JP2579562B2 - Fiber structure having deodorant and antibacterial properties - Google Patents

Fiber structure having deodorant and antibacterial properties

Info

Publication number
JP2579562B2
JP2579562B2 JP3092619A JP9261991A JP2579562B2 JP 2579562 B2 JP2579562 B2 JP 2579562B2 JP 3092619 A JP3092619 A JP 3092619A JP 9261991 A JP9261991 A JP 9261991A JP 2579562 B2 JP2579562 B2 JP 2579562B2
Authority
JP
Japan
Prior art keywords
mixed
base material
mixture
weight
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3092619A
Other languages
Japanese (ja)
Other versions
JPH04308270A (en
Inventor
前田信秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3092619A priority Critical patent/JP2579562B2/en
Publication of JPH04308270A publication Critical patent/JPH04308270A/en
Application granted granted Critical
Publication of JP2579562B2 publication Critical patent/JP2579562B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、脱臭性および抗菌性を
兼ね備えた繊維構造物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber structure having both deodorizing properties and antibacterial properties.

【0002】[0002]

【従来の技術】従来、脱臭性繊維または抗菌性繊維は知
られてるが、脱臭性と抗菌性を兼ね備えた繊維構造物は
存在していなかった。
2. Description of the Related Art Hitherto, deodorizing fibers or antibacterial fibers have been known, but there has been no fiber structure having both deodorizing properties and antibacterial properties.

【0003】[0003]

【発明が解決しようとする課題】上記のように、従来は
脱臭性と抗菌性を兼ね備えた繊維構造物は存在していな
かったため、例えば特に病院におけるシ―ツ、ふとんカ
バ―、その他台所の布巾等はクリ―ニングや洗浄をして
も、汚臭や雑菌が除去されず、極めて不衛生であるとい
う問題点があった。
As described above, there has hitherto not been a fiber structure having both deodorizing properties and antibacterial properties. Therefore, for example, sheets, futon covers, and other kitchen cloths especially in hospitals. However, even if they are cleaned or washed, they have a problem that they do not remove odors and various germs and are extremely unsanitary.

【0004】本発明はかかる問題点を解決すべくなした
もので、脱臭性および抗菌性を有する繊維構造物を提供
しようとするものである。
[0004] The present invention has been made to solve such problems, and an object thereof is to provide a fiber structure having deodorizing properties and antibacterial properties.

【0005】[0005]

【課題を解決するための手段】本発明は、粒径15μm
以下のマグネシア微粉末を基材とすると共に、該基材が
30〜75重量%に対して、単一成分のセラミックスで
ある粒径15μm以下のアルミナ、硅石、酸化亜鉛、チ
タン、ゼオライト、蛇紋石、または角閃石の微粉末のう
ちいずれか一種類を混合材として、該混合材を15〜3
5重量%の割合で前記基材に添加混合すると共に、更に
前記粒径15μm以下のアルミナ、硅石、酸化亜鉛、チ
タン、ゼオライト、蛇紋石、または角閃石の微粉末のう
ち、前記混合材として添加混合した以外のいずれか一種
類を助材として、該助材を15〜35重量%の割合で前
記基材に添加混合して、混合機および粉砕機に順次複数
回に亘って投入して、前記基材と混合材および助材とを
混合攪拌および粉砕して均一に混合し、然る後200〜
500℃の焼成温度で焼成機により焼成して得られた複
合セラミックスを、アクリル接着剤と乳濁液との混合溶
液中に添加混合攪拌して、該混合溶液を織物、編物、不
織布等の繊維構造物に塗布するか、または前記混合溶液
を前記繊維構造物に噴霧するか、あるいは前記混合溶液
中に前記繊維構造物を含浸せしめるという手段を採用す
ることにより上記問題点を解決した。
According to the present invention, a particle size of 15 μm is provided.
The following magnesia fine powder is used as a base material, and alumina, silica, zinc oxide, titanium, zeolite, and serpentine having a particle size of 15 μm or less are ceramics of a single component with respect to 30 to 75% by weight of the base material. Or any one of fine powders of amphibole as a mixture,
5% by weight and mixed with the base material, and further added as the mixed material among the fine powders of alumina, silica, zinc oxide, titanium, zeolite, serpentine, or amphibolite having a particle size of 15 μm or less. Using any one type other than the mixture as an auxiliary material, the auxiliary material is added to and mixed with the base material at a ratio of 15 to 35% by weight, and is sequentially charged into a mixer and a pulverizer a plurality of times. The base material and the admixture and auxiliary materials are mixed, stirred and crushed to be uniformly mixed, and then 200 to
A composite ceramic obtained by firing with a firing machine at a firing temperature of 500 ° C. is added to a mixed solution of an acrylic adhesive and an emulsion and mixed and stirred, and the mixed solution is mixed with a fiber such as a woven fabric, a knitted fabric, or a nonwoven fabric. The above-mentioned problems have been solved by applying means to the structure, applying the mixed solution to the fiber structure, or impregnating the mixed solution with the fiber structure.

【0006】[0006]

【作用】上記脱臭性および抗菌性を有する複合セラミッ
クスは強アルカリ性状を呈し、且つ水素イオン濃度の経
時変化がなく陽イオンを発生して、一般生菌を死滅させ
ると共に、硫化水素およびアンモニアを分解する。そし
て、前記複合セラミックスを繊維構造物に塗布または噴
霧あるいは含浸させることにより、繊維構造物に脱臭性
および抗菌性を保有させる。
The composite ceramic having deodorizing and antibacterial properties exhibits a strong alkaline property, generates cations without a change in hydrogen ion concentration with time, kills general viable bacteria, and decomposes hydrogen sulfide and ammonia. I do. Then, by applying, spraying or impregnating the composite ceramics on the fiber structure, the fiber structure is provided with deodorizing properties and antibacterial properties.

【0007】[0007]

【実施例】単一成分のセラミックスのうち、ゼオライト
および硅石は、夫々臭気の発生源であるアンモニアや硫
化水素に対して80〜100%の脱臭率を有し、脱臭性
において非常に優れているが、大腸菌やブドウ状球菌に
対しては全く抗菌性がないことが知られている。また、
単一成分のセラミックスのうち、マグネシアは大腸菌や
ブドウ状球菌に対してほぼ100%に近い抗菌率を有
し、抗菌性において非常に優れているが、アンモニアや
硫化水素に対しては全く脱臭性がないことが知られてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Among ceramics of a single component, zeolite and silica stone have a deodorization rate of 80 to 100% with respect to ammonia and hydrogen sulfide, which are odor sources, respectively, and are very excellent in deodorization. However, it is known that it has no antibacterial properties against Escherichia coli and staphylococci. Also,
Among the single-component ceramics, magnesia has an antibacterial rate close to 100% against Escherichia coli and staphylococci, and is extremely excellent in antibacterial properties, but is completely deodorant against ammonia and hydrogen sulfide. It is known that there is no.

【0008】本発明者は前記観点から、単一成分のセラ
ミックスにつき、夫々脱臭率と抗菌率につき、個々に測
定し、脱臭率または抗菌率において優れたものを抽出す
ると共に、前記各セラミックスを基材、混合材および助
材のいずれかとして採用してこれを一定比率で混合攪拌
し、然る後焼成して脱臭性および抗菌性を夫々有する複
合セラミックスを製造すると共に、該複合セラミックス
を、アクリル接着剤と乳濁液との混合溶液中に添加混合
攪拌して、該混合溶液を織物、編物、不織布等の繊維構
造物に塗布するか、または前記混合溶液を前記繊維構造
物に噴霧するか、あるいは前記混合溶液中に前記繊維構
造物を含浸せしめることにより、脱臭性および抗菌性を
夫々有する繊維構造物を完成した。
In view of the above, the present inventor individually measured the deodorization rate and the antibacterial rate of a single-component ceramic, extracted those excellent in the deodorization rate or the antibacterial rate, and based on the ceramics. Materials, mixed materials and auxiliary materials are employed and mixed and stirred at a fixed ratio, and then fired to produce composite ceramics having deodorizing and antibacterial properties, and the composite ceramics is made of acrylic. Addition and mixing and stirring in a mixed solution of an adhesive and an emulsion, and applying the mixed solution to a fibrous structure such as a woven fabric, a knitted fabric, or a nonwoven fabric, or spraying the mixed solution onto the fibrous structure Alternatively, the fiber structure was impregnated with the mixed solution to complete a fiber structure having deodorizing properties and antibacterial properties.

【0009】本発明に使用される脱臭性と抗菌性を有す
る複合セラミックスの基材となる単一成分のセラミック
スの脱臭率と抗菌率を測定した処、表1に示す測定値を
得た。
When the deodorizing rate and the antibacterial rate of the single component ceramics used as the base material of the composite ceramic having deodorizing and antibacterial properties used in the present invention were measured, the measured values shown in Table 1 were obtained.

【0010】[0010]

【表1】 [Table 1]

【0011】表1の結果から、マグネシアが大腸菌およ
びブウ状球菌のいずれにも、ほぼ100%に近い抗菌
率を有し、アルミナは大腸菌に対してほぼ100%に近
い抗菌率を有するが、ブウ状球菌に対しては全く抗菌
性がないことが判った。更に、硅石は硫化水素に対して
100%、アンモニアに対しては93%の脱臭率を有す
るが、抗菌性はほとんどなく、酸化亜鉛は硫化水素に対
して100%の脱臭率を有するが、アンモニアに対して
はほとんど脱臭性がなく、抗菌性もほとんどなく、また
チタンはアンモニアに対して60%の脱臭率を有する
が、硫化水素に対してはほとんど脱臭性がなく、抗菌性
もほとんどないことが判った。更にまた、ゼオライト
は、前記したようにいずれも脱臭率は高いが、抗菌性は
ほとんどなく、蛇紋石は硫化水素に対して100%の脱
臭率を有するが、アンモニアに対しては脱臭性がなく、
ブドウ状球菌に対しては100%近い抗菌率を有する
が、大腸菌に対しては抗菌性が余りなく、角閃石は脱臭
性はほとんどなく、ブドウ状球菌に対し、やや抗菌性が
あることが判った。
[0011] From the results shown in Table 1, in any of magnesia E. coli and blanking de U-shaped cocci, have antibacterial index close to almost 100%, but alumina has antibacterial rate almost 100% relative to E. coli , it was found that there is no antimicrobial for blanking de U-shaped cocci. Furthermore, silica stone has a deodorization rate of 100% for hydrogen sulfide and 93% for ammonia, but has almost no antibacterial properties, and zinc oxide has a deodorization rate of 100% for hydrogen sulfide. Has almost no deodorizing and antibacterial properties against water, and titanium has a deodorizing rate of 60% for ammonia, but has little deodorizing properties for hydrogen sulfide and little antibacterial property I understood. Furthermore, zeolite has a high deodorization rate as described above, but has almost no antibacterial properties. Serpentine has a deodorization rate of 100% with respect to hydrogen sulfide, but has no deodorization property with respect to ammonia. ,
It has almost 100% antibacterial activity against staphylococci, but has little antibacterial activity against Escherichia coli, amphibole has almost no deodorization, and it is found to be slightly antibacterial against staphylococci. Was.

【0012】上記の結果より、大腸菌とブドウ状球菌の
いずれに対してもほぼ100%に近い抗菌率を有するマ
グネシアを本発明に使用される脱臭性と抗菌性を有する
複合セラミックスの基材として採用し、この基材となる
30〜75重量%のマグネシアに、混合材として単一成
分のセラミックスであるアルミナ、硅石、酸化亜鉛、チ
タン、ゼオライト、蛇紋石、角閃石のうちの一種類を1
5〜35重量%の割合で添加混合し、更に前記アルミ
ナ、硅石、酸化亜鉛、チタン、ゼオライト、蛇紋石、角
閃石のうち、前記混合材として添加混合した以外のいず
れか一種類を助材として、15〜35重量%の割合で前
記基材に添加混合することによって、脱臭性と抗菌性を
兼ね備えた複合セラミックスを得た。
Based on the above results, magnesia having an antibacterial rate of nearly 100% against both Escherichia coli and staphylococci was employed as the base material of the deodorizing and antibacterial composite ceramics used in the present invention. Then, one kind of a single-component ceramic, alumina, silica, zinc oxide, titanium, zeolite, serpentine, and amphibolite is mixed with 30 to 75% by weight of magnesia as a base material.
5 to 35% by weight of the alumina, silica, zinc oxide, titanium, zeolite, serpentine, amphibolite, and any one other than the above-mentioned mixture as an additive. By adding and mixing to the substrate at a ratio of 15 to 35% by weight, a composite ceramic having both deodorizing properties and antibacterial properties was obtained.

【0013】以下脱臭性と抗菌性を有する複合セラミッ
クスの製造方法について更に詳細に説明する。前記基材
となるマグネシアと、前記混合材および助材となる前記
各セラミックスの粒径は、好ましくは15μm以下、特
に好ましくは10μm以下の微粉末を使用する必要があ
り、そしてこれら各セラミックスを混合すると、各セラ
ミックスの比重、水分、湿度等の物理的特性が夫々異な
ると共に、これら原材料である前記各セラミックスは粒
径が15μm以下の微粉末であるため、凝集化が安易に
作用して、前記各セラミックスを均一に混合することは
極めて容易ではない。
Hereinafter, a method for producing a composite ceramic having deodorizing properties and antibacterial properties will be described in more detail. The magnesia serving as the base material, and the particle size of the ceramics serving as the admixture and the auxiliary material are preferably 15 μm or less, particularly preferably 10 μm or less. Then, each ceramic has different physical properties such as specific gravity, moisture, humidity and the like, and each of the ceramics as a raw material is a fine powder having a particle size of 15 μm or less. It is not very easy to mix each ceramic uniformly.

【0014】そこで本発明者は、前記基材と混合材およ
び助材とを夫々所定比率で混合機に投入して混合攪拌し
た後、その混合物を粉砕機に投入して粉砕し、そして更
に、前記粉砕したものを再び混合機に投入して混合攪拌
し、その後また粉砕機に投入して粉砕するという工程を
順次約30分間繰返すという手段を採用することによ
り、基材と混合材および助材とが均一に混合された複合
セラミックスを作ることができた。
Therefore, the present inventors put the base material, the mixture material and the auxiliary material in a predetermined ratio into a mixer, mix and stir the mixture, then put the mixture into a pulverizer and pulverize it. By adopting a means of repeating the process of charging the crushed material again into the mixer, mixing and stirring, and then further charging the crusher and grinding for about 30 minutes, the base material, the mixed material and the auxiliary material are repeated. Was successfully mixed to produce a composite ceramic.

【0015】そして、前記均一に混合された複合セラミ
ックスの化学特性の安定化を図るため、複合セラミック
スを200〜500℃の焼成温度で焼成機により焼成し
て、脱臭性と抗菌性とを有する複合セラミックスとする
のである。
In order to stabilize the chemical properties of the uniformly mixed composite ceramics, the composite ceramics are fired by a firing machine at a firing temperature of 200 to 500 ° C. to obtain a composite having deodorizing properties and antibacterial properties. Ceramics.

【0016】次に、前記基材であるマグネシアに、混合
材および助材となるアルミナ、硅石、酸化亜鉛、チタ
ン、ゼオライト、蛇紋石、角閃石を夫々単一成分毎に、
その混合比率を異にして得られた複合セラミックスの脱
臭率と抗菌率を測定した結果を表2に示す。
Next, alumina, silica, zinc oxide, titanium, zeolite, serpentine, and amphibolite serving as a mixing material and an auxiliary material are added to magnesia as the base material for each single component.
Table 2 shows the results of measuring the deodorization rate and antibacterial rate of the composite ceramics obtained by changing the mixing ratio.

【0017】なお、表2においてNo.1〜No.8の
各複合セラミックスと混合比率の表示中の上段は基材で
あるマグネシア、中段は混合材、下段は助材と、その夫
々の混合比率を示している。
In Table 2, No. 1 to No. In each of the composite ceramics 8 and the mixing ratio, the upper row shows magnesia as a base material, the middle row shows a mixed material, the lower row shows an auxiliary material, and the respective mixing ratios.

【0018】[0018]

【表2】 [Table 2]

【0019】前記表2の結果から、特にマグネシアに、
チタン、酸化亜鉛、硅石,アルミナのいずれかを、混合
材および助材として添加混合した複合セラミックスおよ
び蛇紋石、角閃石を助材として添加混合した複合セラミ
ックスが、脱臭率および抗菌率において高い数値がで
て、脱臭性および抗菌性に優れていることが判った。
From the results in Table 2 above, particularly for magnesia,
Composite ceramics containing titanium, zinc oxide, silica stone, and alumina as admixtures and additives, and composite ceramics containing serpentine and amphibolite as additives, have high deodorization and antibacterial rates. As a result, it was found to be excellent in deodorizing properties and antibacterial properties.

【0020】なお前記複合セラミックスの材料である各
セラミックスの水素イオン濃度は、表3の通りアルカリ
性状を呈している。
The hydrogen ion concentration of each ceramic as a material of the composite ceramic is in an alkaline state as shown in Table 3.

【0021】[0021]

【表3】 [Table 3]

【0022】表3所載の水素イオン濃度を有する各セラ
ミックスを複合した前記複合セラミックスの水素イオン
濃度は、前記のように200℃〜500℃で焼成されて
いるので、非常に安定して強アルカリ性状を呈し、表4
に示すように水素イオン濃度の経時変化がない。更に、
これら複合セラミックスは焼成によって結晶化されて、
陽イオンを発生する複合セラミックスになる。前記複合
セラミックスが強アルカリ性状を呈するのは、その焼成
加工中に不純物がガス化されるので、単一成分のセラミ
ックスよりも強アルカリ性に移行するからである。
The hydrogen ion concentration of each of the composite ceramics obtained by compounding each ceramic having a hydrogen ion concentration shown in Table 3 is very stable and strongly alkaline since the composite ceramic is fired at 200 to 500 ° C. as described above. Table 4
As shown in the figure, there is no change with time in the hydrogen ion concentration. Furthermore,
These composite ceramics are crystallized by firing,
It becomes a composite ceramic that generates cations. The reason why the composite ceramic exhibits a strong alkaline property is that impurities are gasified during the sintering process, so that the composite ceramic is more strongly alkaline than a single component ceramic.

【0023】[0023]

【表4】 [Table 4]

【0024】前記表3,表4から前記製造方法によって
得られた複合セラミックスは、陽イオンを有する複合セ
ラミックスであり、強アルカリ域の水素イオン濃度にな
り、1年以上という長時間に亘って経時変化がなく安定
していて、脱臭機構は分解作用であるという特性を有
し、その結果前記製造方法によって得られた複合セラミ
ックスは抗菌性と脱臭性の両作用を兼ね備えていること
が判る。
From Tables 3 and 4, the composite ceramics obtained by the above-described production method is a composite ceramic having cations, has a hydrogen ion concentration in a strong alkali region, and has a long time of one year or more. It is stable without any change, and has a characteristic that the deodorizing mechanism is a decomposing action. As a result, it can be seen that the composite ceramics obtained by the production method has both antibacterial properties and deodorizing actions.

【0025】すなわち、一般的に生菌の表層(壁)は陰
イオンであって、そのため中性領域(pH7.0〜7.
5)でしか生息が不可能であるが、前記製造方法によっ
て得られた複合化された複合セラミックスの最大の特性
として陽イオンを発生するので、陰イオンである菌体の
表層(壁)が、前記複合セラミックスの陽イオンによっ
て破壊されると同時に、菌体蛋白質が変性して、呼吸困
難となり死滅するのである。
That is, generally, the surface layer (wall) of a living bacterium is an anion, so that it is in a neutral region (pH 7.0 to 7.0).
Although it is impossible to inhabit only in 5), cations are generated as the greatest characteristic of the composite ceramics obtained by the above-mentioned manufacturing method, so that the surface layer (wall) of the bacterial cells which are anions, At the same time as being destroyed by the cations of the composite ceramics, the bacterial protein is denatured, resulting in dyspnea and death.

【0026】更に、硫化水素およびアンモニア等に対す
る脱臭作用は、物理的吸着または化学的吸着等の一般的
作用ではなく、分解作用のため飽和状態にならないの
で、抗菌力と同様に、脱臭力を半恒久的に有すると共
に、毒性をも有していないのである。
Furthermore, the deodorizing effect on hydrogen sulfide and ammonia is not a general effect such as physical adsorption or chemical adsorption, but does not become saturated due to the decomposing effect. It is permanent and has no toxicity.

【0027】(実施例1) 前記製造方法によって得られた複合セラミックスを、
クリル接着剤と乳濁液との混合溶液中に添加混合攪拌し
て、該混合溶液を織物、編物、不織布等の繊維構造物に
プリント印刷機または塗布具などの塗布機を用いて塗布
することにより、前記繊維構造物に前記複合セラミック
スを付着せしめて、脱臭性および抗菌性を有する繊維構
造物が形成される。
[0027] (Example 1) composite ceramic obtained by the producing method, A
Adding to a mixed solution of a cryl adhesive and an emulsion, mixing and stirring, and applying the mixed solution to a textile structure such as a woven fabric, a knitted fabric, or a non-woven fabric using a coating machine such as a print printer or a coating tool. Thereby, the composite ceramics is adhered to the fiber structure to form a fiber structure having deodorization and antibacterial properties.

【0028】実施例1の実験例を示すと、前記複合セラ
ミックス中、表2No.1に示す、5重量%の複合セラ
ミックスを、50重量%のアクリル接着剤と45重量%
の乳濁液との混合溶液中に添加混合攪拌して、該混合溶
液を織物に塗布した処、前記アクリル接着剤は架橋して
熱水、溶剤に強いポリマ―となると共に、通常剥離強度
が30〜50kg以上で、300回洗濯しても剥離しな
い強い繊維構造物が得られた。
The experimental example of Example 1 is shown in Table 2 in the composite ceramics. 5% by weight of the composite ceramic shown in FIG.
When the acrylic adhesive is cross-linked to become a polymer resistant to hot water and a solvent, and usually has a peel strength, At 30-50 kg or more, a strong fibrous structure that did not peel off even after washing 300 times was obtained.

【0029】そして、この織物に塗布した例と、前記各
混合比率のうち、アクリル接着剤に代えて、エポキシ接
着剤を45重量%としたものを織物に塗布した例につ
き、脱臭率と抗菌率を測定した処、表5に示す結果を得
た。また、前記表5の織物に代えて、表5の場合と同一
比率の物を不織布に塗布し、その脱臭率と抗菌率を測定
した処、表6に示す結果を得た。すなわち、いずれも
クリル接着剤を使用する方が、脱臭率と抗菌率とにおい
て優れていることが判った。
[0029] Then, the example was applied to the fabric, of the respective mixing proportions, in place of the acrylic adhesive, a material obtained by the error epoxy adhesive with 45 wt% per the example was applied to the fabric, the deodorizing rate and antimicrobial When the ratio was measured, the results shown in Table 5 were obtained. Further, instead of the woven fabric of Table 5, the same ratio as that of Table 5 was applied to the nonwoven fabric, and the deodorization rate and antibacterial rate were measured. As a result, the results shown in Table 6 were obtained. In other words, both A
It was found that the use of the cryl adhesive was superior in deodorization rate and antibacterial rate.

【0030】[0030]

【表5】 [Table 5]

【0031】[0031]

【表6】 [Table 6]

【0032】(実施例2) 前記製造方法によって得られた複合セラミックスを、実
施例1に述べたアクリル接着剤と乳濁液との混合溶液中
に添加混合攪拌して、該混合溶液を織物、編物、不織布
等の繊維構造物に吹き付け機を用いて霧状に噴霧するこ
とにより、前記繊維構造物に前記複合セラミックスを付
着せしめて、脱臭性および抗菌性を有する繊維構造物が
形成される。
(Example 2) The composite ceramics obtained by the above manufacturing method was added to the mixed solution of the acrylic adhesive and the emulsion described in Example 1 and mixed and stirred. By spraying the fibrous structure such as a knitted fabric or a nonwoven fabric in a mist state using a spraying machine, the composite ceramic is adhered to the fibrous structure to form a fibrous structure having deodorant and antibacterial properties.

【0033】実施例2の実験例を示すと、前記複合セラ
ミックス中、表2No.1に示す、3重量%の複合セラ
ミックスを、52重量%のアクリル接着剤と45重量%
の乳濁液との混合溶液中に添加混合攪拌して、該混合溶
液を吹き付け機を用いて織物に50μm以下の厚みにな
るよう噴霧した処、前記アクリル接着剤は架橋して熱
水、溶剤に強いポリマ―となると共に、通常剥離強度が
30〜50kg以上で、300回洗濯しても剥離しない
強い製品が得られた。
An experimental example of Example 2 is shown in Table 2 in the composite ceramics. 3% by weight of the composite ceramic shown in FIG.
The acrylic adhesive is cross-linked to form a hot water, a solvent, and the mixture is mixed and stirred into a mixed solution with the emulsion, and the mixed solution is sprayed on the woven fabric to a thickness of 50 μm or less using a spraying machine. In addition to a strong polymer, a product having a normal peel strength of 30 to 50 kg or more and a strong peeling property even after washing 300 times was obtained.

【0034】そして、この織物に塗布した例と、前記各
混合比率のうち、アクリル接着剤に代えて、エポキシ接
着剤を45重量%としたものを織物に塗布した例につ
き、脱臭率と抗菌率を測定した処、表7に示す結果を得
た。また、前記表7の織物に代えて、表7の場合と同一
比率の物を不織布に塗布し、その脱臭率と抗菌率を測定
した処、表8に示す結果を得た。すなわち、いずれも
クリル接着剤を使用する方が、脱臭率と抗菌率とにおい
て優れていることが判った。
[0034] Then, the example was applied to the fabric, of the respective mixing proportions, in place of the acrylic adhesive, a material obtained by the error epoxy adhesive with 45 wt% per the example was applied to the fabric, the deodorizing rate and antimicrobial When the ratio was measured, the results shown in Table 7 were obtained. Further, instead of the woven fabric of Table 7, a nonwoven fabric having the same ratio as in Table 7 was applied to the nonwoven fabric, and the deodorization rate and the antibacterial rate were measured. The results shown in Table 8 were obtained. In other words, both A
It was found that the use of the cryl adhesive was superior in deodorization rate and antibacterial rate.

【0035】[0035]

【表7】 [Table 7]

【0036】[0036]

【表8】 [Table 8]

【0037】(実施例3) 前記製造方法によって得られた複合セラミックスを、実
施例1に述べたアクリル接着剤と乳濁液との混合溶液中
に添加混合攪拌して、該混合溶液中に織物、編物、不織
布等の繊維構造物を含浸することにより、前記繊維構造
物に前記複合セラミックスを付着せしめて、脱臭性およ
び抗菌性を有する繊維構造物が形成される。
(Example 3) The composite ceramics obtained by the above manufacturing method was added to the mixed solution of the acrylic adhesive and the emulsion described in Example 1 and mixed and stirred, and the woven fabric was added to the mixed solution. By impregnating a fibrous structure such as a knitted fabric or a nonwoven fabric, the composite ceramic is attached to the fibrous structure to form a fibrous structure having deodorant and antibacterial properties.

【0038】実施例3の実験例を示すと前記複合セラミ
ックス中、表2No.1に示す、3重量%の複合セラミ
ックスを、52重量%のアクリル接着剤と45重量%の
乳濁液との混合溶液中に添加混合攪拌して、該混合溶液
を吹き付け機を用いて織物に50μm以下の厚みになる
よう噴霧した処、前記アクリル接着剤は架橋して熱水、
溶剤に強いポリマ―となると共に、通常剥離強度が30
〜50kg以上で、300回洗濯しても剥離しない強い
製品が得られた。
An experimental example of Example 3 is shown in Table 2 in the composite ceramics. 3% by weight of the composite ceramic shown in No. 1 was added to a mixed solution of 52% by weight of an acrylic adhesive and 45% by weight of an emulsion, mixed and stirred, and the mixed solution was applied to the fabric using a spraying machine. When sprayed so as to have a thickness of 50 μm or less, the acrylic adhesive is cross-linked to form hot water,
It becomes a polymer resistant to solvents and usually has a peel strength of 30.
At 〜50 kg or more, a strong product that did not peel off even after washing 300 times was obtained.

【0039】そして、この織物に塗布した例と、前記各
混合比率のうち、アクリル接着剤に代えて、エポキシ接
着剤を45重量%としたものを織物に含浸した例につ
き、脱臭率と抗菌率を測定した処、表9に示す結果を得
た。また、前記表9の織物に代えて、表9の場合と同一
比率の物を不織布に塗布し、その脱臭率と抗菌率を測定
した処、表10に示す結果を得た。すなわち、いずれも
アクリル接着剤を使用する方が、脱臭率と抗菌率とにお
いて優れていることが判った。
[0039] Then, the example was applied to the fabric, of the respective mixing proportions, in place of the acrylic adhesive, a material obtained by the error epoxy adhesive with 45 wt% per example impregnated into the fabric, the deodorizing rate and antimicrobial When the ratio was measured, the results shown in Table 9 were obtained. In addition, instead of the woven fabric of Table 9, the same ratio as in Table 9 was applied to the nonwoven fabric, and the deodorization rate and antibacterial rate were measured. The results shown in Table 10 were obtained. That is,
It was found that the use of the acrylic adhesive was superior in deodorization rate and antibacterial rate.

【0040】[0040]

【表9】 [Table 9]

【0041】[0041]

【表10】 [Table 10]

【0042】前記のように、アクリル接着剤を使用する
方が、脱臭率と抗菌率とにおいて優れているが、これは
アクリル接着剤を用いることによって、前記複合セラミ
ックスの陽イオン作用である脱臭力および抗菌力に効果
的に作用するからである
As described above, the use of the acrylic adhesive is superior in the deodorizing rate and the antibacterial rate.
By using an acrylic adhesive, because effectively act on deodorizing power and antimicrobial activity is a cation effect of the composite ceramic.

【0043】[0043]

【発明の効果】本発明は上述のようであるから、アクリ
接着剤を用いて繊維構造物に塗布または噴霧あるいは
含浸された脱臭性および抗菌性を有する複合セラミック
スは、強アルカリ性状を呈し、且つ水素イオン濃度の経
時変化がなく、陽イオンを発生して一般生菌を死滅させ
て抗菌性を有すると共に、硫化水素およびアンモニアを
分解して脱臭性をも有し、その抗菌性と脱臭性は恒久的
にその作用を有し、前記複合セラミックスを塗布または
噴霧あるいは含浸された繊維構造物は前記複合セラミッ
クスにより脱臭性と抗菌性を合わせ保有し、特に病院に
於けるシーツ、ふとんカバー、布巾、靴下等に使用さ
れ、その用途は極めて広い。
Since the invention according to the present invention is as described above, acrylic
Composite ceramics having a coating or spraying or impregnated deodorizing and antibacterial properties to fiber structure with Le adhesive exhibits a strong alkali properties, and no temporal change of the hydrogen ion concentration, by generating cation It has antibacterial properties by killing general bacteria and also has a deodorizing property by decomposing hydrogen sulfide and ammonia, and its antibacterial properties and deodorizing properties have its effects permanently. The sprayed or impregnated fiber structure has both deodorant and antibacterial properties due to the composite ceramics, and is particularly used for sheets, futon covers, cloths, socks and the like in hospitals, and its use is extremely wide.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粒径15μm以下のマグネシア微粉末を
基材とすると共に、該基材が30〜75重量%に対し
て、単一成分のセラミックスである粒径15μm以下の
アルミナ、硅石、酸化亜鉛、チタン、ゼオライト、蛇紋
石、または角閃石の微粉末のうちいずれか一種類を混合
材として、該混合材を15〜35重量%の割合で前記基
材に添加混合すると共に、更に前記粒径15μm以下の
アルミナ、硅石、酸化亜鉛、チタン、ゼオライト、蛇紋
石、または角閃石の微粉末のうち、前記混合材として添
加混合した以外のいずれか一種類を助材として、該助材
を15〜35重量%の割合で前記基材に添加混合して、
混合機および粉砕機に順次複数回に亘って投入して、前
記基材と混合材および助材とを混合攪拌および粉砕して
均一に混合し、然る後200〜500℃の焼成温度で焼
成機により焼成して得られた複合セラミックスを、アク
リル接着剤と乳濁液との混合溶液中に添加混合攪拌し
て、該混合溶液を織物、編物、不織布等の繊維構造物に
塗布することを特徴とする脱臭性および抗菌性を有する
繊維構造物。
1. A magnesia fine powder having a particle size of 15 μm or less is used as a base material, and the base material is composed of 30 to 75% by weight of a single component ceramic, alumina, silica stone or oxide having a particle size of 15 μm or less. One kind of fine powder of zinc, titanium, zeolite, serpentine, or amphibolite is used as a mixture, and the mixture is added to and mixed with the base material at a ratio of 15 to 35% by weight. One of alumina, silica stone, zinc oxide, titanium, zeolite, serpentine, or amphibolite fine powder having a diameter of 15 μm or less, other than the above-mentioned mixture added and mixed, is used as an auxiliary material. To the base material at a ratio of ~ 35% by weight,
It is put into a mixer and a crusher several times sequentially, and the base material and the mixture material and the auxiliary material are mixed, stirred and crushed to be uniformly mixed, and then fired at a firing temperature of 200 to 500 ° C. the composite ceramic obtained by firing the machine, Accession
A fiber structure having deodorizing and antibacterial properties, which is added to a mixed solution of a rill adhesive and an emulsion, mixed and stirred, and the mixed solution is applied to a fiber structure such as a woven fabric, a knitted fabric, or a nonwoven fabric. Stuff.
【請求項2】 粒径15μm以下のマグネシア微粉末を
基材とすると共に、該基材が30〜75重量%に対し
て、単一成分のセラミックスである粒径15μm以下の
アルミナ、硅石、酸化亜鉛、チタン、ゼオライト、蛇紋
石、または角閃石の微粉末のうちいずれか一種類を混合
材として、該混合材を15〜35重量%の割合で前記基
材に添加混合すると共に、更に前記粒径15μm以下の
アルミナ、硅石、酸化亜鉛、チタン、ゼオライト、蛇紋
石、または角閃石の微粉末のうち、前記混合材として添
加混合した以外のいずれか一種類を助材として、該助材
を15〜35重量%の割合で前記基材に添加混合して、
混合機および粉砕機に順次複数回に亘って投入して、前
記基材と混合材および助材とを混合攪拌および粉砕して
均一に混合し、然る後200〜500℃の焼成温度で焼
成機により焼成して得られた複合セラミックスを、アク
リル接着剤と乳濁液との混合溶液中に添加混合攪拌し
て、該混合溶液を織物、編物、不織布等の繊維構造物に
噴霧することを特徴とする脱臭性および抗菌性を有する
繊維構造物。
2. A base material comprising fine magnesia powder having a particle size of 15 μm or less, and the base material is composed of 30 to 75% by weight of a single component ceramic, alumina, silica stone or oxide having a particle size of 15 μm or less. One kind of fine powder of zinc, titanium, zeolite, serpentine, or amphibolite is used as a mixture, and the mixture is added to and mixed with the base material at a ratio of 15 to 35% by weight. One of alumina, silica stone, zinc oxide, titanium, zeolite, serpentine, or amphibolite fine powder having a diameter of 15 μm or less, other than the above-mentioned mixture added and mixed, is used as an auxiliary material. To the base material at a ratio of ~ 35% by weight,
It is put into a mixer and a crusher several times sequentially, and the base material and the mixture material and the auxiliary material are mixed, stirred and crushed to be uniformly mixed, and then fired at a firing temperature of 200 to 500 ° C. the composite ceramic obtained by firing the machine, Accession
Deodorizing and antibacterial fiber structure characterized by spraying the mixed solution into a fiber structure such as a woven fabric, knitted fabric or nonwoven fabric by mixing and stirring into a mixed solution of a rill adhesive and an emulsion. Stuff.
【請求項3】 粒径15μm以下のマグネシア微粉末を
基材とすると共に、該基材が30〜75重量%に対し
て、単一成分のセラミックスである粒径15μm以下の
アルミナ、硅石、酸化亜鉛、チタン、ゼオライト、蛇紋
石、または角閃石の微粉末のうちいずれか一種類を混合
材として、該混合材を15〜35重量%の割合で前記基
材に添加混合すると共に、更に前記粒径15μm以下の
アルミナ、硅石、酸化亜鉛、チタン、ゼオライト、蛇紋
石、または角閃石の微粉末のうち、前記混合材として添
加混合した以外のいずれか一種類を助材として、該助材
を15〜35重量%の割合で前記基材に添加混合して、
混合機および粉砕機に順次複数回に亘って投入して、前
記基材と混合材および助材とを混合攪拌および粉砕して
均一に混合し、然る後200〜500℃の焼成温度で焼
成機により焼成して得られた複合セラミックスを、アク
リル接着剤と乳濁液との混合溶液中に添加混合攪拌し
て、該混合溶液中に織物、編物、不織布等の繊維構造物
を含浸せしめることを特徴とする脱臭性および抗菌性を
有する繊維構造物。
3. A magnesia fine powder having a particle size of 15 μm or less is used as a base material, and the base material is composed of 30 to 75% by weight of a single component ceramic, alumina, silica stone or oxide having a particle size of 15 μm or less. One kind of fine powder of zinc, titanium, zeolite, serpentine, or amphibolite is used as a mixture, and the mixture is added to and mixed with the base material at a ratio of 15 to 35% by weight. One of alumina, silica stone, zinc oxide, titanium, zeolite, serpentine, or amphibolite fine powder having a diameter of 15 μm or less, other than the above-mentioned mixture added and mixed, is used as an auxiliary material. To the base material at a ratio of ~ 35% by weight,
It is put into a mixer and a crusher several times sequentially, and the base material and the mixture material and the auxiliary material are mixed, stirred and crushed to be uniformly mixed, and then fired at a firing temperature of 200 to 500 ° C. the composite ceramic obtained by firing the machine, Accession
A fiber having deodorizing and antibacterial properties, which is added to a mixed solution of a rill adhesive and an emulsion and mixed and stirred to impregnate the mixed solution with a fibrous structure such as a woven fabric, a knitted fabric, or a nonwoven fabric. Structure.
JP3092619A 1991-04-01 1991-04-01 Fiber structure having deodorant and antibacterial properties Expired - Lifetime JP2579562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3092619A JP2579562B2 (en) 1991-04-01 1991-04-01 Fiber structure having deodorant and antibacterial properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3092619A JP2579562B2 (en) 1991-04-01 1991-04-01 Fiber structure having deodorant and antibacterial properties

Publications (2)

Publication Number Publication Date
JPH04308270A JPH04308270A (en) 1992-10-30
JP2579562B2 true JP2579562B2 (en) 1997-02-05

Family

ID=14059452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3092619A Expired - Lifetime JP2579562B2 (en) 1991-04-01 1991-04-01 Fiber structure having deodorant and antibacterial properties

Country Status (1)

Country Link
JP (1) JP2579562B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07164587A (en) * 1993-12-15 1995-06-27 Mazda Motor Corp Carrier component for breathable powder and its manufacture
KR20040013846A (en) * 2002-08-08 2004-02-14 이민호 fiber products for emitting far infrared ray and method for making the same
CN100370074C (en) * 2005-10-21 2008-02-20 安徽理工大学 Finishing process for vehicle internal decoration cloth with antibacerial and peculiar smell removing function

Also Published As

Publication number Publication date
JPH04308270A (en) 1992-10-30

Similar Documents

Publication Publication Date Title
JP4775376B2 (en) Silver inorganic antibacterial agents and antibacterial products
CN101883489B (en) Silver-containing inorganic antibacterial
JP5354012B2 (en) Silver-based inorganic antibacterial agent, method for producing the same, and antibacterial processed product
CN113647408A (en) Antiviral agent, coating composition, resin composition, and antiviral product
JP4893184B2 (en) Silver inorganic antibacterial agent
JP2579562B2 (en) Fiber structure having deodorant and antibacterial properties
JPS60181370A (en) Artificial leather having sterilizing property
JPH09209225A (en) Production of processed yarn spun by blending or twisting milk protein fiber with composite rayon fiber having antimicrobial, deodorizing and insecticidal properties and further having far infrared light radiation characteristic
JPH0598564A (en) Production of fiber structure having deodorizing and antibacterial property
JP2579600B2 (en) Method for producing rayon having antibacterial properties and deodorizing properties and having far-infrared radiation characteristics
JP2836020B2 (en) Process for producing a processed yarn in which a composite rayon and silk fiber having anti-bacterial, deodorizing, mold-proof and insect-proof properties and far-infrared radiation properties are mixed or twisted and spun.
JPH10167803A (en) Composite ceramics having antibacterial, deodorizing, antimold and mothproof properties as well as far infrared ray radiating characteristic and its production
JPH075354B2 (en) Deodorizing and antibacterial composite ceramics and method for producing the same
JPH03215266A (en) Composite ceramics having deodorizing and antibacterial properties and its preparation
JPH0598506A (en) Production of fiber having deodorizing and antimicrobial property
JP2876309B2 (en) Method for producing rayon having antibacterial properties, deodorizing properties and insect repellent properties and having far-infrared radiation characteristics
JP2879024B2 (en) A method for producing rayon having far-infrared radiation properties, antibacterial properties, deodorizing properties, fungicidal properties and insect repellency, and having an antistatic effect
KR930008252B1 (en) Preparation of polypropylene filament non-woven fabric having superior antibacterial deodorant and infrared ray radial property
JP2822321B2 (en) Composite ceramics having anti-bacterial, deodorizing, mold-proofing and insect-proofing properties while having far-infrared radiation characteristics, and method for producing the same
JP2920123B2 (en) A method for producing a paint having far-infrared radiation properties, antibacterial properties, deodorizing properties, fungicidal properties and insect repellency, and having an antistatic effect
JPH10219513A (en) Production of fiber having far infrared radiating characteristic, antimicrobial, deodorizing, mildewproof and insect repellent property and antistatic effect
SU1289664A1 (en) Impregnating composition for textile-base polishing tool
JP2001088236A (en) Tourmaline nonwoven fabric
JPH11228385A (en) Bathing agent
JPH07109674A (en) Antibacterial fiber and its production