.6 Cr 0.9 , Ti 0.3 Zr 0.7 Mn 2.0, etc.) were brought into contact with 100% nitrogen gas at a predetermined pressure, and the nitrogen adsorption amount per unit weight of the alloy at each heating temperature was used. Was measured, and the following findings were obtained (see FIG. 3).

【0014】即ち、実験した合金のいずれもが窒素ガス
を吸着するが、その吸着量は温度を上げると急激に増大
してゆくこと、及びその増大した吸着量は水素ガスに対
する場合に比較しても少なくないことが判明した。
That is, all of the alloys tested adsorb nitrogen gas, but the amount of adsorption increases rapidly with increasing temperature, and the increased amount of adsorption is higher than that of hydrogen gas. It turned out that not too few.

【0015】また、窒素吸着量は合金を構成する成分元
素の相違によって異なるばかりでなく(例えば、TiM
1.5とTiMn0.6Cr0.9を比較のこと)、
成分元素が同じでも合金組成が異なればやはり変化する
(例えば、TiMn1.5とTiMnを比較のこ
と)。特に、TiMn1.5に着目すると、550℃に
加熱した状態では194リットル/kgのN吸着量を
示した。
Further, the amount of nitrogen adsorbed not only depends on the difference in the constituent elements constituting the alloy (for example, TiM
n 1.5 and TiMn 0.6 Cr 0.9 ),
Component elements changes again Different same for alloy composition (e.g., compare the TiMn 1.5 and TiMn 2). In particular, when attention is paid to TiMn 1.5 , an N 2 adsorption amount of 194 liter / kg was shown in a state where the composition was heated to 550 ° C.

【0016】従って、本発明者等は、水素吸蔵用合金が
窒素に対して示すこの加温状態での特性を利用すること
を目的として、市販のヘリウムガス、或はアルゴンガス
を水素ガスに代えて水素吸蔵用合金に適用し、種々の実
験を重ねた結果、上記各希ガス成分の吸蔵は見られない
ものの、各希ガスに夫々微量の割合で同伴する窒素ガス
については十分に吸着されることを新たに見い出した。
Accordingly, the present inventors have changed the commercially available helium gas or argon gas to hydrogen gas in order to utilize the characteristics of the hydrogen storage alloy against nitrogen which are exhibited in a heated state. It applied to hydrogen-absorbing alloy Te, as a result of various experiments, although not seen occlusion of the above rare gas components are well adsorbed for nitrogen gas entrained in a proportion of each trace in each noble gas I found something new.

【0017】即ち、本発明は、この発見に基づくもの
で、水素吸蔵用合金に水素ガスを吸蔵させて活性化処理
を施し、これを微粉砕化して合金の表面積を増大させる
とともに、当該合金から水素ガスを排除し、不純ガス成
分として窒素を同伴するヘリウムガス又はアルゴンガス
からなる原料希ガスを上記合金の微粉末に接触させるこ
とにより、この窒素ガス成分を合金微粉末に吸着させ、
希ガス成分を合金微粉末同士の間隙に通過させる原料希
ガスの精製方法において、加温状態で原料希ガスを合金
微粉末に接触させることにより、窒素ガス成分の化学吸
着を促進させて不可逆的に吸着せしめ、合金微粉末同士
の間隙を通過した希ガス成分を選択的に取り出すことを
特徴とする。
That is, the present invention is based on this finding, and an activation treatment is carried out by absorbing hydrogen gas into a hydrogen storage alloy, and this is pulverized to increase the surface area of the alloy. Helium gas or argon gas excluding hydrogen gas and accompanied by nitrogen as an impurity gas component
A rare gas consisting of
By this, this nitrogen gas component is adsorbed on the alloy fine powder,
Noble raw material that allows the rare gas component to pass through the gap between the alloy fine powders
In the gas purification method, the raw material rare gas is alloyed in a heated state
By contact with fine powder, chemical absorption of nitrogen gas component
Irreversible adsorption by promoting adhesion
Characterized by selectively extracting the noble gas component passed through the gap .

【0018】上記水素吸蔵用合金は、水素を多量に吸蔵
して金属水素化物を生成する金属材料であって、 (1) Ca、Li、K、Ti、V、Mg、希土類元素
等の一成分系、 (2) TiMn1.5、TiMn、TiFe、La
Ni、MgNiを初め、Ti−Co、Mg−Ni、
希土類元素−Ni等の二成分系合金、 (3) TiMn0.6Cr0.9、Ti0.3Zr
0.7Mn2.0を初め、Ti−Fe−Mn、希土類元
素−ZrCo、Ca−Ni−Mg等の多成分系合金を任
意に選択することができる。
The above-mentioned hydrogen storage alloy is a metal material that generates a metal hydride by storing a large amount of hydrogen, and (1) one component of Ca, Li, K, Ti, V, Mg, a rare earth element, etc. System, (2) TiMn 1.5 , TiMn 2 , TiFe, La
Ni 5, MgNi 2 initially, Ti-Co, MgNi,
(3) TiMn 0.6 Cr 0.9 , Ti 0.3 Zr
Starting with 0.7 Mn 2.0 , a multi-component alloy such as Ti-Fe-Mn, rare earth element-ZrCo, Ca-Ni-Mg can be arbitrarily selected.

【0019】また、当該水素吸蔵用合金の活性化工程
は、合金中に水素ガスを常温若しくは高温で加圧して合
金表面の組織に変化を与え、いわば風通しを良くするこ
とを目的とする。この場合、当該合金は水素の吸・脱着
により微粉砕化され、その表面積を著しく増大させるこ
とになる。
The purpose of the activation step of the hydrogen absorbing alloy is to pressurize the alloy with hydrogen gas at room temperature or high temperature to change the structure of the alloy surface, so that the ventilation is improved. In this case, the alloy is finely pulverized by absorbing and desorbing hydrogen, which significantly increases the surface area.

【0020】こうして、窒素ガスを不純ガスとして同伴
する原料希ガスを上記活性化処理済みの合金微粉末に接
触させると、ヘリウムガス成分或はアルゴンガス成分は
合金微粉末の表面と相互作用することなくその間隙を通
過してゆくが、加温状態下で合金の化学吸着が促進され
ることから、原料希ガス中の窒素ガスは当該合金の表
に不可逆的に吸着され、従来の物理的吸着量の限界を克
服して、窒素ガス成分の吸着容量の大幅な増大をもたら
す。
Thus, when the raw material rare gas accompanying nitrogen gas as an impurity gas is brought into contact with the activated fine alloy powder, the helium gas component or the argon gas component interacts with the surface of the fine alloy powder. Without passing through the gap, but the chemical adsorption of the alloy is promoted under the heated condition.
From Rukoto, nitrogen gas in the feed noble gas front surface of the alloy
Irreversibly adsorbed on the surface, overcoming the limitations of conventional physical adsorption
To significantly increase the adsorption capacity of nitrogen gas components
You.

【0021】[0021]

【発明の効果】本発明は、水素吸蔵用合金が窒素を不可
逆的に吸着するという全く新たな特性を利用したもの
で、極微量の窒素をも確実に吸着するうえ、その吸着容
量が大きいことから、結果的に高純度のヘリウムガス成
分或はアルゴンガス成分のみを選択的に取り出すことが
でき、従来のシリカゲルや活性炭等の物理的吸着剤を用
いた場合や水素吸蔵用合金を用いて可逆的に吸蔵させる
場合に比べて、原料ヘリウムガス或はアルゴンガスの高
純度(具体的には1ppm以下)精製を円滑達成でる。
According to the present invention, the alloy for hydrogen storage cannot contain nitrogen.
Utilizing a completely new characteristic of reverse adsorption, it reliably adsorbs very small amounts of nitrogen , and its adsorption capacity
As a result, the high-purity helium gas
It is possible to selectively extract only the fraction or argon gas components
It can be reversibly occluded using a physical adsorbent such as conventional silica gel or activated carbon or using a hydrogen storage alloy
Compared to the case where the raw material helium gas or argon gas
Purification (specifically, 1 ppm or less) can be smoothly achieved.

【0022】従って、鉄鋼製造においては、市販或いは
再生の原料へリウムガス、アルゴンガスを本発明方法で
精製し、これを環境ガスに用いても、窒素による鋼への
影響はなく、鋼の特性を高く維持できる。
Therefore, in the production of steel, even if helium gas and argon gas are purified by the method of the present invention from commercially available or recycled raw materials and used as an environmental gas, nitrogen does not affect the steel, and the characteristics of the steel are not affected. Can be kept high.

【0023】また、本発明方法を用いて精製したヘリウ
ムガス或いはアルゴンガスをガスクロマトグラフのキャ
リヤーガスに使用すれば、同一極性においても極微量の
窒素検出ができるうえ、クロマトグラフの検出感度も高
まるので高純度水素の製造に際して、水素に含有される
窒素ガスの濃度を高い感度でモニターできる。
If helium gas or argon gas purified by the method of the present invention is used as a carrier gas in a gas chromatograph, a very small amount of nitrogen can be detected even with the same polarity, and the detection sensitivity of the chromatograph is also increased. In the production of high-purity hydrogen, the concentration of nitrogen gas contained in hydrogen can be monitored with high sensitivity.

【0024】[0024]

【実施例】以下、原料希ガスの精製装置の機構を概説す
るとともに、この装置に原料ヘリウムガス或はアルゴン
ガスを各々通して行なった精製実験結果を逐次述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following, the mechanism of a device for purifying a rare gas as a raw material will be outlined, and the results of a refining experiment performed by passing a helium gas or an argon gas through the device will be described.

【0025】(原料ガス精製装置) 図2は原料希ガス精製装置の概略系統図であって、当該
精製装置は立型の原料ガス精製塔1の下端から原料ガス
ライン2を導出し、その上流側に入口弁4、原料ガス仕
切弁5及び圧力調整弁6を順次介して原料ガス供給源7
を接続する。
[0025] (source gas purifier) FIG. 2 is a schematic diagram of raw rare gas scan refiner derives a source gas line 2 the purification unit from the source gas lower end of the purification column 1 of Vertical, the On the upstream side, a source gas supply source 7 via an inlet valve 4, a source gas gate valve 5, and a pressure regulating valve 6 sequentially.
Connect.

【0026】また、原料ガス精製塔1の上端から精製ガ
スライン8を導出し、その下流側に出口弁10、精製ガ
ス仕切弁11、流量調整弁12及び流量計13を順次接
続する。
Further, a purified gas line 8 is led out from the upper end of the raw material gas purification tower 1, and an outlet valve 10, a purified gas gate valve 11, a flow control valve 12, and a flow meter 13 are sequentially connected to a downstream side thereof.

【0027】精製塔1は上述のように立型構造をとって
おり、水素吸蔵用合金をこれに収容して活性化処理を施
し、水素ガスを除去したのち、塔内の下方から上方に原
希ガスを流せば、合金微粉末層に高い効率で当該原料
ガスを接触通過させることができる。
The refining tower 1 has a vertical structure as described above. The refining tower 1 contains an alloy for storing hydrogen and performs an activation process to remove hydrogen gas. By flowing a rare gas , the source gas can be passed through the alloy fine powder layer with high efficiency.

【0028】この精製塔1の外側壁をシース型の加熱装
置14で囲繞し、精製塔1の外壁に装着した熱電対15
を加熱装置14と接続した温度制御装置16に連動し、
熱電対15で検知した塔外壁温度に基づいて制御装置1
6を作動せしめることにより、精製塔1を自動的に所定
温度に保持する。
The outer wall of the purification tower 1 is surrounded by a sheath-type heating device 14, and a thermocouple 15 attached to the outer wall of the purification tower 1 is provided.
Is linked to a temperature control device 16 connected to the heating device 14,
Control device 1 based on tower outer wall temperature detected by thermocouple 15
By operating 6, the purification tower 1 is automatically maintained at a predetermined temperature.

【0029】原料希ガスを上記圧力調整弁6で所定圧力
に調圧して精製塔1に流通せしめるとともに、精製ガス
ライン8のうち、出口弁10の上流側を分岐して圧力計
17を接続し、精製操作時の圧力を指示せしめる。
The raw material rare gas is regulated to a predetermined pressure by the pressure regulating valve 6 and circulated through the purification tower 1, and a pressure gauge 17 is connected to the purified gas line 8 by branching the upstream side of the outlet valve 10. And the pressure during the purification operation.

【0030】また、仕切弁11及び流量調整弁12で上
記精製ガスライン8の流量を制御することにより、精製
塔1内の滞留時間を設定する。
The residence time in the purification tower 1 is set by controlling the flow rate of the purification gas line 8 by the gate valve 11 and the flow control valve 12.

【0031】原料ガスライン2の入口弁4の上流側及び
精製ガスライン8の出口弁10の下流側から各々ガス採
取ライン18・19を分岐し、これらを三方弁20を介
してガスモニター21に接続する。
The gas sampling lines 18 and 19 are branched from the upstream side of the inlet valve 4 of the raw gas line 2 and the downstream side of the outlet valve 10 of the purified gas line 8, and these are branched to a gas monitor 21 via a three-way valve 20. Connecting.

【0032】三方弁20を原料ガスライン2の方に切換
えると、原料ライン中のガスの組成を測定でき、精製ガ
スライン8の方に切換えると、精製ライン中のガスの組
成、例えば不純ガスとしての窒素濃度を測定できる。
尚、符号3及び22は水素吸蔵用合金の流出を防止する
ためのフィルターである。
When the three-way valve 20 is switched to the raw material gas line 2, the composition of the gas in the raw material line can be measured. When the three-way valve 20 is switched to the purified gas line 8, the composition of the gas in the purification line, for example, as an impure gas, Can be measured.
Reference numerals 3 and 22 are filters for preventing the outflow of the hydrogen storage alloy.

【0033】斯くしてなる原料希ガス精製装置の精製塔
1に水素吸蔵用合金を収容し、圧力35kg/cm
温度25℃で8時間水素ガスを接触させて活性化処理を
施し、合金の表面積を増大させたのち、加温減圧下で水
素ガスを合金微粉末から放出排除する。
The alloy for hydrogen storage is accommodated in the purification tower 1 of the raw material rare gas purification apparatus thus formed, and the pressure is 35 kg / cm 2 ,
After performing an activation treatment by contacting hydrogen gas at a temperature of 25 ° C. for 8 hours to increase the surface area of the alloy, the hydrogen gas is released from the alloy fine powder under heating and reduced pressure.

【0034】上記水素吸蔵用合金には、既述の100%
窒素吸着試験において顕著な吸着能を示すTiMn
1.5合金を使用する。そして、窒素ガスを不純ガス成
分として同伴する原料ヘリウムガス或はアルゴンガスを
各々当該精製装置に流すことにより、以下の実験を順次
行なった。
The above-mentioned alloy for hydrogen storage contains the above-mentioned 100%
TiMn showing remarkable adsorption ability in nitrogen adsorption test
Use 1.5 alloy. Then, the following experiments were sequentially performed by flowing a raw material helium gas or an argon gas accompanied by nitrogen gas as an impurity gas component to the purifier.

【0035】(原料ヘリウムガスの精製実験) a) 実験例1 107.5ppmの富化不純Nガスを含む原料ヘリウ
ムガスを、操作圧力40kg/cm、滞留時間12.
8分、通過ガス流量45.5リットル/kg−meta
l・Hr、加熱温度180℃の精製条件で精製塔1に流
し続けて、精製ガスライン8に含まれ残留Nガス濃度
をモニター21で測定し、その経時変化を観察した。
(Purification Experiment of Raw Helium Gas) a) Experimental Example 1 A raw helium gas containing 107.5 ppm of enriched impure N 2 gas was operated at an operating pressure of 40 kg / cm 2 and a residence time of 12.
8 minutes, passing gas flow rate 45.5 liter / kg-meta
The mixture was continuously passed through the purification tower 1 under the purification conditions of l · Hr and a heating temperature of 180 ° C., and the concentration of the residual N 2 gas contained in the purification gas line 8 was measured by the monitor 21, and the change with time was observed.

【0036】 [0036]

【0037】上記によれば、15分経過時点で既に残留
濃度はま14.6ppm(加熱によってガスライン
の管壁等から一時的に放出されたNも加重されている
と思われるので、実際に精製塔から出るガス中のN
度はこれより低い値になると推定される)に低下し、原
ヘリウムガスに含まれるNガスの大部分をTiMn
1.5合金が吸蔵することが判る。
According to the above, since the N 2 that has been temporarily released from the tube wall or the like of the gas line by already residual N 2 concentration or 14.6 ppm (heated by the elapsed time 15 minutes appears to be weighted It is estimated that the N 2 concentration in the gas actually leaving the purification tower is lower than this value), and most of the N 2 gas contained in the raw material helium gas is converted to TiMn.
It can be seen that the 1.5 alloy occludes.

【0038】時間経過に伴い、残留Nガス濃度は徐々
に下がり、60分経過時点では、もはや痕跡しか示さ
ず、実質的に純粋のヘリウムガス成分のみが精製ガスラ
イン8から導出されることになる。
With the elapse of time, the concentration of the residual N 2 gas gradually decreases. At the elapse of 60 minutes, only traces are shown, and only substantially pure helium gas components are led out of the purified gas line 8. Become.

【0039】(b) 実験例2 低濃度のNガス17.9ppmを含む原料ヘリウムガ
スを、上記実験例1と同じ精製条件(即ち、加熱温度は
180℃である)で精製塔1に流して、精製ガスライン
8の残留Nガス濃度の経時変化を観察した。
(B) Experimental Example 2 A raw material helium gas containing 17.9 ppm of low-concentration N 2 gas was passed through the purification column 1 under the same purification conditions as in Experimental Example 1 above (that is, the heating temperature was 180 ° C.). Then, the change with time of the concentration of the residual N 2 gas in the purified gas line 8 was observed.

【0040】 [0040]

【0041】上表によれば、20分経過時点で、N
ス濃度原濃度17.9ppmから13.7ppmに少し
低減しただけであるが、30分経過時点では4.8pp
mに下がり、続く60分経過以後にはN.D.を示す。
According to the above table, the N 2 gas concentration was only slightly reduced from 17.9 ppm to 13.7 ppm after 20 minutes, but 4.8 pp after 30 minutes.
m, and after the elapse of the following 60 minutes, the N.I. D. Is shown.

【0042】従って、180℃の加熱温度下で微量のN
ガスを含む原料ヘリウムガスをTiMn1.5合金微
粉末層に流せば、60分以後には従来技術に比較してN
ガスを十分に排除できることが判る。
Therefore, at a heating temperature of 180 ° C., a small amount of N
When the raw material helium gas containing the two gases is passed through the TiMn 1.5 alloy fine powder layer, after 60 minutes, N
It is Ru Han enough to eliminate the 2 gas.

【0043】(原料アルゴンガスの精製実験) (a)実験例1実験 温度を常温(20℃)と、加温状態である100
℃、150℃の三段階に変化させ、130.5ppmの
富化不純Nガスを含む原料アルゴンガスを、操作圧力
6.5kg/cm、滞留時間5.6分、通過ガス流量
34.4リットル/kg−metal・Hrの条件で精
製塔1に流して、精製ガスライン8中の残留Nガス濃
が温度に対して示す変化を測定した。
(Purification Experiment of Raw Material Argon Gas) (a) Experimental Example 1 The experimental temperature was set to normal temperature (20 ° C.) and 100
° C., is changed to three stages of 0.99 ° C., the crude argon gas containing enriched impure N 2 gas 130.5Ppm, operating pressure 6.5 kg / cm 2, retention time 5.6 min, passing gas flow rate 34.4 It flowed through the purification tower 1 under the condition of liter / kg-metal · Hr, and the change in the concentration of the residual N 2 gas in the purification gas line 8 with respect to the temperature was measured.

【0044】 [0044]

【0045】上表によれば、常温下の残留Nガス濃度
は110ppmであるが、100℃では18ppmと大
幅に低減し、さらに、150℃では検出限界以下の値を
示すことが判る。即ち、TiMn1.5合金層を加熱す
ることによって化学吸着が促進され、その結果Nガス
の吸着が活性化して著しい温度効果を示したものと推定
できる。
According to the above table, the residual N 2 gas concentration at room temperature is 110 ppm, but at 100 ° C., it is significantly reduced to 18 ppm, and at 150 ° C., the value is below the detection limit. In other words, it can be estimated that heating the TiMn 1.5 alloy layer promotes chemical adsorption, and as a result, adsorption of N 2 gas is activated to exhibit a remarkable temperature effect.

【0046】(b)実験例2 操作圧力を2kg/cmに保ち、実験温度を20℃
(常温)、滞留時間を5分に当初設定するとともに、以
下の(1)〜(5)の条件により加熱温度及び滞留時間
を逐次変化させて精製ガスライン中の残留Nガス濃度
を測定した。
(B) Experimental Example 2 The operating pressure was maintained at 2 kg / cm 2 and the experimental temperature was 20 ° C.
(Normal temperature), the residence time was initially set to 5 minutes, and the heating temperature and the residence time were sequentially changed under the following conditions (1) to (5) to measure the residual N 2 gas concentration in the purified gas line. .

【0047】(1) 原料アルゴンガスのN濃度は1
08ppmとする。
(1) The N 2 concentration of the raw material argon gas is 1
08 ppm.

【0048】(2) 加熱温度は、常温→100℃→1
25℃→150℃→180℃の5段階に変化させた。
(2) The heating temperature is normal temperature → 100 ° C. → 1
The temperature was changed in five stages of 25 ° C. → 150 ° C. → 180 ° C.

【0049】(3) 滞留時間は、5分→1分→33秒
→12秒→6秒→4秒の6段階に変化させた。この場
合、通過ガス流量は滞留時間に対応して次のように変化
させた。
(3) The residence time was changed in six stages of 5 minutes → 1 minute → 33 seconds → 12 seconds → 6 seconds → 4 seconds. In this case, the flow rate of the passing gas was changed as follows according to the residence time.

【0050】(4) 温度を常温に保持したまま滞留時
間を5分から逐次短縮してゆき、反転クロマトグラムか
ら痕跡以上に残留Nガス濃度が上昇移行すれば、その
時点で加熱温度を1段階上げ、そのうえでこの温度(即
ち、100℃)を維持しながらさらに滞留時間を下げて
ゆく。そして、残留Nガス濃度が再び上昇移行を示せ
ば、加熱温度を上げて上記操作を繰り返してゆく。
(4) While the temperature is kept at room temperature, the residence time is gradually reduced from 5 minutes, and if the residual N 2 gas concentration rises and shifts beyond the trace from the inversion chromatogram, the heating temperature is increased by one step at that point. The residence time is further reduced while maintaining this temperature (ie, 100 ° C.). Then, when the residual N 2 gas concentration shows a transition to an increase again, the heating temperature is increased and the above operation is repeated.

【0051】(5) 滞留時間を一定に保持しながら加
熱温度を逐次下げてゆき、残留Nガス濃度が反転クロ
マトグラムから痕跡以上に上昇移行する温度を測定し
て、Nガス排除能力を十分に満たす最低の加熱温度を
調べる。
(5) While keeping the residence time constant, the heating temperature is successively lowered, and the temperature at which the residual N 2 gas concentration rises from the inversion chromatogram to a trace or more is measured, and the N 2 gas exclusion ability is measured. Find the lowest heating temperature that is sufficient.

【0052】図1はその結果を示すもので、加熱温度を
常温→100℃→180℃に上昇させる際には(4)の
操作を行ない、加熱温度を150℃→125℃→100
℃に低下させる際には(5)の操作を行なった。
FIG. 1 shows the results. When the heating temperature is raised from normal temperature to 100 ° C. to 180 ° C., the operation (4) is performed, and the heating temperature is increased from 150 ° C. to 125 ° C. to 100 ° C.
When the temperature was lowered to ° C., the operation (5) was performed.

【0053】Nガス108ppmを含む原料アルゴン
ガスをTiMn1.5合金で精製すれば、常温−滞留時
間1分(N吸着量0.167リットル/kg)の場合
に比べて、加熱温度100℃−滞留時間12秒(N
着量0.661リットル/kg)及び加熱温度125℃
−滞留時間4秒(N吸着量1.039リットル/k
g)の各加熱条件下の場合、短時間で十分Nガス成分
を排除し得ることが判る。
[0053] By purifying the crude argon gas containing N 2 gas 108ppm in TiMn 1.5 alloy, cold - if the residence time of 1 minute (N 2 adsorption 0.167 l / kg)
Compared to a heating temperature 100 ° C. - residence time 12 seconds (N 2 adsorption 0.661 l / kg) and the heating temperature 125 ° C.
- residence time of 4 seconds (N 2 adsorption 1.039 l / k
Under each heating condition of g), it can be seen that the N 2 gas component can be sufficiently eliminated in a short time.

【0054】特に、加熱温度を125℃、滞留時間を4
秒に設定すれば、ランニングコストを制御しながら迅速
に原料ガスの精製ができる。
In particular, the heating temperature is 125 ° C. and the residence time is 4
If set to seconds, the source gas can be purified quickly while controlling the running cost.

【図面の簡単な説明】[Brief description of the drawings]

図1は窒素ガスを含有する原料アルゴンガスの精製実験
結果を示す図表、図2は本発明に係る精製実験装置の概
略系統図、図3は水素吸蔵用合金の窒素ガスに対する吸
着挙動を示す加熱温度−吸着量関係図である。
FIG. 1 is a table showing the results of a purification experiment of a raw material argon gas containing nitrogen gas, FIG. 2 is a schematic system diagram of a purification experiment apparatus according to the present invention, and FIG. 3 is a diagram showing the adsorption behavior of a hydrogen storage alloy to nitrogen gas. It is a temperature-adsorption amount relationship diagram.

【符号の説明】[Explanation of symbols]

1…原料ガス精製塔、2…原料ガスライン、6…圧力調
整弁、7…原料ガス供給源、8…精製ガスライン、12
…流量調整弁、14…加熱装置、16…温度制御装置、
18・19…ガス採取ライン、21…ガスモニター。
DESCRIPTION OF SYMBOLS 1 ... Source gas purification tower, 2 ... Source gas line, 6 ... Pressure control valve, 7 ... Source gas supply source, 8 ... Purified gas line, 12
... Flow control valve, 14 ... Heating device, 16 ... Temperature control device,
18.19 ... Gas sampling line, 21 ... Gas monitor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 豊松 憲之 大阪府枚方市養父丘2丁目9番4号 (72)発明者 和田 弘 兵庫県西宮市今津曙町2番9号 (72)発明者 矢田部 勝 兵庫県西宮市一ケ谷町3番2−711号 (56)参考文献 特開 昭61−107919(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Noriyuki Toyomatsu 2-9-1-4 Yabuoka, Hirakata City, Osaka Prefecture (72) Inventor Hiroshi Wada 2-9, Imazu Akebonocho, Nishinomiya City, Hyogo Prefecture (72) Inventor Masaru Yatabe 3-2-711 Ichigaya-cho, Nishinomiya-shi, Hyogo (56) References JP-A-61-107919 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素吸蔵用合金に水素ガスを吸蔵させて
活性化処理を施し、これを微粉砕化して合金の表面積を
増大させるとともに、当該合金から水素ガスを排除し、 不純ガス成分として窒素を同伴するヘリウムガス又はア
ルゴンガスからなる原料希ガスを上記合金の微粉末に接
触させることにより、この窒素ガス成分を合金微粉末に
吸着させ、希ガス成分を合金微粉末同士の間隙に通過さ
せる原料希ガスの精製方法において、 加温状態で原料希ガスを合金微粉末に接触させることに
より、窒素ガス成分の化学吸着を促進させて不可逆的に
吸着せしめ、合金微粉末同士の間隙を通過した希ガス成
分を選択的に取り出すことを特徴とする原料希ガスの精
製方法。
An activation treatment is performed by storing hydrogen gas in an alloy for hydrogen storage, and the activated alloy is finely pulverized to increase the surface area of the alloy. In addition, hydrogen gas is excluded from the alloy, and nitrogen is removed as an impurity gas component. Helium gas or
A rare gas consisting of rugon gas is brought into contact with the fine powder of the above alloy.
This nitrogen gas component is turned into fine alloy powder
Adsorb and pass the rare gas component through the gap between the alloy fine powders.
In the method of purifying the source rare gas to be used, the source rare gas is brought into contact with the alloy fine powder in a heated state.
More irreversibly by promoting the chemical adsorption of nitrogen gas components
Adsorbed rare gas components passed through the gap between alloy fine powders
Of raw material rare gas, characterized by selectively extracting
Manufacturing method.
JP4027149A 1992-01-17 1992-01-17 Purification method of raw noble gas Expired - Lifetime JP2584381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4027149A JP2584381B2 (en) 1992-01-17 1992-01-17 Purification method of raw noble gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4027149A JP2584381B2 (en) 1992-01-17 1992-01-17 Purification method of raw noble gas

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61053093A Division JPS62212208A (en) 1986-03-11 1986-03-11 Purification of raw material helium gas, argon gas and methane gas

Publications (2)

Publication Number Publication Date
JPH07257913A JPH07257913A (en) 1995-10-09
JP2584381B2 true JP2584381B2 (en) 1997-02-26

Family

ID=12212995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4027149A Expired - Lifetime JP2584381B2 (en) 1992-01-17 1992-01-17 Purification method of raw noble gas

Country Status (1)

Country Link
JP (1) JP2584381B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110608367A (en) * 2019-09-30 2019-12-24 苏州苏净保护气氛有限公司 Argon recycling system and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107919A (en) * 1984-10-30 1986-05-26 Taiyo Sanso Kk Gas refining device

Also Published As

Publication number Publication date
JPH07257913A (en) 1995-10-09

Similar Documents

Publication Publication Date Title
US4869883A (en) Inert gas purifier for bulk nitrogen without the use of hydrogen or other reducing gases
JP3634115B2 (en) Gas purification method and apparatus
Gamo et al. Life properties of Ti Mn alloy hydrides and their hydrogen purification effect
JP2954705B2 (en) An improved method for removing gaseous impurities from a hydrogen stream
US6093379A (en) Purification of gases
JPH09142813A (en) Method and apparatus for producing stream substantially freed from at least either of oxygen and carbon monoxide as impurities
CN111050879A (en) Method for continuously producing a gaseous hydrogen stream
JPH08508968A (en) An improved method for the removal of gaseous impurities from hydrogen streams
JP2001506960A (en) Method for purifying cryogenic fluids by filtration and adsorption
WO1997011768A1 (en) Low temperature inert gas purifier
US6017502A (en) Hydrogen purification using metal hydride getter material
JPH0372566B2 (en)
Baksh et al. A new composite sorbent for methane-nitrogen separation by adsorption
JP2584381B2 (en) Purification method of raw noble gas
JPS6364901A (en) Purifying apparatus for rare gas
JPS6084140A (en) Adsorbing method
US5913893A (en) Process for the purification of a cryogenic fluid by filtration and/or adsorption
JPH0230607A (en) Production of highly pure nitrogen
Mitsuishi et al. Selective absorption of hydrogen isotopes in an inert gas in a zirconium particle bed
JPS62212208A (en) Purification of raw material helium gas, argon gas and methane gas
US5874007A (en) Purification of an inert fluid in the liquid state with respect to H2 and/or CO
JP2902317B2 (en) Room temperature purification method and apparatus for inert gas
JPH04310509A (en) Removal of impurity in nitrogen gas
JPS6071502A (en) Purifying apparatus of gaseous hydrogen
JPH02293310A (en) Equipment for high-purity refining of rare gas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term