JP2578888B2 - Zinc oxide varistor - Google Patents

Zinc oxide varistor

Info

Publication number
JP2578888B2
JP2578888B2 JP63061046A JP6104688A JP2578888B2 JP 2578888 B2 JP2578888 B2 JP 2578888B2 JP 63061046 A JP63061046 A JP 63061046A JP 6104688 A JP6104688 A JP 6104688A JP 2578888 B2 JP2578888 B2 JP 2578888B2
Authority
JP
Japan
Prior art keywords
zinc oxide
resin
insulating layer
varistor
glass cloth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63061046A
Other languages
Japanese (ja)
Other versions
JPH01235203A (en
Inventor
雅昭 勝又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63061046A priority Critical patent/JP2578888B2/en
Publication of JPH01235203A publication Critical patent/JPH01235203A/en
Application granted granted Critical
Publication of JP2578888B2 publication Critical patent/JP2578888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は主として送配電設備を雷サージから保護する
ためのアレスタに用いられる酸化亜鉛を主成分とする酸
化亜鉛形バリスタに関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zinc oxide type varistor mainly composed of zinc oxide used for an arrester for protecting power transmission and distribution equipment from lightning surge.

従来の技術 酸化亜鉛形バリスタは、大きなサージ電流耐量と優れ
た電圧非直線性を持ち、高圧タイプの素子が電力分野に
おいて、送配電線設備保護用のアレスタ素子として広く
利用されている。
2. Description of the Related Art Zinc oxide varistors have large surge current resistance and excellent voltage non-linearity, and high-voltage type elements are widely used as arrester elements for protecting transmission and distribution line equipment in the power field.

従来、この種のアレスタ用の酸化亜鉛形バリスタは、
第2図に示すような構成であった。第2図において、5
は焼結体、6は電極であり、側面部の絶縁耐圧を上げる
ために焼結体1の側面に絶縁層7が設けられていた。こ
の絶縁層7は、例えば成形体を800〜1000℃で仮焼した
仮焼体の側面部にBi2O3,Sb2O3,SiO2などからなるペース
トを塗布した後、焼結反応させて形成するか、あるいは
焼結体側面にエポキシ樹脂などをコーティングして形成
していた。
Conventionally, zinc oxide type varistors for this type of arrester
The configuration was as shown in FIG. In FIG. 2, 5
Denotes a sintered body, 6 denotes an electrode, and an insulating layer 7 is provided on the side surface of the sintered body 1 in order to increase the dielectric strength of the side surface portion. The insulating layer 7 is formed, for example, by applying a paste made of Bi 2 O 3 , Sb 2 O 3 , SiO 2 or the like to the side surface of a calcined body obtained by calcining a molded body at 800 to 1000 ° C., and then performing a sintering reaction. Or by coating the side surface of the sintered body with an epoxy resin or the like.

発明が解決しようとする課題 このような従来の構成では、絶縁層を有する酸化亜鉛
形バリスタは、まず、反応系によるものは、仮焼工程が
不可欠であり、製造工程が複雑であるばかりか、反応の
コントロールが困難で均一な厚みで絶縁層を形成でき
ず、絶縁耐圧のバラツキが大きいという欠点を有してい
た。また、樹脂コーティングによるものは、ボイドなど
を内在し易く、アレスタ素子として最も重要な特性の一
つである放電耐量特性が低いという欠点を有していた。
Problems to be Solved by the Invention In such a conventional configuration, a zinc oxide type varistor having an insulating layer firstly requires a calcining step for a reaction system, which not only complicates the manufacturing process, The control of the reaction is difficult, the insulating layer cannot be formed with a uniform thickness, and the variation in the withstand voltage is large. Further, the resin coating has a drawback that voids and the like are liable to be present therein and the discharge withstand characteristic, which is one of the most important characteristics as an arrester element, is low.

本発明はこのような問題点を解決するもので、放電耐
量特性に優れた酸化亜鉛形バリスタの提供を目的とする
ものである。
An object of the present invention is to solve such a problem and to provide a zinc oxide type varistor excellent in discharge withstand characteristics.

課題を解決するための手段 この問題点を解決するために本発明は、焼結体の側面
に樹脂により第1の絶縁層を形成し、その上部にガラス
クロスを含む樹脂テープを巻回して第2の絶縁層を形成
することを特徴としている。
Means for Solving the Problems In order to solve this problem, the present invention forms a first insulating layer with a resin on a side surface of a sintered body and winds a resin tape containing a glass cloth on the first insulating layer. It is characterized in that two insulating layers are formed.

作用 この構成により、作製された酸化亜鉛形バリスタは、
絶縁層が非反応系であるので仮焼工程が不必要で、また
ガラスクロクを含む樹脂テープの絶縁耐圧が高く、下層
樹脂のボイドなどの欠陥部分も再絶縁されるため、放電
耐量特性も優れている。
Action With this configuration, the produced zinc oxide type varistor is
Since the insulating layer is non-reactive, a calcination step is not required.In addition, the withstand voltage of the resin tape containing glass black is high, and defects such as voids in the lower layer resin are also re-insulated. I have.

実施例 以下、本発明の酸化亜鉛形バリスタを実施例に基づき
詳細に説明する。
EXAMPLES Hereinafter, the zinc oxide type varistor of the present invention will be described in detail based on examples.

まず、酸化亜鉛の粉末に合計量に対して酸化ビスマス
0.5モル%、酸化アンチモン1.0モル%、酸化コバルト0.
5モル%、酸化マンガン0.5モル%、酸化クロム0.5モル
%、酸化ケイ素0.5モル%を添加後、バインダーともに
混合し、スプレードライヤーにて造粒粉を得た。この造
粒粉を直径40mm、厚さ40mmの大きさに圧縮成形し、空気
中において、1200℃,5時間の焼成を行った。この焼結体
の側面に液体エポキシ樹脂、液体シリコン樹脂を塗布
し、所定の硬化条件で硬化させた後、ガラスクロス入り
テフロンテープ、ガラスクロス入り自己融着性シリコン
ゴムテープを巻回し、試料を作製した。ここで、比較検
討用に、成形体を800〜1000℃で仮焼した仮焼体の側面
に、Bi2O315モル%、Sb2O315モル%、SiO270モル%から
なるペースト状側面剤を塗布し、焼成時に反応により絶
縁層を形成した試料を従来例として作製した。第1図に
本発明による酸化亜鉛形バリスタの断面図を示す。第1
図において、1は酸化亜鉛を主成分とし、それ自身が電
圧非直線性を有する焼結体、2は焼結体1の両端面に設
けられた電極で、例えばアルミニウム,銅,亜鉛,ニッ
ケルなどの溶射,メッキ処理により形成されている。3
は第1の絶縁層で、樹脂塗装により形成されている。4
は第1絶縁層3の上部に形成された第2の絶縁層で、ガ
ラスクロス入りの樹脂テープを巻回して形成されてい
る。
First, bismuth oxide is added to the total amount of zinc oxide powder.
0.5 mol%, antimony oxide 1.0 mol%, cobalt oxide 0.
After 5 mol%, 0.5 mol% of manganese oxide, 0.5 mol% of chromium oxide and 0.5 mol% of silicon oxide were added, the mixture was mixed with a binder, and a granulated powder was obtained with a spray drier. This granulated powder was compression-molded into a size having a diameter of 40 mm and a thickness of 40 mm, and was fired in air at 1200 ° C. for 5 hours. A liquid epoxy resin and liquid silicon resin are applied to the side of this sintered body and cured under predetermined curing conditions. Then, a Teflon tape containing glass cloth and a self-fusing silicone rubber tape containing glass cloth are wound around to produce a sample. did. Here, for comparison, a paste composed of 15 mol% of Bi 2 O 3, 15 mol% of Sb 2 O 3 , and 70 mol% of SiO 2 was provided on the side of the calcined body obtained by calcining the molded body at 800 to 1000 ° C. A sample in which an insulating layer was formed by applying a flaky side agent and reacting during firing was prepared as a conventional example. FIG. 1 shows a sectional view of a zinc oxide type varistor according to the present invention. First
In the figure, 1 is a sintered body having zinc oxide as a main component and itself having voltage non-linearity, and 2 is an electrode provided on both end surfaces of the sintered body 1, for example, aluminum, copper, zinc, nickel, etc. Formed by thermal spraying and plating. 3
Is a first insulating layer formed by resin coating. 4
Is a second insulating layer formed on the first insulating layer 3 and formed by winding a resin tape containing glass cloth.

以上のようにして作製された試料について、側面絶縁
層の性能を評価するため、4/10μsのインパルスを30KA
(5分インターバル2回印加)より10KAずつステップア
ップし、限界性能を評価した。試料数は、n=10で実施
し、この結果を下記の表に示した。各々の数値は左から
1回目の電流印加後、2回目の電流印加後に外観を目視
してチェックをし、異常のなかった試料数を示した。
In order to evaluate the performance of the side insulating layer of the sample manufactured as described above, a 4/10 μs impulse was applied for 30KA.
The step performance was increased by 10 KA at a time (application twice at 5 minute intervals) to evaluate the marginal performance. The number of samples was n = 10, and the results are shown in the table below. Each numerical value was visually checked after the first current application from the left after the second current application, and the number of samples without abnormality was shown.

以上の結果から明らかなように、エポキシ樹脂、シリ
コン樹脂の上部にガラスクロス入りの樹脂テープを巻回
することにより、放電耐量特性が向上していることがわ
かる。また、試料No.6の反応系により絶縁層を形成した
場合と比較すると、本発明例によれば放電耐量特性のば
らつきが減少していることがわかる。なお、ガラスクロ
ス入りの樹脂テープのみの場合、巻回数を3回まで繰り
返したが、テープの重複する部位に空気が入り、いずれ
も30KAが限界放電耐量であった。これは、単一樹脂系
(試料1,4)では樹脂の硬化中にボイドが発生し、この
部分に放電耐量試験時にコロナが発生し、側面が絶縁破
壊するのに対し、本発明例ではこのボイド部分が上層の
絶縁耐圧の究めて高いガラスクロス入りの樹脂テープに
より覆われるため、放電耐量特性が向上しているものと
考えられる。
As is apparent from the above results, it is found that the discharge withstand characteristic is improved by winding the resin tape containing the glass cloth on the epoxy resin and the silicon resin. In addition, as compared with the case where the insulating layer was formed by the reaction system of Sample No. 6, it can be seen that according to the present invention example, the variation in the discharge withstand characteristics was reduced. In the case of using only the resin tape containing the glass cloth, the number of windings was repeated up to three times. However, air entered the overlapping portion of the tape, and 30KA had a limit discharge withstand capability in each case. This is because, in the single resin system (samples 1 and 4), voids are generated during the curing of the resin, corona is generated in this part during the discharge withstand test, and the side surface is broken down. It is considered that since the void portion is covered with the resin tape containing the glass cloth, which has the highest withstand voltage of the upper layer, the discharge withstand capability is improved.

なお、本実施例において、下層樹脂の例として、エポ
キシ樹脂、シリコン樹脂を用いたが、絶縁性の高い、例
えばフェノール系樹脂、ゴム系樹脂、アクリル系樹脂な
どを用いても効果に変わりはなく、上層樹脂としてガラ
スクロス入りのテフロン、シリコン樹脂を用いたが、下
層樹脂と同様、絶縁性の高い樹脂テープであれば効果に
変わりはない。
In the present embodiment, an epoxy resin or a silicon resin is used as an example of the lower layer resin. However, the effect is not changed even if a highly insulating material such as a phenol resin, a rubber resin, and an acrylic resin is used. Although Teflon and silicon resin containing glass cloth were used as the upper layer resin, the effect remains the same as long as the lower layer resin is used as long as the resin tape has a high insulating property.

発明の効果 以上のように本発明によれば、酸化亜鉛形バリスタの
側面に樹脂により第1の絶縁層を形成し、その上部にガ
ラスクロス入りの樹脂テープを巻回し、第2の絶縁層を
形成することにより、放電耐量特性の優れた酸化亜鉛形
バリスタを得ることができる。さらに、本発明によれ
ば、従来一般的に用いられていた反応系による絶縁層形
成工法に必要な仮焼工程を省略することが可能で、リー
ドタイム短縮、コストダウンができるという効果が得ら
れる。
Effect of the Invention As described above, according to the present invention, a first insulating layer is formed of resin on the side surface of a zinc oxide type varistor, and a resin tape containing glass cloth is wound thereon, and the second insulating layer is formed. By forming the varistor, a zinc oxide type varistor excellent in discharge withstand characteristics can be obtained. Further, according to the present invention, it is possible to omit the calcining step required for the insulating layer forming method using a reaction system which has been generally used conventionally, and it is possible to obtain the effect that the lead time can be reduced and the cost can be reduced. .

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例による酸化亜鉛バリスタを示
す断面図、第2図は従来の酸化亜鉛形バリスタを示す断
面図である。 1……焼結体、2……電極、3……第1の絶縁層、4…
…第2の絶縁層。
FIG. 1 is a sectional view showing a zinc oxide varistor according to an embodiment of the present invention, and FIG. 2 is a sectional view showing a conventional zinc oxide varistor. 1 ... sintered body, 2 ... electrode, 3 ... first insulating layer, 4 ...
... Second insulating layer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化亜鉛を主成分とし、それ自身が電圧非
直線性を有する焼結体の側面に樹脂により第1の絶縁層
を形成し、前記第1の絶縁層の上部にガラスクロスを含
む樹脂テープを巻回し第2の絶縁層を形成したことを特
徴とする酸化亜鉛形バリスタ。
1. A first insulating layer is formed of resin on a side surface of a sintered body mainly composed of zinc oxide and having voltage non-linearity by itself, and a glass cloth is formed on the first insulating layer. A zinc oxide type varistor, wherein a second insulating layer is formed by winding a resin tape containing the varistor.
JP63061046A 1988-03-15 1988-03-15 Zinc oxide varistor Expired - Fee Related JP2578888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63061046A JP2578888B2 (en) 1988-03-15 1988-03-15 Zinc oxide varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63061046A JP2578888B2 (en) 1988-03-15 1988-03-15 Zinc oxide varistor

Publications (2)

Publication Number Publication Date
JPH01235203A JPH01235203A (en) 1989-09-20
JP2578888B2 true JP2578888B2 (en) 1997-02-05

Family

ID=13159899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63061046A Expired - Fee Related JP2578888B2 (en) 1988-03-15 1988-03-15 Zinc oxide varistor

Country Status (1)

Country Link
JP (1) JP2578888B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10042636C1 (en) * 2000-08-30 2002-04-11 Epcos Ag Electrical component and method for its production

Also Published As

Publication number Publication date
JPH01235203A (en) 1989-09-20

Similar Documents

Publication Publication Date Title
EP1150306B2 (en) Current/voltage non-linear resistor and sintered body therefor
US4031498A (en) Non-linear voltage-dependent resistor
CA1339553C (en) Material for resistor body and non-linear resistor made thereof
JP2578888B2 (en) Zinc oxide varistor
JPH08172002A (en) Manufacture of voltage nonlinear resistor
JP2000232005A (en) Nonlinear resistor
JP2001052907A (en) Ceramic element and manufacturing method
JP2735320B2 (en) Non-linear resistor
US11615899B2 (en) Polymer voltage-dependent resistor
JP2687470B2 (en) Manufacturing method of zinc oxide type varistor
JP2621408B2 (en) Manufacturing method of zinc oxide type varistor
JP3239719B2 (en) Method for manufacturing voltage non-linear resistor
JPS63114104A (en) Manufacture of nonlinear resistor
JPH0258807A (en) Manufacture of voltage nonlinear resistor
JPH0574921B2 (en)
JPH08107003A (en) Insulation member and nonlinear resistor including the insulation member
JPS63114102A (en) Manufacture of nonlinear resistor
JPH06140207A (en) Manufacture of voltage-dependent nonlinear resistor
JP2001006904A (en) Voltage nonlinear resistor
JPH06283312A (en) Nonlinear voltage resistor
JPS6195501A (en) Non-linear resistor
JPS5823402A (en) Method of producing nonlinear resistor
JPH02302001A (en) Voltage-dependent nonlinear resistor and its manufacture
JPH07106108A (en) Nonlinear resistor
JPS62282407A (en) Manufacture of voltage nonlinear resistance element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees