JP2580506B2 - Manufacturing method of heat resistant packing - Google Patents

Manufacturing method of heat resistant packing

Info

Publication number
JP2580506B2
JP2580506B2 JP63224408A JP22440888A JP2580506B2 JP 2580506 B2 JP2580506 B2 JP 2580506B2 JP 63224408 A JP63224408 A JP 63224408A JP 22440888 A JP22440888 A JP 22440888A JP 2580506 B2 JP2580506 B2 JP 2580506B2
Authority
JP
Japan
Prior art keywords
packing
expanded graphite
fiber
heat
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63224408A
Other languages
Japanese (ja)
Other versions
JPH0272943A (en
Inventor
淳一 相沢
寛 白田
威 宇津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63224408A priority Critical patent/JP2580506B2/en
Publication of JPH0272943A publication Critical patent/JPH0272943A/en
Application granted granted Critical
Publication of JP2580506B2 publication Critical patent/JP2580506B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、原子力用、火力発電用等の弁、ポンプな
ど、低放射化や高温高圧を要求される用途に用いられる
耐熱パッキンの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to a method for producing a heat-resistant packing used in applications requiring low radiation, high temperature and high pressure, such as valves and pumps for nuclear power and thermal power generation. About.

(従来の技術) 従来、上記のような用途に用いられるパッキンの実用
方法は、石綿等の繊維を基材とし、その空隙をゴム、油
指等の補助材で埋めてシール性を保持させた石綿系パッ
キンを単独で使用する方法、例えば第4図に示すように
膨張黒鉛製パッキン4を数段重ね、その両端から石綿及
び耐熱減摩剤を混和成形した芯の外周をモネル線入り石
綿糸で二重袋編みし表面に黒鉛を焼付処理した石綿編組
パッキン9で挾み込み方法が知られている。
(Prior art) Conventionally, a practical method of packing used for the above-mentioned applications is to use a fiber such as asbestos as a base material and fill the voids with an auxiliary material such as rubber or oil finger to maintain the sealing property. A method of using asbestos-based packing alone, for example, as shown in FIG. 4, several layers of expanded graphite packing 4 are stacked, and the outer periphery of a core obtained by mixing and molding asbestos and a heat-resistant lubricating agent from both ends is covered with a Monel wire-containing asbestos yarn. A method of sandwiching with an asbestos braided packing 9 in which a double bag is knitted and whose surface is baked with graphite is known.

(発明が解決しようとする問題点) しかし、近年世界的な規模で石綿の発癌性が問題とな
ってきており、パッキンについても非石綿比を早急に図
る必要があるほか、石綿系パッキンは、高温になると前
記補助材の体積減少が生じ、応力緩和やシール性の低下
として現われ、増締等のメンテナンスが必要がであり、
結局耐熱性が不充分で使用中に油脂分がにじみ出ること
がある。また油脂分が抜けた後は固くなってしまい、交
換時にパッキンをスタッフイングボックスや軸から取り
はずし難くなるという問題がある。さらに石油系パッキ
ンは、Cl等のハロゲンが使用中に溶出するため、原子力
用グランドパッキンとして使用する上の問題点となって
いる。
(Problems to be Solved by the Invention) However, in recent years, the carcinogenicity of asbestos has become a problem on a global scale, and it is necessary to promptly improve the ratio of non-asbestos to packing. When the temperature is high, the volume of the auxiliary material is reduced, and appears as stress relaxation or a decrease in sealing performance, requiring maintenance such as tightening,
Eventually, the heat resistance is insufficient and oils and fats may ooze during use. In addition, there is a problem that after the oil or fat is removed, the packing becomes hard, and it is difficult to remove the packing from the stuffing box or the shaft at the time of replacement. In addition, petroleum-based packing has a problem in using it as a nuclear gland packing because halogen such as Cl elutes during use.

一方第4図に示される方法によれば液体の洩れは膨張
黒鉛製パッキン4の良好なシール性で無くすことが可能
であるが、石綿編組パッキンを用い、膨張黒鉛製パッキ
ン単独で使用されないのは、パッキンをセットする際に
パッキン押え(グランドとも言う)による締込みによ
り、膨張黒鉛が変形自在なため締付圧力が高い場合に
は、グランドと相手材に軸あるいはパッキンケースとを
僅かな隙間からにじみ出易いという欠点があり、また膨
張黒鉛製パッキンは軸に付着し易いほか、交換時にばら
ばらになったり引きちぎられたりするためスタッフイン
グボックスの清掃に手間がかかり、特に原子力の用途で
は交換作業時に放射線被爆の危険がある等の欠点をもっ
ているからである。
On the other hand, according to the method shown in FIG. 4, the leakage of liquid can be eliminated by the good sealing property of the expanded graphite packing 4, but the asbestos braided packing is used and the expanded graphite packing is not used alone. When the packing is set, the expanded graphite can be deformed by tightening with the packing retainer (also called gland), so if the tightening pressure is high, the gland and the mating material should be separated from the shaft or packing case from a slight gap. It has the drawback of easily oozing, and the expanded graphite packing easily adheres to the shaft and separates and tears off during replacement, which takes time to clean the stuffing box. This is because it has disadvantages such as danger of being exposed.

本発明は上記した欠点を解消し、石綿を用いない耐熱
パッキンの製造法を提供することを目的とする。
An object of the present invention is to solve the above-mentioned disadvantages and to provide a method for manufacturing a heat-resistant packing without using asbestos.

(課題を解決するための手段) 本発明者らは、炭素繊維及び膨張黒鉛を用い、石緬系
パッキンに代替でき、油脂分等の流出がなく交換し易い
耐熱パッキンの製造法を見出した。
(Means for Solving the Problems) The present inventors have found a method for producing a heat-resistant packing that uses carbon fiber and expanded graphite, can be replaced with gypsum-based packing, has no outflow of oils and fats, and is easy to replace.

本発明は、膨張黒鉛に炭素繊維を加えて成形した棒状
の成形体の周囲の炭素繊維を編組した後成形し、該成形
物に有機物を含浸し、次いで焼成して有機物を炭化する
ことを特徴とする耐熱パッキンの製造法及び膨張黒鉛に
炭素繊維を加えて成形した棒状の成形体の周囲に有機繊
維を編組した後、成形次いで焼成して有機繊維を炭化す
るか又は焼成して有機繊維を炭化し、次いで成形するこ
とを特徴とする耐熱パッキンの製造法に関する。
The present invention is characterized in that carbon fibers around a rod-shaped molded body formed by adding carbon fibers to expanded graphite are braided, molded, the molded product is impregnated with an organic substance, and then fired to carbonize the organic substance. After braiding the organic fibers around a rod-shaped molded body formed by adding carbon fibers to expanded graphite and a method of manufacturing a heat-resistant packing to be formed, then forming and firing to carbonize the organic fibers or bake the organic fibers. The present invention relates to a method for producing a heat-resistant packing, which comprises carbonizing and then molding.

本発明において、膨張黒鉛の種類即ち出発原料、製造
法等に制限はない、膨張黒鉛に加える炭素繊維は軟質の
ものが好ましく、黒鉛繊維も含まれ、有機繊維を多少の
有機物が残る程度に炭化した繊維(半炭化繊維とする)
でもよく、短繊維、長繊維、布、メッシュ、フェルト等
の状態で加える。
In the present invention, the type of expanded graphite, that is, the starting material, the production method, and the like are not limited. The carbon fibers to be added to expanded graphite are preferably soft and include graphite fibers, and the organic fibers are carbonized to such an extent that some organic substances remain. Fiber (semi-carbonized fiber)
Alternatively, it may be added in the form of short fiber, long fiber, cloth, mesh, felt or the like.

成形体は、膨張黒鉛粒子に炭素繊維の短繊維を加えて
混合後成形する。膨張黒鉛シートと炭素繊維の長繊維、
布、メッシュ、フェルトを積層し成形する等の手段によ
り棒状体とされ、その断面形状は角形、円形、楕円形等
特に制限はない。
The molded article is molded after adding short fibers of carbon fibers to expanded graphite particles and mixing. Expanded graphite sheet and carbon fiber long fiber,
The rod-shaped body is formed by means such as laminating and forming a cloth, mesh, or felt, and the sectional shape thereof is not particularly limited, such as a square, a circle, and an ellipse.

成形体の周囲に設ける編組体用の炭素繊維は、黒鉛繊
維及び前記した半炭化繊維を含み、長繊維である。編組
の方法は袋編み等により行うが特に制限はなく、二重編
み、三重編み等にしてもよい。
The carbon fibers for the braid provided around the molded body include graphite fibers and the above-mentioned semi-carbonized fibers, and are long fibers. The method of braiding is performed by bag knitting or the like, but there is no particular limitation, and double knitting, triple knitting, or the like may be used.

全炭素質を要求されないパッキン用にはモネル線やSU
S線を混入させて補強してもよい。
For packing that does not require total carbon quality, use Monel wire or SU
S lines may be mixed in for reinforcement.

パッキン材は1本の成形体又は複数本の成形体を束ね
てその周囲に炭素繊維を編組して得られる。
The packing material is obtained by bundling one compact or a plurality of compacts and braiding carbon fibers around the bundle.

耐熱パッキンは、上記パッキン材を金型に入れて公知
の方法により所望の形状寸法に成形し、該成形物に熱硬
化成樹脂、タールピッチ等の有機物を含浸し、次いで有
機物を炭化して得られる。また棒状の成形体をPAN繊
維、フェノール樹脂繊維等のような炭化して炭素繊維と
なる有機繊維で編組しこれを金型に入れて成形した後焼
成して有機繊維を炭化繊維とするか又は編組体を焼成し
た後成形して耐熱パッキンとしてもよい。
The heat-resistant packing is obtained by placing the above packing material in a mold and molding it into a desired shape and size by a known method, impregnating the molded product with a thermosetting resin, an organic substance such as tar pitch, and then carbonizing the organic substance. Can be Further, the rod-shaped molded body is braided with organic fibers that become carbonized carbon fibers such as PAN fibers, phenolic resin fibers, and the like. The braided body may be fired and then molded to form a heat-resistant packing.

(実施例) 以下に本発明の実施例を説明する。(Example) An example of the present invention will be described below.

実施例1 42メッシュにピークをもつマダカスカル産天然鱗状黒
鉛粉末を濃硫酸と濃硝酸との混合液中に1時間浸漬後ろ
過して水洗後、130℃で乾燥した。次にこの粉末を1000
℃で10秒間急熱して黒鉛のC軸が200倍に膨張した膨張
黒鉛粒子を得た。次いで膨張黒鉛粒子を加圧成形してか
さ密度0.3g/cm3、厚さ0.9mmの膨張黒鉛シートを得た。
この膨張黒鉛シートを20cm平方に切断し、この上に炭素
繊維(日本カイノール株式会社製、CF−1601)を20cmの
長さに切断したものを隙間なく縦方向に均一に揃えて並
べ、この上に前記膨張黒鉛シートを重ね、さらにこの上
に前記炭素繊維を今度は横方向に揃えて並べ、以下同様
して膨張黒鉛シートの間に炭素繊維を交互に5層、外側
が必ず膨張黒鉛シートになるように合計で11層積重ね、
圧縮成形して厚さ8mmの成形体を得た。
Example 1 A natural scale graphite powder produced from Madakascal having a peak at 42 mesh was immersed in a mixed solution of concentrated sulfuric acid and concentrated nitric acid for 1 hour, filtered, washed with water, and dried at 130 ° C. Then add this powder to 1000
The mixture was rapidly heated at 10 ° C. for 10 seconds to obtain expanded graphite particles in which the C axis of graphite expanded 200 times. Next, the expanded graphite particles were subjected to pressure molding to obtain an expanded graphite sheet having a bulk density of 0.3 g / cm 3 and a thickness of 0.9 mm.
This expanded graphite sheet was cut into a square of 20 cm, and carbon fibers (CF-1601 manufactured by Nippon Kainol Co., Ltd.) cut to a length of 20 cm were lined up evenly in the vertical direction without any gap. The expanded graphite sheet is layered on top of this, and the carbon fibers are further arranged on this side in the horizontal direction. Similarly, five layers of carbon fibers are alternately arranged between the expanded graphite sheets, and the outside is always expanded graphite sheet. 11 layers in total so that
A compact having a thickness of 8 mm was obtained by compression molding.

次に前記成形体を幅8mmに切断して棒状とし、第1図
に示すようにこの棒状の成形体1の周囲に、低弾性炭素
繊維(日本カイノール株式会社製、CFY−0204−3)を
二重に袋編みして編組体2を設けパッキン材を得た。パ
ッキン材を金型に入れて加圧成形し、該成形にフルフリ
ルアルコール初期縮合物(日立化成工業株式会社製、ヒ
タフランVF−302)を含浸し、次いでこれを窒素気流中
で800℃まで加熱してフルフリルアルコール初期縮合物
を炭化させ、外形×内径×高さが48×30×9(mm)の第
2図に示すグランドパッキン3を得た。上記の加熱処理
によりフルフリルアルコール処理縮合物中の低沸点成分
が蒸発して残りの成分が炭化し、この炭化したものがフ
ィラー成分である膨張黒鉛及び炭素繊維の結合し、接着
することにより膨張黒鉛と炭素繊維との密着性が向上し
た。
Next, the molded body was cut into a width of 8 mm to form a rod. As shown in FIG. 1, around the rod-shaped molded body 1, low elastic carbon fibers (CFY-0204-3, manufactured by Nippon Kainol Co., Ltd.) were applied. The braided body 2 was provided by double bag knitting to obtain a packing material. The packing material is placed in a mold and molded under pressure. The molding is impregnated with furfuryl alcohol precondensate (Hitafuran VF-302, manufactured by Hitachi Chemical Co., Ltd.), and then heated to 800 ° C. in a nitrogen stream. The furfuryl alcohol precondensate was carbonized to obtain a gland packing 3 shown in FIG. 2 having an outer shape × inner diameter × height of 48 × 30 × 9 (mm). The above-mentioned heat treatment causes the low-boiling components in the furfuryl alcohol-treated condensate to evaporate and the remaining components to be carbonized. Adhesion between graphite and carbon fiber was improved.

この後第3図に示すように軸封部材における軸5の周
囲に膨張黒鉛製パッキン(日本ピラー工業株式会社製、
#6610)4を3段重ね、その上下に当グランドパッキン
3を配し、上側のグランドパッキン3の上からグランド
6で押え、グランド6をネジ7によりパッキンケース8
に固定して軸封した。漏洩試験をしたところ液体の洩れ
はなく良好なシール性を保持できた。またグランドパッ
キン3は軸5及びパッキンケース8に固着したり軸とパ
ッキンケース8との間隙からにじみ出ることがなく、パ
ッキンケース8からの抜き出しも容易であった。
Thereafter, as shown in FIG. 3, an expanded graphite packing (manufactured by Nippon Pillar Industry Co., Ltd.) is provided around the shaft 5 in the shaft sealing member.
# 6610) 4 layers are stacked, and the gland packing 3 is arranged on the upper and lower sides, and the gland 6 is pressed from above the upper gland packing 3, and the gland 6 is screwed into the packing case 8.
And the shaft was sealed. A leak test showed that there was no leakage of the liquid and good sealing properties could be maintained. Further, the gland packing 3 did not adhere to the shaft 5 and the packing case 8 or bleed out from the gap between the shaft and the packing case 8, and was easily pulled out from the packing case 8.

実施例2 実施例1で得た棒状の成形体の周囲にフェノール樹脂
繊維(日本カイノール株式会社製、カイノール繊維)を
二重に袋編みして編組体を設けパッキン材を得、以下パ
ッキン材を実施例1と同様にして金型に入れて成形後炉
に入れ、非酸化性雰囲気下で徐々に昇温し1000℃で焼成
炭化させてグランドパッキンを得た。得らてたグランド
パッキンを用いて実施例1と同様にして漏洩試験をした
ところ実施例1と同様に良好な結果を得た。
Example 2 A phenolic resin fiber (Kainol fiber, manufactured by Nippon Kainol Co., Ltd., kainol fiber) was double-knitted around the rod-shaped molded body obtained in Example 1 to form a braided body to obtain a packing material. In the same manner as in Example 1, the mold was placed in a mold, placed in a furnace after molding, gradually heated in a non-oxidizing atmosphere, and calcined at 1000 ° C. to obtain a gland packing. When a leakage test was performed using the obtained gland packing in the same manner as in Example 1, good results were obtained as in Example 1.

本発明の耐熱パッキンの耐熱性、荷重安定性及び水へ
の溶出性を確認するため、実施例1で得たパッキンと石
綿パッキン(比較例)について次の試験を実施した。
The following test was performed on the packing obtained in Example 1 and the asbestos packing (comparative example) in order to confirm the heat resistance, load stability, and dissolution property in water of the heat-resistant packing of the present invention.

(1) 耐熱性試験 上記パッキンを大気中で400℃に加熱し、時間の経過
と重量減少率との関係を求めた。その結果第5図に示す
とおりで実施例1のパッキンは重量が殆ど減少しない。
(1) Heat resistance test The packing was heated to 400 ° C. in the atmosphere, and the relationship between the passage of time and the weight loss rate was determined. As a result, as shown in FIG. 5, the packing of Example 1 hardly loses weight.

(2) 荷重安定性試験 第3図におけるグランド6により締付荷重を面圧400k
g/cm2とし、ロードセルにより常温における時間の経過
による締付面圧の変化を調査した。結果は第6図に示す
ように実施例1のパッキンは最初の締付面圧を100時間
にわたり維持できた。
(2) Load stability test A tightening load of 400k is applied by the gland 6 in Fig. 3.
g / cm 2 , and the load cell was used to investigate the change in the clamping surface pressure over time at room temperature. As shown in FIG. 6, the packing of Example 1 was able to maintain the initial tightening contact pressure for 100 hours.

(3) 溶出性試験 パッキンを純水中に常温で24時間浸漬した場合(A
法)及び90℃の純粋中に30分浸漬した場合(B法)にお
ける塩素イオン等の溶出量(ppm)を測定した。結果を
第1表に示す。
(3) Dissolution test When packing is immersed in pure water at room temperature for 24 hours (A
Method) and when immersed in pure water at 90 ° C. for 30 minutes (method B), the elution amount (ppm) of chloride ions and the like was measured. The results are shown in Table 1.

第1表から実施例1のパッキンは塩素イオン等の溶出
が全く見られない。
From Table 1, the packing of Example 1 shows no elution of chloride ions or the like.

(発明の効果) 本発明の耐熱パッキンは、膨張黒鉛単独のパッキンの
ような軸への付着や変形がなく、交換も容易である。ま
た石綿パッキンのように油脂分の流出やそれによる固化
なく、耐熱性が高く、増締等のメンテナンスが不要とな
る。
(Effect of the Invention) The heat-resistant packing of the present invention does not adhere or deform to the shaft like the packing of expanded graphite alone, and is easy to replace. Further, unlike the asbestos packing, there is no outflow of oils and fats and solidification due to the outflow, so that heat resistance is high and maintenance such as tightening becomes unnecessary.

さらに本発明によれば全炭素質のパッキンは耐放射性
を有するから、交換作業における危険性が小さく原子力
用に極めて有用である。
Further, according to the present invention, since the all-carbonaceous packing has radiation resistance, there is little danger in replacement work and it is extremely useful for nuclear power.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例におけるパッキン材の構造を説
明する断面図、第2図は本発明の実施例によって得られ
るグランドパッキンの斜視図、第3図は本発明によって
得られる耐熱パッキンの使用法を示す断面図、第4図は
従来のパッキンの使用法を示す断面図、第5図及び第6
図は重量減少率と時間との関係及び締付面圧と時間との
関係を示すグラフである。 符号の説明 1……成形体、2……編組体 3……グランドパッキン、4……膨張黒鉛製パッキン 5……軸、6……グランド 7……ネジ、8……パッキンケース
FIG. 1 is a cross-sectional view illustrating the structure of a packing material in an embodiment of the present invention, FIG. 2 is a perspective view of a gland packing obtained by the embodiment of the present invention, and FIG. FIG. 4 is a sectional view showing how to use the conventional packing, FIG. 5 and FIG.
The figure is a graph showing the relationship between the weight loss rate and time and the relationship between the tightening surface pressure and time. DESCRIPTION OF SYMBOLS 1... Molded article 2... Braided body 3... Gland packing 4... Expanded graphite packing 5... Shaft, 6... Ground 7...

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−29854(JP,A) 特開 昭55−112841(JP,A) 特開 昭60−84476(JP,A) 特開 昭60−127284(JP,A) 特開 平2−73881(JP,A) 実開 昭56−160360(JP,U) 特公 昭57−56512(JP,B2) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-57-29854 (JP, A) JP-A-55-112841 (JP, A) JP-A-60-84476 (JP, A) JP-A-60-84 127284 (JP, A) JP-A-2-73881 (JP, A) Japanese Utility Model Application Sho 56-160360 (JP, U) Japanese Patent Publication No. 57-56512 (JP, B2)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】膨張黒鉛に炭素繊維を加えて成形した棒状
の成形体の周囲の炭素繊維を編組した後成形し、該成形
物に有機物を含浸し、次いで焼成して有機物を炭化する
ことを特徴とする耐熱パッキンの製造法。
The present invention relates to a method in which carbon fibers around a rod-like molded body formed by adding carbon fibers to expanded graphite are braided, molded, impregnated with an organic substance, and then fired to carbonize the organic substance. Characteristic heat-resistant packing manufacturing method.
【請求項2】膨張黒鉛の炭素繊維を加えて成形した棒状
の成形体の周囲に有機繊維を編組した後、成形次いで焼
成して有機繊維を炭化するか又は焼成して有機繊維を炭
化し、次いで成形することを特徴とする耐熱パッキンの
製造法。
2. An organic fiber is braided around a rod-shaped molded body formed by adding carbon fiber of expanded graphite, and then molded and fired to carbonize the organic fiber, or fired to carbonize the organic fiber, Then, a method for producing a heat-resistant packing, characterized by forming.
JP63224408A 1988-09-09 1988-09-09 Manufacturing method of heat resistant packing Expired - Lifetime JP2580506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63224408A JP2580506B2 (en) 1988-09-09 1988-09-09 Manufacturing method of heat resistant packing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63224408A JP2580506B2 (en) 1988-09-09 1988-09-09 Manufacturing method of heat resistant packing

Publications (2)

Publication Number Publication Date
JPH0272943A JPH0272943A (en) 1990-03-13
JP2580506B2 true JP2580506B2 (en) 1997-02-12

Family

ID=16813298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63224408A Expired - Lifetime JP2580506B2 (en) 1988-09-09 1988-09-09 Manufacturing method of heat resistant packing

Country Status (1)

Country Link
JP (1) JP2580506B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129440A (en) * 2000-10-19 2002-05-09 Japan Matekkusu Kk Packing material comprising expanded graphite and gland packing made of the material and method for producing the gland packing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5420426A (en) * 1991-09-24 1995-05-30 Nohmi Boasai Ltd. Pyroelectric device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112841A (en) * 1978-12-06 1980-09-01 Soowa Kogyo Kk Manufacturing method of cylinder head gasket
JPS56160360U (en) * 1980-04-30 1981-11-30
JPS5729854A (en) * 1980-07-28 1982-02-17 Hitachi Chem Co Ltd Composite piled packing using expansion graphite formation
JPS6084476A (en) * 1983-10-17 1985-05-13 Nichias Corp Braided packing and preparation thereof
JPS60127284A (en) * 1983-12-14 1985-07-06 日立化成工業株式会社 Impermeable carbon material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129440A (en) * 2000-10-19 2002-05-09 Japan Matekkusu Kk Packing material comprising expanded graphite and gland packing made of the material and method for producing the gland packing
JP4527261B2 (en) * 2000-10-19 2010-08-18 ジャパンマテックス株式会社 Packing material made of expanded graphite, expanded graphite gland packing made of this material, and method for producing the expanded graphite gland packing

Also Published As

Publication number Publication date
JPH0272943A (en) 1990-03-13

Similar Documents

Publication Publication Date Title
EP0328008B1 (en) Composites of flexible graphite particles and amorphous carbon
US5225379A (en) Composites of flexible graphite particles and amorphous carbon
US5228701A (en) Flexible graphite articles with an amorphous carbon phase at the surface
CA1090085A (en) Graphite material having compressibility and recovering property and method for manufacturing the same
US4705722A (en) Gland packing
JPH0325669B2 (en)
JP4252669B2 (en) Material used for expanded graphite gland packing, expanded graphite gland packing made of this material, and method for producing the expanded graphite gland packing
CN111662678B (en) High-temperature antioxidant flexible graphite filler, preparation method and high-temperature antioxidant flexible graphite packing
JP6172732B2 (en) Graphite sheet composite material and manufacturing method thereof
JP2580506B2 (en) Manufacturing method of heat resistant packing
EP0282284A1 (en) Combined yarn packing material
EP0280233B1 (en) Method for producing carbon-carbon composite materials
JP2013221602A (en) Sealing member and manufacturing method thereof
JP2006349070A (en) Packing material, gland packing using this packing material, manufacturing method for packing material, and manufacturing method for gland packing
JP2015523950A (en) Insulator manufacturing method
JP3862855B2 (en) Gland packing and manufacturing method thereof
EP0334589B1 (en) Flexible carbon seal ring with an amorphous carbon phase on its sealing
US3322866A (en) Method of extruding carbon articles
JP2762184B2 (en) Packing material and seal member using the same
CN101451058A (en) Carbon graphite composite material for sea water pump sealing and preparation method thereof
JP2635108B2 (en) Gland packing assembly
JP4869493B2 (en) Gasket for high temperature joint and method for producing the same
SU1766707A1 (en) Composite material
JPS6084476A (en) Braided packing and preparation thereof
JP2660516B2 (en) Graphite crucible for pulling silicon single crystal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term