JP2578924B2 - Compound semiconductor light emitting device - Google Patents

Compound semiconductor light emitting device

Info

Publication number
JP2578924B2
JP2578924B2 JP17027888A JP17027888A JP2578924B2 JP 2578924 B2 JP2578924 B2 JP 2578924B2 JP 17027888 A JP17027888 A JP 17027888A JP 17027888 A JP17027888 A JP 17027888A JP 2578924 B2 JP2578924 B2 JP 2578924B2
Authority
JP
Japan
Prior art keywords
layer
light emitting
emitting device
semiconductor light
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17027888A
Other languages
Japanese (ja)
Other versions
JPH0220076A (en
Inventor
尚範 加藤
秀樹 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP17027888A priority Critical patent/JP2578924B2/en
Publication of JPH0220076A publication Critical patent/JPH0220076A/en
Application granted granted Critical
Publication of JP2578924B2 publication Critical patent/JP2578924B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は有機金属気相エピタキシー法(MOVPE)、分
子線エピタキシー法(MBE)等の比較的厚いエピタキシ
ャル結晶の成長には向かないが、1nmオーダーの極薄膜
でも十分な制御性と均一性を有するエピタキシャル結晶
成長法を用いて作成した高均一かつ高出力の発光特性を
有する半導体発光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is not suitable for growing relatively thick epitaxial crystals such as metalorganic vapor phase epitaxy (MOVPE) and molecular beam epitaxy (MBE). The present invention relates to a semiconductor light emitting device having high uniformity and high output light emitting characteristics, which is manufactured by using an epitaxial crystal growth method having sufficient controllability and uniformity even for an extremely thin film of the order.

〔従来の技術〕[Conventional technology]

従来、厚膜のエピタキシャル結晶成長法としては気相
エピタキシー法(VPE)、液相エピタキシー法(LPE)が
あり、ともに成長速度が10μm/hr以上で、半導体発光装
置の作成には欠くことのできない技術であった。
Conventionally, there are vapor-phase epitaxy (VPE) and liquid-phase epitaxy (LPE) as epitaxial crystal growth methods for thick films, both of which have a growth rate of 10 μm / hr or more, and are indispensable for producing semiconductor light emitting devices. Technology.

しかし、VPE法ではAlを含む化合物半導体の成長には
適さず、例えばAlXGa1-XAsヘテロ接合のような構造のも
のを作ることはできなかった。
However, the VPE method is not suitable for growing a compound semiconductor containing Al, and for example, a structure having an Al X Ga 1 -X As heterojunction cannot be produced.

また、LPE法はAlを含む化合物半導体の成長が可能
で、AlXGa1-XAs/GaAsヘテロ接合のような構造を作るこ
とができるが、この方法により作ったヘテロ接合を有す
る化合物半導体発光装置は高光出力を有するものの、均
一性、再現性に乏しく、歩留まり良く半導体発光装置を
得ることが難しかった。
In addition, the LPE method can grow a compound semiconductor containing Al, and can create a structure such as an Al X Ga 1-X As / GaAs heterojunction. Although the device has a high light output, uniformity and reproducibility are poor, and it has been difficult to obtain a semiconductor light emitting device with high yield.

これらに比べ、MOVPE法やMBE法は、厚膜結晶成長には
向かないが、1nmオーダーの極薄膜を制御性良く作成す
ることが可能であり、また、Alを含むヘテロ接合も容易
に作成することができ、均一性、再現性にも優れてい
る。
In contrast, MOVPE and MBE methods are not suitable for thick-film crystal growth, but can produce ultra-thin films of the order of 1 nm with good controllability, and can easily form heterojunctions containing Al. It has excellent uniformity and reproducibility.

〔発明が解決すべき課題〕 しかしながらMOVPE法やMBE法により作成した従来のヘ
テロ接合を有する化合物半導体発光装置は、厚膜でない
故に光出力が高くとれず、高均一性、高再現性という特
徴を十分生かしきることができなかった。
[Problems to be Solved by the Invention] However, the conventional compound semiconductor light emitting device having a heterojunction prepared by the MOVPE method or the MBE method does not have a high light output because it is not a thick film, and has characteristics of high uniformity and high reproducibility. I couldn't make the most of it.

本発明は上記問題点を解決するためのもので、MOVPE
法、MBE法により作成されるヘテロ接合を有する化合物
半導体発光装置において、均一性、高再現性を保持もし
くは向上させながら光出力の向上を図ることを目的とす
る。
The present invention is intended to solve the above-mentioned problems, and the MOVPE
It is an object of the present invention to improve a light output while maintaining or improving uniformity and high reproducibility in a compound semiconductor light emitting device having a heterojunction formed by a method and an MBE method.

〔課題を解決するための手段〕[Means for solving the problem]

一般に、第3図に示す多層構造で、屈折率n1の層から
垂直に屈折率n2の層、n3の層(基板)に波長λの光が
入射した場合、反射率Rは次式のように表される。
Generally, in the multilayer structure shown in FIG. 3 , when light having a wavelength λ 0 is incident on a layer having a refractive index of n 2 and a layer (substrate) having a refractive index of n 3 perpendicularly from a layer having a refractive index of n 1 , the reflectance R becomes It is expressed as the following equation.

ここに、 が最大になる場合はn1,n2,n3の大小関係によって
異なり、次のケースについて考える。
here, When R に なる becomes maximum, it depends on the magnitude relation of n 1 , n 2 , n 3 , and the following case is considered.

n2<n1<n3 このときr1>0,r2<0 ∴r1r2<0 従って、Rが最大になるのは、(1)式の分母が最
大になるときであり、それは cos 2δ=−1 が満足されるときである。このとき、 したがって、 なお、n2<n1<n3より、 n2 2<n1n2<n2n3 n1n2<n1 2<n1n3 したがって、 n1n3<n2 2 である。このように、(2)式を満足するような屈折率
n2の層を設けることにより、この層が反射率最大になる
ような反射層として作用するので、従来裏面に吸収され
ていた光の一部ないし大部分が反射されて表面側から取
り出すことができるので、高光出力を得ることができ
る。
n 2 <n 1 <n 3 this time r 1> 0, r 2 < 0 ∴r 1 r 2 <0 Thus, the R is maximized, there when that maximizes the denominator of (1) , Which is when cos 2δ = −1 is satisfied. At this time, Therefore, Incidentally, from n 2 <n 1 <n 3 , n 2 2 < thus n 1 n 2 <n 2 n 3 n 1 n 2 <n 1 2 <n 1 n 3, is n 1 n 3 <n 2 2 . Thus, the refractive index that satisfies the expression (2)
By providing a layer of n 2, since this layer acts as a reflective layer such that the maximum reflectance, that some or most of the light which has been absorbed in the conventional back surface taken from the surface side is reflected Therefore, a high light output can be obtained.

なお、反射層の構成は単層である必要はなく、多層構
造を持つものでもよい。その場合は反射層の平均屈折率
を第3図のn2に、総膜厚をdに対応させればよく、平均
屈折率がRを大きくならしめる多層構造の設計が可能
である。
The configuration of the reflective layer does not need to be a single layer, and may have a multilayer structure. In this case, the average refractive index of the reflective layer should correspond to n 2 in FIG. 3, and the total film thickness should correspond to d, and a multilayer structure can be designed in which the average refractive index increases R .

多層構造の場合の反射率の導出について以下に概略説
明する。
The derivation of the reflectance in the case of a multilayer structure will be briefly described below.

例えば、第4図に示すようなN個の層からなる多層膜
を考え、各膜厚をDk(k=1,2,…,N)、屈折率をnk(k
=1,2,3,…,N)とし、波長λの光が垂直入射(φ=90
゜)した場合、各層に次の光学マトリックスAkが対応す
る。
For example, consider a multilayer film composed of N layers as shown in FIG. 4, where each film thickness is D k (k = 1, 2,..., N) and the refractive index is n k (k
= 1,2,3, ..., N), and light of wavelength λ 0 is vertically incident (φ = 90
゜), the following optical matrix Ak corresponds to each layer.

ただし、 wk=nk cos φ=nk i2=−1 全層に対応する光学マトリックスAは とおくと、w0=n0、wg=ngとして、反射率▲R(M)
▼は と表される。
However, w k = n k cos φ = n k i 2 = −1 The optical matrix A corresponding to all layers is In other words, assuming that w 0 = n 0 and w g = ng , the reflectance RR (M)
▼ is It is expressed as

〔作用〕[Action]

本発明は、GaAs基板及び該基板側のAlXGa1-XAs層との
間に、該AlXGa1-XAsと屈折率の異なる反射層を設け、か
つ、該GaAs基板、該反射層及び該AlXGa1-XAs層の屈折率
をそれぞれn3、n2及びn1とするとき、これらの屈折率が
n2<n1<n3を満足するようにしたことにより裏面に吸収
されていた光の一部ないし大部分が反射されて表面側か
ら取り出されるので高光出力が得られ、また反射層を多
層とすることにより所定波長の入射光に対する反射率を
特異的に大きくし、また上層の結晶性を向上させて発光
効率を向上させることが可能となる。
The present invention provides a reflection layer having a different refractive index from the Al X Ga 1-X As between the GaAs substrate and the Al X Ga 1-X As layer on the substrate side, and the GaAs substrate, When the refractive indexes of the layer and the Al X Ga 1-X As layer are respectively n 3 , n 2 and n 1 , these refractive indices are
By satisfying n 2 <n 1 <n 3 , part or most of the light absorbed on the back surface is reflected and extracted from the front surface side, so that a high light output can be obtained. By doing so, it is possible to specifically increase the reflectance with respect to incident light of a predetermined wavelength, and to improve the crystallinity of the upper layer to improve the luminous efficiency.

〔実施例〕〔Example〕

以下、実施例を説明する。 Hereinafter, examples will be described.

(実施例1) 第1図は本発明によるヘテロ接合高輝度発光LEDの一
実施例を示す図で、1は下部オーム性電極、2はGaAs:Z
n基板、3は反射層、4はPクラッド層(P−AlX2Ga
1-X2As)、5はp−アクティブ層(p−AlYGa1-YAs)、
6はnクラッド層(n−AlX1Ga1-X1As)、7は上部オー
ム性電極である。
Embodiment 1 FIG. 1 is a view showing one embodiment of a hetero-junction high-brightness light emitting LED according to the present invention, wherein 1 is a lower ohmic electrode and 2 is GaAs: Z.
n substrate, 3 a reflection layer, 4 a P cladding layer (P-Al X2 Ga
1-X2 As), 5 is a p-active layer (p-Al Y Ga 1-Y As),
Reference numeral 6 denotes an n-cladding layer (n-Al X1 Ga 1-X1 As), and reference numeral 7 denotes an upper ohmic electrode.

図において、エピタキシャル層の構成として、nクラ
ッド層6は、x1=0.7、キャリア濃度n=1×1018c
m-3、厚みd1=5μm、p−アクティブ層5は、y=0.3
5、キャリア濃度p=1×1017cm-3、厚みd2=1.5μm、
Pクラッド層4は、x2=0.7、キャリア濃度p=1×10
18cm-3、厚みd3=5μmである。
In the figure, as the structure of the epitaxial layer, the n cladding layer 6 has x 1 = 0.7 and a carrier concentration n = 1 × 10 18 c
m −3 , thickness d 1 = 5 μm, p-active layer 5 has y = 0.3
5. Carrier concentration p = 1 × 10 17 cm −3 , thickness d 2 = 1.5 μm,
The P cladding layer 4 has x 2 = 0.7, carrier concentration p = 1 × 10
18 cm -3 and thickness d 3 = 5 μm.

反射層3として、AlAs(キャリア濃度p=1×1018cm
-3)、厚みd4=111nmのものを用いる。pアクティブ層
の発光波長におけるPクラッド層4の屈折率n1=3.25、
反射層3の屈折率n2=2.97、基板2の屈折率n3=3.77で
ある。従って(3)式より、Rは、 また、反射層を用いない場合は、 こうして、約5倍反射率を向上させることができた。
As the reflection layer 3, AlAs (carrier concentration p = 1 × 10 18 cm)
-3 ) The thickness d 4 = 111 nm is used. The refractive index n 1 of the P cladding layer 4 at the emission wavelength of the p active layer n 1 = 3.25;
The refractive index of the reflective layer 3 is n 2 = 2.97, and the refractive index of the substrate 2 is n 3 = 3.77. Therefore from equation (3), R is When not using a reflective layer, Thus, the reflectivity was improved about five times.

(実施例2) 次に、第2図に模式的に示すように反射層が多層薄膜
により構成されている場合の実施例について説明する。
(Example 2) Next, an example in which the reflection layer is formed of a multilayer thin film as schematically shown in Fig. 2 will be described.

反射層の構成は、pアクティブ層の発光波長(λ
660nm)において、 n1・D1=λ0/4=165nm n2・D2=λ0/4=165nm n0=3.25 y=0.9 n1=3.05,D1=5.55nm z=0.4 n2=3.45,D2=47.8nm とすると、 w1=n1 w2=n1 ∴δ=δ=π/2 したがって、AlYGa1-YAs/AlZGa1-ZAsをl層で構成し
た場合には、 となる。
The structure of the reflective layer is determined by the emission wavelength of the p-active layer (λ 0 =
In 660nm), n 1 · D 1 = λ 0/4 = 165nm n 2 · D 2 = λ 0/4 = 165nm n 0 = 3.25 y = 0.9 n 1 = 3.05, D 1 = 5.55nm z = 0.4 n 2 = 3.45, when D 2 = 47.8 nm, w 1 = n 1 w 2 = n 1 ∴δ 1 = δ 2 = π / 2 Therefore, when Al Y Ga 1-Y As / Al Z Ga 1-Z As is composed of one layer, Becomes

従って、反射率R (M)(l)は、ng=3.77(GaAs)
として、 lが有限の場合、例えばl=15のとき、 R (M)(15)=0.89 となり、反射率を1に近づけることができる。
Therefore, the reflectance R (M) (l) is n g = 3.77 (GaAs)
As When 1 is finite, for example, when l = 15, R⊥ (M) (15) = 0.89, and the reflectance can be made closer to 1.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば、裏面に吸収されていた
光の一部ないし大部分が反射され、表面に放射されるの
で、光出力を大きくすることが可能となり、特に反射層
を多層構造とすることにより、その上層の結晶性が上が
り、内部発光率も上がるため、2つの効果が相乗されて
高光出力の半導体発光装置を得ることが可能である。
As described above, according to the present invention, part or most of the light absorbed on the back surface is reflected and radiated to the front surface, so that the light output can be increased. By doing so, the crystallinity of the upper layer is increased and the internal luminous efficiency is also increased, so that the two effects are synergistically obtained, and a semiconductor light emitting device with high light output can be obtained.

【図面の簡単な説明】 第1図は反射層が単層薄膜で構成されている場合の本発
明の化合物半導体発光装置の構造を示す図、第2図は反
射層が多層薄膜で構成されている場合の化合物半導体発
光装置の構造を示す図、第3図、第4図はそれぞれ反射
層が単層、及び多層の場合の反射率を説明するための図
である。 1……下部オーム性電極、2……GaAs:Zn基板、3……
反射層、4……Pクラッド層(P−AlX2Ga1-X2As)、5
……p−アクティブ層(p−AlYGa1-YAs)、6……nク
ラッド層(n−AlX1Ga1-X1As)、7……上部オーム性電
極。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing the structure of a compound semiconductor light emitting device according to the present invention when the reflection layer is constituted by a single-layer thin film, and FIG. FIGS. 3 and 4 are diagrams showing the structure of the compound semiconductor light emitting device in the case where the reflection layer is provided, and are diagrams for explaining the reflectance when the reflection layer is a single layer and a multilayer. 1 ... lower ohmic electrode 2 ... GaAs: Zn substrate 3 ...
Reflective layer, 4 ... P clad layer (P-Al X2 Ga 1-X2 As), 5
... P-active layer (p-Al Y Ga 1-Y As), 6 n-cladding layer (n-Al X1 Ga 1-X1 As), 7 upper ohmic electrode.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】AlXGa1-XAsをキャリア閉じ込め層ならびに
光取り出し層として用いたダブルヘテロ接合構造半導体
発光装置において、GaAs基板及び該基板側のAlXGa1-XAs
層との間に、該AlXGa1-XAsと屈折率の異なる反射層を設
け、かつ、該GaAs基板、該反射層及び該AlXGa1-XAs層の
屈折率をそれぞれn3、n2及びn1とするとき、これらの屈
折率が関係式 n2<n1<n3 を満足することを特徴とする化合物半導体発光装置。
In a double heterojunction semiconductor light emitting device using Al X Ga 1 -X As as a carrier confinement layer and a light extraction layer, a GaAs substrate and Al X Ga 1 -X As on the substrate side are provided.
A reflective layer having a refractive index different from that of the Al X Ga 1-X As, and the refractive indexes of the GaAs substrate, the reflective layer, and the Al X Ga 1-X As layer are each set to n 3 when the n 2 and n 1, a compound semiconductor light emitting device characterized by these refractive indices satisfy the relationship n 2 <n 1 <n 3 .
【請求項2】前記反射層は単層からなる請求項1記載の
化合物半導体発光装置。
2. The compound semiconductor light emitting device according to claim 1, wherein said reflection layer is a single layer.
【請求項3】前記反射層は、相互に異なる屈折率を有す
る2以上のAlXGa1-XAs層を交互に積層してなる請求項1
記載の化合物半導体発光装置。
3. The reflection layer according to claim 1, wherein two or more Al X Ga 1 -X As layers having mutually different refractive indices are alternately laminated.
20. The compound semiconductor light emitting device according to claim 20
JP17027888A 1988-07-08 1988-07-08 Compound semiconductor light emitting device Expired - Lifetime JP2578924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17027888A JP2578924B2 (en) 1988-07-08 1988-07-08 Compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17027888A JP2578924B2 (en) 1988-07-08 1988-07-08 Compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH0220076A JPH0220076A (en) 1990-01-23
JP2578924B2 true JP2578924B2 (en) 1997-02-05

Family

ID=15901984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17027888A Expired - Lifetime JP2578924B2 (en) 1988-07-08 1988-07-08 Compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2578924B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2642782B2 (en) * 1991-01-14 1997-08-20 住友電気工業株式会社 Epitaxial wafer
US5406095A (en) * 1992-08-27 1995-04-11 Victor Company Of Japan, Ltd. Light emitting diode array and production method of the light emitting diode
JP4007962B2 (en) 2002-03-19 2007-11-14 株式会社前川製作所 Low temperature zone forming device for keeping food freshness

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669106B2 (en) * 1983-10-04 1994-08-31 ロ−ム株式会社 LED element
JPS6098689A (en) * 1983-11-02 1985-06-01 Mitsubishi Electric Corp Semiconductor device
JPS6166963U (en) * 1984-10-05 1986-05-08
JPH0728051B2 (en) * 1986-02-14 1995-03-29 オムロン株式会社 Semiconductor light emitting element

Also Published As

Publication number Publication date
JPH0220076A (en) 1990-01-23

Similar Documents

Publication Publication Date Title
EP0430041B1 (en) Light-emitting diode having light reflecting layer
US6967981B2 (en) Nitride based semiconductor structures with highly reflective mirrors
EP0874428B1 (en) Long wavelength vertical cavity surface emitting semiconductor laser (VCSEL)
US5883912A (en) Long wavelength VCSEL
JPH04264781A (en) Light-emitting diode array
JP3143662B2 (en) Opto-electronic semiconductor devices
JPH04225588A (en) Semiconductor laser structure
JPH03293790A (en) Wide stripe laser diode
JP2578924B2 (en) Compound semiconductor light emitting device
JP2824371B2 (en) Light emitting diode
JP2759269B2 (en) Light emitting element
EP0188080B1 (en) Light-emitting semiconductor device having a super lattice
US5862166A (en) Semiconductor laser with light emitting slant plane and method of manufacturing the same
JPH06151955A (en) Semiconductor light emitting element
JP2720554B2 (en) Light emitting diode with light reflecting layer
JPH01200678A (en) Light-emitting diode
EP0528439B1 (en) Semiconductor laser
JP2586671B2 (en) Semiconductor multilayer film
JPH01264275A (en) Semiconductor light-emitting device
JP3141888B2 (en) Semiconductor light emitting device
KR0178490B1 (en) Surface emitting laser
JP2973612B2 (en) Semiconductor multilayer mirror
JPS61174687A (en) Plane-illumination type semiconductor laser
JP2970797B2 (en) Method of manufacturing semiconductor laser device
JP2816743B2 (en) Semiconductor light emitting device