JP2583086B2 - Zinc sulfide phosphor and manufacturing method - Google Patents
Zinc sulfide phosphor and manufacturing methodInfo
- Publication number
- JP2583086B2 JP2583086B2 JP62328728A JP32872887A JP2583086B2 JP 2583086 B2 JP2583086 B2 JP 2583086B2 JP 62328728 A JP62328728 A JP 62328728A JP 32872887 A JP32872887 A JP 32872887A JP 2583086 B2 JP2583086 B2 JP 2583086B2
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- zinc sulfide
- sulfide phosphor
- activator
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Luminescent Compositions (AREA)
Description
本発明は、陰極線管に使用されて電子線で励起されて
青色に発光する蛍光体に係り、特に、高電流刺激領域に
おける輝度飽和の少ない硫化亜鉛蛍光体及び硫化亜鉛カ
ドミウム蛍光体(本明細書に於て、硫化亜鉛蛍光体と
は、硫化亜鉛カドミウム蛍光体および硫化カドミウム蛍
光体を含む広い意味に使用する)に関する。 更に詳しくは、特定量の多量Agを付活剤とし、Al、
B、Brを共付活剤として含み、かつ、立方晶系の結晶構
造を有する蛍光体で、励起エネルギーに対する輝度特
性、輝度劣化力が極めて良好な硫化亜鉛蛍光体に関す
る。The present invention relates to a phosphor which is used in a cathode ray tube and emits blue light when excited by an electron beam, and particularly to a zinc sulfide phosphor and a zinc cadmium sulfide phosphor having low luminance saturation in a high current stimulation region. As used herein, the term "zinc sulfide phosphor" is used in a broad sense including zinc cadmium sulfide phosphor and cadmium sulfide phosphor. More specifically, a specific amount of a large amount of Ag as an activator, Al,
The present invention relates to a zinc sulfide phosphor containing B and Br as a co-activator and having a cubic crystal structure, and having extremely excellent luminance characteristics and excitation power against excitation energy.
一般に、カラー受像管の画面は、電子線の刺激で青
色、緑色及び赤色に発光する青色、緑色及び赤色発光蛍
光体を、ドットもしくはストライプ状にフェースプレー
トに付着した蛍光面からなっている。この蛍光面上に電
子銃からの電子線を走査することによって蛍光体を発光
させ、これより画像を表示している。 ところで、近年、コンピューター、パソコン等の発達
と文字多重放送等の実施により、カラー受像管に文字を
表示する用途が多くなり、益々カラー受像管には、輝度
の高い画像が要求されてきている。これを実現させるた
め、蛍光面においても蛍光体のドット径を小さくし、全
画面におけるドット数を増加させることにより、解像度
を上げることが行われている。 ところが、ドット径を小さくし、ドット数を増加させ
ていくと、蛍光面における各ドットの発光面積が減少
し、画面が暗くなる欠点がある。この為、従来の明るさ
を維持する為には、電子線の電圧を上げて、より高い電
流密度の電子線を蛍光面に放射させる必要がある。 また、投写管は、極めて大きな画面に映像を表示する
ので、表示面を明るくする為に、蛍光体の刺激エネルギ
ーを大きくして、即ち、高い電流密度で刺激するので、
この領域で電流密度と発光輝度とがリニアーな関係にあ
る輝度特性が要求され、また、高電流密度で使用され
て、輝度劣化の少ない蛍光体が必要である。 電流密度特性を向上する蛍光体として、立方晶系銀お
よびアルミニウム付活硫化亜鉛蛍光体と、六方晶系蛍光
体とを混合した硫化亜鉛蛍光体が開発されている(特開
昭62−95378号公報)。 ところが、この公報に開示される蛍光体は、高電流密
度特性に優れた立方晶系のものに、発光輝度が高い六方
晶系のものを0.5〜12%混合して、発光輝度が高くて電
流特性の優れた蛍光体を実現している。しかしながら、
蛍光体の大部分を立方晶系が占めるので、全体として発
光輝度が低く、実際には使用できない欠点がある。 出願人は、ホウ素を添加することによって、発光輝度
を殆ど低下させることなく、バーニング特性を向上した
硫化亜鉛蛍光体を開発している(特開昭62−201990号公
報)。 ところが、この硫化亜鉛蛍光体は、優れたバーニング
特性を示すが、電流特性が充分でなく、高電流密度領域
で使用される硫化亜鉛蛍光体として好ましい特性を実現
できない。即ち、低い電流密度領域に於ては、電流密度
に比例して発光輝度が高くなるが、電流密度が高くなる
と、電流密度を高めてもこれに比例して発光効率が高く
ならない、いわゆる刺激電流密度による輝度飽和が生起
する問題がある。In general, the screen of a color picture tube has a phosphor screen in which blue, green, and red light-emitting phosphors that emit blue, green, and red light when stimulated by an electron beam are attached to a face plate in the form of dots or stripes. By scanning the phosphor screen with an electron beam from an electron gun, the phosphor emits light, thereby displaying an image. By the way, in recent years, with the development of computers, personal computers, etc., and the implementation of text multiplex broadcasting, etc., the use of displaying characters on color picture tubes has increased, and color picture tubes have increasingly been required to have high-luminance images. In order to realize this, the resolution is increased by reducing the dot diameter of the phosphor on the phosphor screen and increasing the number of dots on the entire screen. However, when the dot diameter is reduced and the number of dots is increased, the light emitting area of each dot on the phosphor screen is reduced, and the screen becomes dark. Therefore, in order to maintain the conventional brightness, it is necessary to increase the voltage of the electron beam to emit an electron beam having a higher current density to the phosphor screen. Also, since the projection tube displays an image on an extremely large screen, in order to brighten the display surface, the stimulation energy of the phosphor is increased, that is, the projection is stimulated at a high current density.
In this region, a luminance characteristic in which the current density and the emission luminance have a linear relationship is required, and a phosphor which is used at a high current density and has little luminance degradation is required. As a phosphor for improving current density characteristics, a zinc sulfide phosphor obtained by mixing a cubic silver and aluminum activated zinc sulfide phosphor and a hexagonal phosphor has been developed (Japanese Patent Application Laid-Open No. 62-95378). Gazette). However, the phosphor disclosed in this publication is a mixture of a cubic system having excellent high current density characteristics and a hexagonal system having high emission luminance of 0.5 to 12%, and having a high emission luminance and a high current density. A phosphor with excellent characteristics is realized. However,
Since most of the phosphor is occupied by the cubic system, the luminance is low as a whole. The present applicant has developed a zinc sulfide phosphor having improved burning characteristics by adding boron without substantially lowering the emission luminance (Japanese Patent Application Laid-Open No. 62-201990). However, although this zinc sulfide phosphor shows excellent burning characteristics, it does not have sufficient current characteristics, and cannot realize characteristics favorable as a zinc sulfide phosphor used in a high current density region. That is, in a low current density region, the emission luminance increases in proportion to the current density. However, when the current density increases, the luminous efficiency does not increase in proportion to the increase in the current density. There is a problem that luminance saturation occurs due to density.
【本発明が解決しようとする問題点】 本発明者は、更に実験を重ねた結果、銀の付活量を特
定の範囲に制御すると共に、結晶構造を立方晶系とし、
更に、共付活剤として、ホウ素に加えて臭素とアルミニ
ウムとを一緒に含有させるという、多くの条件を同時に
満足させることによって、従来の硫化亜鉛蛍光体の欠点
を著しく改善することに成功した。従って、この発明の
重要な目的は、高電流密度領域における発光喜怒のリニ
アリティーが向上し、更に、高電圧で使用されて輝度劣
化が少なく、寿命が長くて明るい硫化亜鉛蛍光体を提供
することにある。[Problems to be solved by the present invention] As a result of further experiments, the present inventors have controlled the amount of activated silver to a specific range, and made the crystal structure cubic.
Furthermore, by simultaneously satisfying many conditions of including bromine and aluminum in addition to boron as a co-activator, the drawbacks of the conventional zinc sulfide phosphor have been remarkably improved. Accordingly, an important object of the present invention is to provide a bright zinc sulfide phosphor which has improved linearity of light emission and emission in a high current density region, has less luminance degradation when used at a high voltage, has a long life and is bright. It is in.
本発明者等は、上記目的を達成するために、硫化亜鉛
蛍光体の付活剤をAgとし、共付活剤をAl、B、Brとし
て、Agの付活量を特定の範囲に調整し、更に、結晶製造
を立方晶系とすることにより、高電流密度領域に於ける
発光効率が良く、かつ、輝度劣化が少ない硫化亜鉛蛍光
体を完成した。 即ち、本発明は、Ag付活、Al、B、Br共付活硫化亜鉛
蛍光体に係るものであって、硫化亜鉛蛍光体は、Ag、A
l、B、Brを含み、Agの付活量が0.03重量%〜0.20重量
%の範囲に特定され、更に、蛍光体を構成する結晶構造
を立方晶系に特定している。 この発明の立方晶系硫化亜鉛蛍光体は、Agの付活量が
0.20重量%より多くなると、高電流密度領域での発光輝
度の直線性は好ましい特性を示すが、低電流密度領域で
の発光輝度が低下する。反対に、Agの付活量が0.03重量
%よりも少なくなると、低電流密度領域での発光輝度は
高くなるが、高電流密度領域での発光輝度の直線性が悪
くなり、また、高電圧で加速された電子線で刺激される
と輝度劣化が甚だしく、寿命が短くなる。 従って、この発明の硫化亜鉛蛍光体は、電流密度と発
光輝度との直線性と、寿命特性とを考慮してAgの含有量
を、通常、0.03重量%〜0.20重量%、好ましくは、0.06
重量%〜0.12重量%の範囲に調整している。 さらに、硫化亜鉛蛍光体は、蛍光体原料にLi、Na及び
Kのうち少なくとも一種の元素を含むアルカリ金属塩を
添加した後、二硫化炭素、硫化水素及び硫黄蒸気のうち
少なくとも一種を含む気体中で焼成して製造される。The present inventors have set the activator of the zinc sulfide phosphor to Ag, the coactivator to Al, B, and Br to adjust the activator amount of Ag to a specific range in order to achieve the above object. Furthermore, by making the crystal production cubic, a zinc sulfide phosphor with good luminous efficiency in a high current density region and little luminance degradation was completed. That is, the present invention relates to a silver activated, Al, B, Br co-activated zinc sulfide phosphor, wherein the zinc sulfide phosphor is Ag, A
It contains l, B, and Br, the activation amount of Ag is specified in the range of 0.03% by weight to 0.20% by weight, and further, the crystal structure constituting the phosphor is specified to be cubic. In the cubic zinc sulfide phosphor of the present invention, the activation amount of Ag is low.
When the content is more than 0.20% by weight, the linearity of the light emission luminance in the high current density region shows preferable characteristics, but the light emission luminance in the low current density region decreases. Conversely, when the activation amount of Ag is less than 0.03% by weight, the emission luminance in the low current density region increases, but the linearity of the emission luminance in the high current density region deteriorates. When stimulated by an accelerated electron beam, the luminance is significantly deteriorated and the life is shortened. Therefore, in the zinc sulfide phosphor of the present invention, the content of Ag is usually set to 0.03% by weight to 0.20% by weight, preferably 0.06% by weight in consideration of the linearity of current density and emission luminance and the life characteristics.
The weight is adjusted to the range of 0.1% to 0.12% by weight. Further, the zinc sulfide phosphor is obtained by adding an alkali metal salt containing at least one element of Li, Na, and K to a phosphor raw material, and then adding a gas containing at least one of carbon disulfide, hydrogen sulfide, and sulfur vapor. It is manufactured by firing.
以下、本発明の具体例を更に詳細に説明する。 本発明のAg付活、Al、B、Br共付活硫化亜鉛蛍光体
は、以下の方法で製造し得る。 まず、ZnS生粉に、付活剤であるAgの原料、共付活剤
であるAl、B、Brの原料とを加えて混合し、乾燥する。 Agの原料としては、硫酸塩等のAg化合物、Alの原料と
しては、硝酸塩等のAl化合物が使用できる。Bの原料と
しては、Bの水素化合物が、Brの原料としては、アンモ
ニウム塩が使用できる。 Ag原料の混合量は、焼成された蛍光体のAg含有量が、
0.03重量%〜0.20重量%となる量に調整される。 更に、これ等の蛍光体原料に加えて、アルカリ金属、
または、アルカリ土類金属の塩化物を添加し、更にま
た、酸化防止の為に少量のSを加え、これ等全ての原料
を充分混合した後、乾燥して蛍光体原料を得る。 次に、得られた蛍光体原料混合物を、石英ルツボ等の
耐熱性容器に充填して焼成を行う。焼成は、二硫化炭
素、硫化水素及び硫黄蒸気のうち少なくとも一種を含む
気体中での強還元性雰囲気で行う。 焼成温度は、結晶構造が立方晶系となるように、600
℃〜1000℃の範囲に調整する。焼成時間は、蛍光体原料
混合物の充填量、採用する焼成温度等によっても異なる
が、一般的には、1〜5時間が適当である。 本発明の立方晶系のZnS/Ag、Al、B、Brは、好ましく
は、アルミニウムの付活量が0.015重量%〜0.20重量%
に、BおよびBrの付活量が0.001重量%〜0.10重量%の
範囲に調整される。 得られた焼成物を水洗、乾燥して、ZnS/Ag、Al、B、
Br蛍光体を得る。この工程で製造された硫化亜鉛蛍光体
のX線回折結果を第2図に示す。この図から明らかなよ
うに、得られた硫化亜鉛蛍光体は、ZnS/Ag、Al、B、Br
蛍光体粒子集合体の結晶構造が、立方晶系である。 以下、実施例を挙げて本発明を更に詳しく説明する。 (実施例1) 下記の蛍光体原料を混合する。 硫化亜鉛 ZnS 100g 硫酸銀 Ag2SO4 0.145g 硫酸アルミニウム Al2(SO4)3 0.095g 硫酸カリウムアルミニウム K2Al2(SO4)4 0.143g 臭化アンモニウム NH4Br 0.2g 純水 300ml 混練された原料を、乾燥させた後、イオウ(S)を5
g、NaBH4を0.2g乾式混合する。 得られた蛍光体原料を石英ルツボに充填した後、電気
炉に入れて、強還元二硫化炭素雰囲気中で980℃の温度
で3.5時間焼成する。その後、焼成品を水洗して、乾燥
する。 得られた硫化亜鉛蛍光体は、Agの付活量が0.1重量
%、Alの付活量が0.05重量%、Bの付活量が0.0015重量
%、Brの付活量が0.0010重量%であった。 この硫化亜鉛蛍光体の、電流特性を、第1図に示す。
但し、第1図に於て、この発明の硫化亜鉛蛍光体の電流
特性は、従来の、銀およびアルミニウム付活硫化亜鉛蛍
光体の発光特性を100%とした相対値で表示し、電子線
の加速電圧は27kVとして測定した。 従来の硫化亜鉛蛍光体には、立方晶系と六方晶系とが
混在する、銀およびアルミニウム付活硫化亜鉛蛍光体
(特開昭62−95378号公報に開示されている蛍光体)を
使用し、Agの付活量を0.1重量%、Alの付活量を0.05重
量%とした。 このグラフに於て、曲線b、c、dは、本発明の実施
例1、2、3で試作された硫化亜鉛蛍光体の電流特性を
示し、曲線aは、従来の銀およびアルミニウム付活硫化
亜鉛蛍光体の電流特性を示す。 このグラフは、本発明の硫化亜鉛蛍光体(曲線b、
c、d)が、如何に優れた電流特性を有するかを明確に
する。即ち、この発明の硫化亜鉛蛍光体は、優れた電流
特性の硫化亜鉛蛍光体として知られていた、銀およびア
ルミニウム付活硫化亜鉛蛍光体の電流特性を更に向上す
る特性を実現している。 曲線bは、実施例1で得られた硫化亜鉛蛍光体が、従
来の銀およびアルミニウム付活硫化亜鉛蛍光体に比べる
と、電流密度、0.5μA/cm2に於ては5.4%、5μA/cm2に
於て11.1%、更に、50μA/cm2に於て20.2%も電流特性
が向上することを示している。 又、発光輝度は、高電流密度流域(50μA/cm2)に於
ては、従来の、銀およびアルミニウム付活硫化亜鉛蛍光
体に比べて、12.4%も高い発光輝度を示し、好ましい電
流特性に加えて、優れた発光輝度特性を備えている。 更に、試作された硫化亜鉛蛍光体のバーニング特性を
測定した結果、実施例1で得られた本発明の硫化亜鉛蛍
光体は、従来の蛍光体が強制試験後、輝度が85%に低下
したのに対し、輝度が93%にしか低下せず、優れたバー
ニング特性を示した。 但し、バーニング特性は次の状態で測定した。 パイレックスグラスに蛍光体を沈澱塗布し、これにア
クリルラッカーフィルミング及びメタルバックを施す。
そして、蛍光体輝度測定装置により、27kV、42μA/cm2
で30分間電子線を走査して強制劣化させてから、蛍光膜
の発光輝度を測定した。バーニング特性は、初期の発光
輝度を100%として強制劣化後の発光輝度を測定した。 (実施例2) 実施例1の原料に硫黄5gを添加し、焼成温度を950
℃、焼成時間を4時間とする以外、実施例1と同様にし
て、硫化亜鉛蛍光体を試作した。 得られた硫化亜鉛蛍光体は、第1図の曲線cで示す優
れた電流特性を示した。即ち、この硫化亜鉛蛍光体は、
電流密度が0.5μA/cm2に於ては従来の蛍光体よりも2.3
%、5μA/cm2に於ては15.3%、50μA/cm2に於ては27.8
%も電流特性が向上した。 また、発光輝度は、高電流密度流域(50μA/cm2)に
於ては、従来の、銀およびアルミニウム付活硫化亜鉛蛍
光体に比べて、15.8%も高い発光輝度を示し、好ましい
電流特性に加えて、優れた発光輝度特性を備えていた。 更に、この実施例で試作された硫化亜鉛蛍光体のバー
ニング特性を測定した結果、従来の蛍光体が強制試験
後、輝度が85%に低下したのに対し、輝度が90%にしか
低下せず、優れたバーニング特性を示した。 (実施例3) 原料に、硫黄5g、水素化ホウ素酸ナトリウム(NaB
H4)0.3gを加え、焼成温度を950℃、焼成時間を4時間
とする以外実施例1と同様にして硫化亜鉛蛍光体を試作
した。 得られた硫化亜鉛蛍光体は、第1図の曲線dで示す優
れた電流特性を示した。即ち、この硫化亜鉛蛍光体は、
電流密度が0.5μA/cm2に於ては従来の蛍光体よりも7.8
%、5μA/cm2に於ては18.0%、50μA/cm2に於ては25.4
%も電流特性が向上した。 また、発光輝度は、高電流密度流域(50μA/cm2)に
於ては、従来の、銀およびアルミニウム付活硫化亜鉛蛍
光体に比べて、14.6%も高い発光輝度を示し、好ましい
電流特性に加えて、優れた発光輝度特性を備えていた。 更に、この実施例で試作された硫化亜鉛蛍光体のバー
ニング特性を測定した結果、従来の蛍光体が強制試験
後、輝度が85%に低下したのに対し、輝度が91%にしか
低下せず、優れたバーニング特性を示した。Hereinafter, specific examples of the present invention will be described in more detail. The Ag-activated, Al, B, and Br co-activated zinc sulfide phosphor of the present invention can be manufactured by the following method. First, a raw material of Ag as an activator and raw materials of Al, B and Br as co-activators are added to ZnS raw powder, mixed, and dried. An Ag compound such as a sulfate can be used as a raw material of Ag, and an Al compound such as a nitrate can be used as a raw material of Al. A hydrogen compound of B can be used as a raw material of B, and an ammonium salt can be used as a raw material of Br. The mixing amount of the Ag raw material, the Ag content of the fired phosphor,
The amount is adjusted to be 0.03% by weight to 0.20% by weight. Further, in addition to these phosphor materials, alkali metals,
Alternatively, a chloride of an alkaline earth metal is added, and a small amount of S is added for the purpose of preventing oxidation. All of these materials are sufficiently mixed and then dried to obtain a phosphor material. Next, the obtained phosphor raw material mixture is filled in a heat-resistant container such as a quartz crucible and fired. The calcination is performed in a strongly reducing atmosphere in a gas containing at least one of carbon disulfide, hydrogen sulfide and sulfur vapor. The sintering temperature was set at 600 to make the crystal structure cubic.
Adjust to the range of ℃ ~ 1000 ℃. The firing time varies depending on the filling amount of the phosphor raw material mixture, the firing temperature to be employed, and the like, but generally, 1 to 5 hours is appropriate. The cubic ZnS / Ag, Al, B, and Br of the present invention preferably has an aluminum activation amount of 0.015% by weight to 0.20% by weight.
Then, the activation amounts of B and Br are adjusted to the range of 0.001% by weight to 0.10% by weight. The obtained fired product is washed with water and dried, and ZnS / Ag, Al, B,
Obtain Br phosphor. FIG. 2 shows an X-ray diffraction result of the zinc sulfide phosphor produced in this step. As is clear from this figure, the obtained zinc sulfide phosphor has ZnS / Ag, Al, B, Br
The crystal structure of the phosphor particle aggregate is cubic. Hereinafter, the present invention will be described in more detail with reference to examples. (Example 1) The following phosphor materials are mixed. Zinc sulfide ZnS 100 g Silver sulfate Ag 2 SO 4 0.145 g Aluminum sulfate Al 2 (SO 4 ) 3 0.095 g Potassium aluminum sulfate K 2 Al 2 (SO 4 ) 4 0.143 g Ammonium bromide NH 4 Br 0.2 g Pure water 300 ml Kneaded After drying the raw material, sulfur (S)
g, the NaBH 4 mixing 0.2g dry. After filling the obtained phosphor material in a quartz crucible, it is placed in an electric furnace and fired at 980 ° C. for 3.5 hours in a strongly reduced carbon disulfide atmosphere. Thereafter, the fired product is washed with water and dried. In the obtained zinc sulfide phosphor, the activation amount of Ag was 0.1% by weight, the activation amount of Al was 0.05% by weight, the activation amount of B was 0.0015% by weight, and the activation amount of Br was 0.0010% by weight. Was. FIG. 1 shows the current characteristics of the zinc sulfide phosphor.
However, in FIG. 1, the current characteristics of the zinc sulfide phosphor of the present invention are represented by relative values with the emission characteristics of the conventional silver and aluminum activated zinc sulfide phosphor being 100%. The acceleration voltage was measured at 27 kV. As the conventional zinc sulfide phosphor, a silver and aluminum activated zinc sulfide phosphor (a phosphor disclosed in Japanese Patent Application Laid-Open No. 62-95378) in which a cubic system and a hexagonal system are mixed is used. , Ag activation amount was 0.1% by weight, and Al activation amount was 0.05% by weight. In this graph, curves b, c, and d show current characteristics of the zinc sulfide phosphor prototyped in Examples 1, 2, and 3 of the present invention, and curve a shows conventional silver and aluminum activated sulfuration. 4 shows current characteristics of a zinc phosphor. This graph shows the zinc sulfide phosphor of the present invention (curve b,
It clarifies how c and d) have excellent current characteristics. That is, the zinc sulfide phosphor of the present invention realizes a characteristic of further improving the current characteristics of silver and aluminum activated zinc sulfide phosphor, which has been known as a zinc sulfide phosphor having excellent current characteristics. Curve b is zinc sulfide phosphor obtained in Example 1, as compared to conventional silver and aluminum activated zinc sulfide phosphor, the current density, 5.4% is At a 0.5μA / cm 2, 5μA / cm 2 shows that the current characteristics are improved by 11.1%, and further, at 50 μA / cm 2 , by 20.2%. In the high current density current range (50 μA / cm 2 ), the luminous luminance is 12.4% higher than that of the conventional silver and aluminum activated zinc sulfide phosphors. In addition, it has excellent emission luminance characteristics. Furthermore, as a result of measuring the burning characteristics of the prototype zinc sulfide phosphor, the brightness of the zinc sulfide phosphor of the present invention obtained in Example 1 was reduced to 85% after the conventional phosphor was subjected to the forced test. On the other hand, the luminance was reduced to only 93%, showing excellent burning characteristics. However, the burning characteristics were measured under the following conditions. The phosphor is precipitated and applied to Pyrex glass, which is subjected to acrylic lacquer filming and metal back.
27 kV, 42 μA / cm 2
After scanning with an electron beam for 30 minutes for forced deterioration, the emission luminance of the fluorescent film was measured. As for the burning characteristics, the emission luminance after forced degradation was measured with the initial emission luminance being 100%. (Example 2) 5 g of sulfur was added to the raw material of Example 1, and the firing temperature was set to 950.
A zinc sulfide phosphor was experimentally produced in the same manner as in Example 1 except that the sintering time was 4 hours. The obtained zinc sulfide phosphor exhibited excellent current characteristics shown by a curve c in FIG. That is, this zinc sulfide phosphor is
At a current density of 0.5 μA / cm 2 , 2.3
%, 15.3% is At a 5 .mu.A / cm 2, the At a 50 .mu.A / cm 2 27.8
% Also improved the current characteristics. In the high current density current range (50 μA / cm 2 ), the light emission luminance is 15.8% higher than that of the conventional silver and aluminum activated zinc sulfide phosphor, and the current characteristics are favorable. In addition, it had excellent emission luminance characteristics. Furthermore, as a result of measuring the burning characteristics of the zinc sulfide phosphor prototyped in this example, the brightness of the conventional phosphor was reduced to 85% after the forced test, whereas the brightness was reduced to only 90%. And excellent burning characteristics. (Example 3) As raw materials, 5 g of sulfur and sodium borohydride (NaB
H 4 ) was added, and a zinc sulfide phosphor was trial-produced in the same manner as in Example 1 except that the firing temperature was 950 ° C. and the firing time was 4 hours. The obtained zinc sulfide phosphor exhibited excellent current characteristics shown by a curve d in FIG. That is, this zinc sulfide phosphor is
At a current density of 0.5 μA / cm 2 , 7.8
% 18.0 percent At a 5 .mu.A / cm 2, the At a 50 .mu.A / cm 2 25.4
% Also improved the current characteristics. In the high current density current region (50 μA / cm 2 ), the emission luminance is 14.6% higher than that of the conventional silver- and aluminum-activated zinc sulfide phosphor. In addition, it had excellent emission luminance characteristics. Furthermore, as a result of measuring the burning characteristics of the zinc sulfide phosphor prototyped in this example, the brightness of the conventional phosphor was reduced to 85% after the forced test, but the brightness was reduced to only 91%. And excellent burning characteristics.
第1図は本発明のZnS/Ag、Al、B、Br蛍光体の電流密度
(μA/cm2)と電流特性(相対輝度%)の関係を示すグ
ラフ、第2図は本発明の硫化亜鉛蛍光体のX線回折グラ
フ(但しターゲットは銅、フィルターはニッケル)であ
る。FIG. 1 is a graph showing the relationship between current density (μA / cm 2 ) and current characteristics (relative luminance%) of the ZnS / Ag, Al, B, and Br phosphors of the present invention, and FIG. 2 is zinc sulfide of the present invention. 5 is an X-ray diffraction graph of a phosphor (a target is copper and a filter is nickel).
Claims (2)
(但し、0≦x≦1)、付活剤がAgを含み、かつ、共付
活剤がAlとBとBrとを含み、上記付活剤であるAgが上記
蛍光体の母体に対して0.03重量%〜0.20重量%含有され
ており、母体の結晶構造が立方晶系であることを特徴と
する硫化亜鉛蛍光体。The composition of the base material is represented by (Zn x Cd 1 -x ) S (where 0 ≦ x ≦ 1), the activator contains Ag, and the co-activator contains Al and B And Br, wherein the activator Ag is contained in an amount of 0.03% to 0.20% by weight based on the base of the phosphor, and the base has a cubic crystal structure. Zinc phosphor.
活剤であるAl、B、Brの原料を加えて混合してなる蛍光
体原料に、Li、Na及びKのうち少なくとも一種の元素を
含むアルカリ金属塩を添加した後、二硫化炭素、硫化水
素及び硫黄蒸気のうち少なくとも一種を含む気体中で焼
成して、 母体の組成が、(ZnxCd1-x)Sで表され(但し、0≦x
≦1)、付活剤としてAgを含み、かつ、共付活剤として
AlとBとBrとを含み、上記付活剤であるAgが上記蛍光体
の母体に対して0.03重量%〜0.20重量%含有されてお
り、母体の結晶構造が立方晶系である硫化亜鉛蛍光体の
製造方法。2. A phosphor raw material obtained by adding Ag raw material as an activator and Al, B, and Br raw materials as a co-activator to ZnS raw powder and mixing the raw material with Li, Na and K. After adding an alkali metal salt containing at least one of these elements, the mixture is calcined in a gas containing at least one of carbon disulfide, hydrogen sulfide, and sulfur vapor, so that the composition of the matrix is (Zn x Cd 1-x ) S (where 0 ≦ x
≦ 1), containing Ag as activator and as coactivator
A zinc sulfide fluorescent material containing Al, B and Br, wherein the activator Ag is contained in an amount of 0.03% by weight to 0.20% by weight with respect to the base of the phosphor, and the base has a cubic crystal structure; How to make the body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62328728A JP2583086B2 (en) | 1987-12-24 | 1987-12-24 | Zinc sulfide phosphor and manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62328728A JP2583086B2 (en) | 1987-12-24 | 1987-12-24 | Zinc sulfide phosphor and manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01168788A JPH01168788A (en) | 1989-07-04 |
JP2583086B2 true JP2583086B2 (en) | 1997-02-19 |
Family
ID=18213511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62328728A Expired - Lifetime JP2583086B2 (en) | 1987-12-24 | 1987-12-24 | Zinc sulfide phosphor and manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2583086B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07119413B2 (en) * | 1990-03-27 | 1995-12-20 | 化成オプトニクス株式会社 | Sulfide phosphor |
TW200522790A (en) * | 2003-10-07 | 2005-07-01 | Ifire Technology Corp | Polysulfide thermal vapour source for thin sulfide film deposition |
-
1987
- 1987-12-24 JP JP62328728A patent/JP2583086B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01168788A (en) | 1989-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1995295A1 (en) | Phosphor for display and field emission display | |
JP2583086B2 (en) | Zinc sulfide phosphor and manufacturing method | |
US3767459A (en) | Method for making electron energy sensitive phosphors for multi-color cathode ray tubes | |
JPS6254785A (en) | Sulfide phosphor | |
JP4318536B2 (en) | Red phosphor mainly composed of alkaline earth sulfide and method for producing the same | |
US4831269A (en) | Phosphors and fluorescent compositions for emission of light under low velocity electron excitation and fluorescent display devices utilizing the same | |
JP2535218B2 (en) | Self-activated zinc oxide phosphor | |
JP3263991B2 (en) | Blue light emitting phosphor | |
JP2004043568A (en) | Image display device | |
JPH11349937A (en) | Blue-emitting phosphor | |
JP2561144B2 (en) | Blue light emitting phosphor | |
JPH0715096B2 (en) | Afterglow fluorescent | |
JPH072945B2 (en) | Afterglow zinc sulfide phosphor | |
JPS6351480B2 (en) | ||
JPH0625350B2 (en) | Sulphide phosphor | |
JP3391356B2 (en) | Blue light emitting phosphor | |
US4931651A (en) | Phosphors and fluorescent compositions for emission of light under low-velocity electron excitation and fluorescent display devices utilizing the same | |
JP2004263068A (en) | Green light emitting fluorescent substance for low voltage/high current density use, and field emission type display unit using the same | |
JPS608072B2 (en) | luminescent material | |
JPH072946B2 (en) | Fluorescent body | |
JPH0456073B2 (en) | ||
JPH07116430B2 (en) | Long afterglow blue-emitting mixture phosphor | |
JPH0411687A (en) | Green phosphor for color cathode ray tube | |
JPH058235B2 (en) | ||
JPS6144913B2 (en) |